Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T09:36:28.441Z Has data issue: false hasContentIssue false

New Conducting and Semiconducting Polymers for Organic Photovoltaics

Published online by Cambridge University Press:  01 February 2011

Shawn Sapp
Affiliation:
sasapp@tda.com, TDA Research, Inc., Wheat Ridge, Colorado, United States
Silvia Luebben
Affiliation:
silvia@tda.com, TDA Research, Inc., Wheat Ridge, Colorado, United States
Get access

Abstract

In the emerging field of low-cost printed electronics there is a lack of solvent processable conducting and semiconducting materials with highly tuned and known electronic properties. Currently the best performing conductors and semiconductors are not sufficient to produce truly printable, cost competitive organic photovoltaics (OPVs). TDA Research, Inc. (TDA) has been investigating a new class of solvent processable intrinsically conducting polymers for use as charge transport and transparent conducting layers in organic electronic devices. We have also begun the manufacture of electron-deficient semiconducting polymers that may prove to be excellent acceptors in bulk hetero-junction OPVs. This paper presents a summary of the materials characterization conducted on TDA's new electronic materials and how these may address several of the pressing issues preventing the realization of low-cost, printed solar cells and flexible electronics devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] MacDiarmid, A.G., Angew. Chem. Int. Ed., 40, 25812590, 2001.Google Scholar
[2] Groenendaal, L; Dhaen, J.; Manca, J.; Van Luppen, J.; Verdonck, E.; Louwet, F.; Leenders, L. Synth. Met., 135–136, 115117, 2003.Google Scholar
[3] Granström, M.; Petritsch, K.; Arias, A. C.; Lux, A.; Andersson, M. R.; Friend, R. H. Nature, 395, 257260, 1998.Google Scholar
[4] Cao, Y.; Yu, G.; Zhang, C.; Menon, R.; Heeger, A.J. Synth. Met., 87, 171174, 2003.Google Scholar
[5] Kawano, K.; Pacios, R.; Poplavskyy, D.; Nelson, J.; Bradley, D.; Durrant, J. R. Solar Energy Materials & Solar Cells, 90, 35203530, 2006.Google Scholar
[6] Danier Van Der Gon, A.W.; Birgerson, J.; Fahlman, M.; Salaneck, W.R. Org. Electr., 3, 111118, 2002.Google Scholar
[7] Greczynski, G.; Kugler, T.; Keil, M.; Osikowicz, W.; Fahlman, M.; Salaneck, W. R. J. Elec. Spectr. & Rel. Phenom., 121, 117, 2001.Google Scholar
[8] Luebben, S.; Elliott, B.; Wilson, C.Poly(heteroaromatic) Block Copolymers with Electrical Conductivity,” U.S. Patent 7, 361, 728 B1 Issued on April 22, 2008.Google Scholar
[9] Sapp, S.; Luebben, S.; Jeppson, P.; Shulz, D.L.; Caruso, A.N. Appl. Phys. Lett., 88, 152107 (1-3), 2006.Google Scholar
[10] Chujo, Y.; Miyata, M.; Matsumi, N. Polymer Bulletin, 42, 505510, 1999.Google Scholar
[11] Chujo, Y.; Miyata, M.; Matsumi, N. Macromolecules, 32, 44674469, 1999.Google Scholar
[12] Chujo, Y.; Naka, K.; Matsumi, N. J. Am. Chem. Soc., 120, 1077610777, 1998.Google Scholar
[13] Chujo, Y.; Umeyama, T.; Matsumi, N. Polymer Bulletin, 44, 431436, 2002.Google Scholar
[14] Jäkle, F.; Sundararaman, A.; Victor, M.; Varughese, R. J. Am. Chem. Soc., 127, 1374813749, 2005.Google Scholar
[15] Parab, K.; Venkatasubbaiah, K.; Jäkle, F. J. Am. Chem. Soc., 128, 1287912885, 2006.Google Scholar
[16] Luebben, S.; Sapp, S.A. “Use of Pi-conjugated Organoboron Polymers in Thin-film Organic-Polymer Electronic Devices” PCT Patent Application PCT/US07/64328.Google Scholar