Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T17:21:20.200Z Has data issue: false hasContentIssue false

Effect of Photosynthesis-inhibiting Herbicides on Non-photosynthetic Tobacco Callus Tissue

Published online by Cambridge University Press:  12 June 2017

L. S. Jordan
Affiliation:
Department of Horticultural Science, University of California, Riverside, California
T. Murashige
Affiliation:
Department of Horticultural Science, University of California, Riverside, California
J. D. Mann
Affiliation:
Department of Horticultural Science, University of California, Riverside, California
B. E. Day
Affiliation:
Department of Horticultural Science, University of California, Riverside, California
Get access

Abstract

The compounds 3-(p-chlorophenyl-1,1-dimethylurea (monuron), 5-bromo-3-sec-butyl-6-methyluracil (bromacil), 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine), 2-chloro-4,6-bis (ethylamino)-s-triazine (simazine), 1,1′-dimethyl-4,4′-dipyridylium salt (paraquat), and 3-amino-1,2,4-triazole (amitrole) were added to a complete nutrient medium on which chlorotic Nicotiana tobacum was grown in the dark. Herbicide concentrations generally were 0, 10-4, 10-5, 10-6, and 10-7 molar. Callus growth was inhibited by molar concentrations greater than 10-7 for the triazines, 10-5 for monuron, 10-4 for bromacil, 10-6 for paraquat and amitrole. At these concentrations, interference with a mechanism other than photosynthesis was responsible for inhibition of growth.

Type
Research Article
Copyright
Copyright © 1966 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Ashton, Floyd M. 1965. Physiological, biochemical, and structural modifications of plants induced by atrazine and monuron. Proc. SWC 18:596602.Google Scholar
2. Ashton, F. M., Gifford, E. M. Jr., and Bisulputra, T. 1963. Structural changes in Phaseolus vulgaris induced by atrazine. I and II. Bot. Gaz. 124: 329343.Google Scholar
3. Ashton, F. M. and Urike, E. G. 1962. Effect of atrazine on sucrose-C14 and serine-C14 metabolism. Weeds 10:295297.CrossRefGoogle Scholar
4. Ashton, F. M. and Zweig, G. 1961. Effect of monuron on C14O2 fixation in red kidney bean leaves. Weeds 9:575579.Google Scholar
5. Ashton, F. M., Zweig, G., and Mason, G. W. 1960. The effect of certain triazines on C14O2 fixation in red kidney beans. Weeds 8:448451.CrossRefGoogle Scholar
6. Cooke, A. R. 1956. A possible mechanism of action of the urea type herbicides. Weeds 4:397398.Google Scholar
7. Exer, A. 1958. Uber Pflanzenwachstrum regulatoren. Der Einfluss Simazine auf den Pflanzenstoffwechsel. Experientia 14:135.Google Scholar
8. Funderburk, H. H. Jr., and Lawrence, J. M. 1964. Mode of action and metabolism of diquat and paraquat. Weeds 12:259264.CrossRefGoogle Scholar
9. Gast, A. 1958. Uber Pflanzenwachstrum regulatoren. Beitrage zur der phytotoxischen von Triazinen. Experientia 14:134.Google Scholar
10. Hilton, J. L. 1960. Effect of histidine on the inhibitory action of 3-amino-1,2,4-triazole. Weeds 8:392396.Google Scholar
11. Hilton, J. L. 1962. Riboflavin nullification of inhibitory actions of 3-amino-1,2,4-triazole on seedling growth. Plant Physiol. 37:238244.Google Scholar
12. Hilton, J. L., Janson, L. L., and Hull, H. M. 1963. Mechanisms of herbicide action. Ann. Rev. Plant Physiol. 14:353384.Google Scholar
13. Hilton, J. L., Monaco, T. J., Moreland, D. E., and Gentner, W. A. 1964. Mode of action of substituted uracil herbicides. Weeds 12:129131.CrossRefGoogle Scholar
14. Jagendorf, A. T. 1958. The relationship between electron transport and phosphorylation in spinach chloroplasts. Brookhaven Symposia in Biology 11:236257.Google Scholar
15. Mees, G. C. 1960. Experiments on the herbicidal action of 1,1′-ethylene-2,2′-dipyridylium dibromide. Ann. Appl. Biol. 48:601612.Google Scholar
16. Moreland, D. E., Gentner, W. A., Hill, K. L., and Hilton, J. L. 1959. Studies on the mechanism of herbicidal action of 2-chloro-4,6-bis(ethylamino)-s-triazine. Plant Physiol. 34:432435.CrossRefGoogle ScholarPubMed
17. Moreland, D. E., Hill, K. L., and Hilton, J. L. 1958. Interference with photochemical activity of isolated chloroplasts by herbicidal materials. Abstracts, Weed Soc. Amer., p. 4041.Google Scholar
18. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473497.Google Scholar
19. Sweetzer, P. B., and Todd, C. W. 1961. The effect of monuron on oxygen liberation in photosynthesis. Biochem. Biophys. Acta. 51:504508.CrossRefGoogle Scholar
20. Wessels, J. S. C., and van der Veen, R. 1956. The action of some derivatives of phenylurethan and 3-phenyl-1,1-dimethylurea on the Hill reaction. Biochem. Biophys. Acta. 19:548549.CrossRefGoogle Scholar
21. Weyler, F. W., and Broquist, H. P. 1960. Interference with adenine and histidine metabolism of microorganisms by aminotriazole. Biochem. Biophys. Acta. 40:567569.Google Scholar
22. Wolf, F. T. 1961. Mechanism of action of 3-amino-1,2,4-triazole. Plant Physiol. 36, suppl. xxxix.Google Scholar
23. Zweig, G. and Ashton, F. M. 1962. The effect of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) on distribution of C14-compounds following C14O2 fixation in excised kidney bean leaves. J. Expt. Botany 13:511.Google Scholar