Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T16:18:38.647Z Has data issue: false hasContentIssue false

Comparison of intranasal medication delivery devices before and after functional endoscopic sinus surgery using Phacon sinus surgery models

Published online by Cambridge University Press:  18 July 2023

Christoforos Constantinou*
Affiliation:
Department of ENT, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
Darren Yap
Affiliation:
Department of ENT, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
Arbaaz Pervaiz
Affiliation:
Department of ENT, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
Fabrizio Bandino
Affiliation:
Department of ENT, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
Sanjeeva Jeyaretna
Affiliation:
Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
Pablo Martinez-Devesa
Affiliation:
Department of ENT, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
Ali Qureishi
Affiliation:
Department of ENT, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
*
Corresponding author: Christoforos Constantinou; Email: chconstantinou93@gmail.com

Abstract

Objective

Functional endoscopic sinus surgery for chronic rhinosinusitis improves sinus drainage and intranasal medication delivery. This study compares medication delivery with commonly used devices in normal and altered anatomy (post functional endoscopic sinus surgery) using sinus surgery models (Phacon).

Methods

Medication delivery was simulated via nasal drops, nasal spray and an irrigation device (Neilmed Sinus Rinse). Coverage was then calculated from endoscopic pictures taken at various anatomical sites in the normal nose and post functional endoscopic sinus surgery.

Results

In the normal nose, nasal spray did not penetrate the sphenoid sinus, and drops bypassed the vestibule anteriorly. Neilmed Sinus Rinse provided superior coverage at the sphenoid site following sphenoidectomy and the frontal site following Draf III. After ethmoidectomy, nasal drops overall provided less coverage than the other methods.

Conclusion

Neilmed Sinus Rinse generally provided the best distribution, followed by the nasal spray and then nasal drops. The type and extent of surgery also affects medication delivery.

Type
Main Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of J.L.O. (1984) LIMITED

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Christoforos Constantinou takes responsibility for the integrity of the content of the paper

Presented at the Royal Society of Medicine ‘Thinking outside the box – medical innovation in the 21st century’ conference, 2 December 2022, London, UK, and at the British Academic Conference of Otolaryngology (‘BACO’) International meeting, 16 February 2023, Birmingham, UK.

References

Lanza, DC, Kennedy, DW. Adult rhinosinusitis defined. Otolaryngol Head Neck Surg 1997;117:S17CrossRefGoogle ScholarPubMed
Farzal, Z, Basu, S, Burke, A, Fasanmade, OO, Lopez, EM, Bennett, WD et al. Comparative study of simulated nebulized and spray particle deposition in chronic rhinosinusitis patients. Int Forum Allergy Rhinol 2019;9:746–58CrossRefGoogle ScholarPubMed
Khalil, HS, Nunez, DA. Functional endoscopic sinus surgery for chronic rhinosinusitis. Cochrane Database Syst Rev 2006;(3):CD004458CrossRefGoogle ScholarPubMed
Benninger, MS, Ahmad, N, Marple, BF. The safety of intranasal steroids. Otolaryngol Head Neck Surg 2003;129:739–50CrossRefGoogle ScholarPubMed
Moffa, A, Costantino, A, Rinaldi, V, Sabatino, L, Trecca, EMC, Baptista, P et al. Nasal delivery devices: a comparative study on cadaver model. BioMed Res Int 2019;2019:16CrossRefGoogle ScholarPubMed
Merkus, P, Ebbens, FA, Muller, B, Fokkens, WJ. The ‘best method’ of topical nasal drug delivery: comparison of seven techniques. Rhinology 2006;44:102–7Google ScholarPubMed
Benninger, MS, Hadley, JA, Osguthorpe, JD, Marple, BF, Leopold, DA, Derebery, MJ et al. Techniques of intranasal steroid use. Otolaryngol Head Neck Surg 2004;130:524CrossRefGoogle ScholarPubMed
Stammberger, H, Posawetz, W. Functional endoscopic sinus surgery. Concept, indications and results of the Messerklinger technique. Eur Arch Otorhinolaryngol 1990;247:6376CrossRefGoogle ScholarPubMed
Harvey, RJ, Goddard, JC, Wise, SK, Schlosser, RJ. Effects of endoscopic sinus surgery and delivery device on cadaver sinus irrigation. Otolaryngol Head Neck Surg 2008;139:137–42CrossRefGoogle ScholarPubMed
Kumar, H, Jain, R. The role of computational simulation in understanding the postoperative sinonasal environment. Clin Biomech (Bristol, Avon) 2019;68:212–20CrossRefGoogle ScholarPubMed
Miller, TR, Muntz, HR, Gilbert, ME, Orlandi, RR. Comparison of topical medication delivery systems after sinus surgery. Laryngoscope 2004;114:201–4CrossRefGoogle ScholarPubMed
Wofford, MR, Kimbell, JS, Frank-Ito, DO, Dhandha, V, McKinney, KA, Fleischman, GM et al. A computational study of functional endoscopic sinus surgery and maxillary sinus drug delivery. Rhinology 2015;53:41–8CrossRefGoogle ScholarPubMed
Chen, XB, Lee, HP, Chong, VF, Wang, DY. Drug delivery in the nasal cavity after functional endoscopic sinus surgery: a computational fluid dynamics study. J Laryngol Otol 2012;126:487–94CrossRefGoogle ScholarPubMed
Siu, J, Dong, J, Inthavong, K, Shang, Y, Douglas, RG. Quantification of airflow in the sinuses following functional endoscopic sinus surgery. Rhinology 2020;58:257–65Google ScholarPubMed
Jain, R, Kumar, H, Tawhai, M, Douglas, R. The impact of endoscopic sinus surgery on paranasal physiology in simulated sinus cavities. Int Forum Allergy Rhinol 2017;7:248–55CrossRefGoogle ScholarPubMed
Abouali, O, Keshavarzian, E, Farhadi Ghalati, P, Faramarzi, A, Ahmadi, G, Bagheri, MH. Micro and nanoparticle deposition in human nasal passage pre and post virtual maxillary sinus endoscopic surgery. Respir Physiol Neurobiol 2012;181:335–45CrossRefGoogle ScholarPubMed
Basu, S, Holbrook, LT, Kudlaty, K, Fasanmade, O, Wu, J, Burke, A et al. Numerical evaluation of spray position for improved nasal drug delivery. Sci Rep 2020;10:10568CrossRefGoogle ScholarPubMed