Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T04:25:05.103Z Has data issue: false hasContentIssue false

Mechanical Disordering of Cubic Intermetallics By Unconventional Methods of Cold-Work and Their Reordering Upon Annealing

Published online by Cambridge University Press:  10 February 2011

R. A. Varin
Affiliation:
Department of Mechanical Engineering, University of Waterloo, Waterloo, Canada, N2L 3G1, ravarin @ engmail.uwaterloo.ca
J. Bystrzycki
Affiliation:
Department of Materials Technology, Military University of Technology, KALISKIEGO 2, 01–489, Warsaw, Poland
A. Calka
Affiliation:
Department of Materials Engineering, University of Wollongong, Wollongong, New South Wales 2522, Australia
Get access

Abstract

Two unconventional methods of cold-work: (a) controlled mechanical (ball) milling (under shear conditions), and (b) shock-wave (explosive) loading at ˜5 GPa shock pressure were applied to two cubic intermetallics: (a) Mn-stabilized cubic (L12) titanium trialuminide (AI3Ti(Mn)) and (b) B2 iron aluminide (FeAl). The long-range order (LRO) parameter S of both intermetallics decreases and their lattice constants increase with increasing milling time providing strong evidence that the mechanical milling disorder is due to antisite-atom pairs. A nanocrystalline structure is being formed in both intermetallics upon milling. A shock-wave loading gives rise to only a partial disorder of both A13Ti(Mn) and FeAl but their lattice constants are not affected (no point defects formation). Annealing at 600°C results in the restoration of LRO and lattice constants as well as microstructural evolution in Fe-45A1.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Varin, R. A., Wexler, D., Calka, A. and Zbroniec, L., Intermetallics, 6, 547 (1998).CrossRefGoogle Scholar
2. Bystrzycki, J., Paszula, J. and Varin, R. A., Mater. Sci. Eng. A, A239–240, 546 (1997).Google Scholar
3. Yang, Y. and Baker, I., in High-Temperature Ordered Intermetallic Alloys VII, edited by C. C. Koch, C. T. Liu, N. S. Stoloff, and A. Wanner (Mater.Res.Soc.Proc.460, Pittsburgh, PA, 1997), pp.367371.Google Scholar
4. Varin, R. A. and Zbroniec, L., in High-Temperature Ordered Intermetallic Alloys VII, edited by C. C. Koch, C. T. Liu, N. S. Stoloff, and A. Wanner (Mater.Res.Soc.Proc.460, Pittsburgh, PA, 1997), p.121126.Google Scholar
5. Varin, R. A., Bystrzycki, J. and Calka, A., submitted to Intermetallics.Google Scholar
6. Bakker, H., Zhou, G. F. and Yang, H., Prog.Mater.Sci., 39, 159 (1995).CrossRefGoogle Scholar
7. Klug, H. P. and Alexander, L., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn. (John Wiley&Sons, New York, 1974), Chapter 8.Google Scholar
8. Varin, R. A., Bystrzycki, J. and Calka, A., submitted to Intermetallics.Google Scholar
9. Morris, D. G. and Giinter, S., Acta Metall. Mater., 40, 3065 (1992).CrossRefGoogle Scholar
10. Clavaguera-Mora, M. T., Zhou, J., Meyer, M., Mendoza-Zelis, L., Sanchez, F. H. and Clavaguera, N., Mater.Sci.Forum, 235–238, 541 (1997).Google Scholar
11. Schröpf, H., Kuhrt, C., Arzt, E. and Schultz, L., Scripta Metall. Mater., 30, 1569 (1994).CrossRefGoogle Scholar
12. Ellner, M. and Predel, B., in Intermetallic Compounds; Principles and Practice; Vol.1-Principles, edited by Westbrook, J. H. and Fleischer, R. L. (John Wiley & Sons, Chichester, 1995), Chapter 5, pp.113114.Google Scholar
13. Bakker, H., Modder, I. W., Zhou, G. F. and Yang, H., Mater.Sci.Forum, 235–238, 477 (1997).Google Scholar
14. Peng, L. J. and Collins, G. S., Mater.Sci.Forum, 235–238, 535 (1997).Google Scholar
15. Wolff, J., Franz, M., Broska, A., Ktihler, B. and Hehenkamp, Th., Mater.Sci.Eng.A, A239–240, 213 (1997).CrossRefGoogle Scholar
16. Yang, Y. and Baker, I., Intermetallics, 6, 167 (1998).Google Scholar
17. Xiao, H. and Baker, I., Acta Metall. Mater., 43, 391 (1995).Google Scholar
18. Shirai, Y., Masaki, K. and Yamaguchi, M., Intermetallics, 2, 221 (1994).CrossRefGoogle Scholar
19. Gialanella, S., Baro, M. D., Lutterotti, L. and Surinach, S., in High-Temperature Ordered Intermetallic Alloys VI, edited by J. Horton, I. Baker, S. Hanada, R. D. Noebe and D. S. Schwartz (Mater.Res.Soc.Proc.364, Pittsburgh, PA, 1995), pp.213218.Google Scholar
20. Bystrzycki, J. and Varin, R. A., Scripta Mater., 38, 465 (1998).CrossRefGoogle Scholar