Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-12T04:50:45.596Z Has data issue: false hasContentIssue false

Large-Area Industrial-Scale Identification and Quality Control of Graphene

Published online by Cambridge University Press:  06 September 2011

Craig M. Nolen
Affiliation:
Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, Bourns College of Engineering, University of California – Riverside, Riverside, California 92521, USA
Giovanni Denina
Affiliation:
Visualization and Intelligent Systems Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California – Riverside, Riverside, California 92521, USA
Desalegne Teweldebrhan
Affiliation:
Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, Bourns College of Engineering, University of California – Riverside, Riverside, California 92521, USA
Bir Bhanu
Affiliation:
Visualization and Intelligent Systems Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California – Riverside, Riverside, California 92521, USA
Alexander A. Balandin
Affiliation:
Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, Bourns College of Engineering, University of California – Riverside, Riverside, California 92521, USA
Get access

Abstract

A large-area graphene layer identification technique was developed for research and industrial applications. It is based on the analysis of optical microscopy images using computational image processing algorithms. The initial calibration is performed with the micro-Raman spectroscopy. The method can be applied to the wafer-scale graphene samples. The technique has the potential to be the gateway in the development of fully automated statistical process control methods for the next generation thin-film materials used by the semiconductor industry. The proposed technique can be applied to graphene on arbitrary substrates and used for other atomically thin materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Geim, A. K. and Novoselov, K. S., Nature Materials, 6, 183191 (2007).Google Scholar
2. Balandin, A.A., Nature Materials, 10, 569581 (2011).Google Scholar
3. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R. and Song, Y. I., Nat. Nano., 5, 574578 (2010).Google Scholar
4. Reina, A., Xiaoting, J., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S., and Kong, J., Nano Lett., 9, 3035 (2008).Google Scholar
5. Li, X., Magnuson, C. W., Venugopal, A., An, J., Suk, J. W., Han, B., Borysiak, M., Cai, W., Velamakanni, A., Zhu, Y., Fu, L., Vogel, E. M., Voelkl, E., Colombo, L., and Ruoff, R. S., Nano Lett., 10, 43284334 (2010).Google Scholar
6. Morozov, S., Novoselov, K. S., Geim, A. K. et al. , Phys. Rev Lett., 100, 016602. (2008)Google Scholar
7. Balandin, A. A., Ghosh, S., Calizo, I. et al. , Nano Lett., 8, 3, 902-907. (2008)Google Scholar
8. Nika, D. L. et al. , Phys. Rev. B, 79, 155413. (2009)Google Scholar
9. Novoselov, K. S. et al. , Science, 306, 666669. (2004)Google Scholar
10. Ghosh, S., Bao, W., Nika, D. L., Subrina, S., Pokatilov, E. P., Lau, C. N., Balandin, A. A., Nat. Materials, 9, 555558 (2010).Google Scholar
11. Schwierz, F., Nat. Nano., 5, 487496 (2010).Google Scholar
12. Blake, P., Hill, E. W., Neto, A. H. C., Novoselov, K. S., Jiang, D., Yang, R., Booth, T. J., and Geim, A. K., Appl. Phys. Lett., 91, 063124 (2007).Google Scholar
13. Lee, Y., Bae, S., Jang, H., Jang, S., Zhu, S., Sim, S. H., Song, Y. I., Hong, B. H., and Ahn, J., Nano Lett., 10, 490493 (2010).Google Scholar
14. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., and Geim, A. K., Phys. Rev. Lett., 97, 187401 (2006).Google Scholar
15. Gupta, A., Chen, G., Joshi, P., Tadigadapa, S., and Eklund, P.C., Nano Lett., 6, 26672673 (2006).Google Scholar
16. Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A. Y., Feng, R., Dai, Z., Marchenkov, A. N., Conrad, E. H., First, P. N., and de Heer, W. A., J. Phys. Chem. B, 108, 1991219916 (2004).Google Scholar
17. Virojanadara, C., Syvajarvi, M., Yakimova, R., Johansson, L. I., Zakharov, A. A., and Balasubramanian, T., Phys. Rev. B, 78, 245403 (2008).Google Scholar
18. Stolyarova, E., Rim, K. T., Ryu, S., Maultzsch, J., Kim, P., Brus, L. E., Heinz, T. F., Hybertsen, M. S., and Flynn, G. W., PNAS, 104, 92099212 (2007).Google Scholar
19. Hibino, H., Kageshima, H., Maeda, F., Nagase, M., Kobayashi, Y., and Yamaguchi, H., Phys. Rev. B, 77, 075413 (2008).Google Scholar
20. Gaskell, P.E., Skulason, H. S., Rodenchuk, C., and Szkopek, T., Appl. Phys. Lett., 94, 143101 (2009).Google Scholar
21. Nolen, C. M., Denina, G., Teweldebrhan, D., Bhanu, B., and Balandin, A. A., ACS Nano, 5, 914922 (2011).Google Scholar
22. Nolen, C. M., Teweldebrhan, D., Denina, G., Bhanu, B., and Balandin, A. A., ECS Trans., 33, 201 (2010).Google Scholar
23. Gonzalez, R. C. and Woods, R., Digital Image Processing 3rded., Pearson Edu. Inc. (2008)Google Scholar
24. Levy, E., Peles, D., Opher-Lipson, M., and Lipson, S. G., Applied Optics, 38, 4, 679-683 (1999).Google Scholar
25. Teo, G., Wang, H., Wu, Y., Guo, Z., Zhang, J., Ni, Z., and Shen, Z., J. Appl. Phys., 103, 124302 (2008).Google Scholar
26. Calizo, I., Ghosh, S., Bao, W., Miao, F., Lao, C. N., and Balandin, A. A., Solid State Commun., 149, 11321135 (2009).Google Scholar
27. Teweldebrhan, D., Goyal, V., and Balandin, A. A., Nano Lett., 10, 1209 (2010).Google Scholar
28. Kong, D., Dang, W., Cha, J. J., Li, H., Meister, S., Peng, H., Liu, Z., Cui, Y., Nano Lett., 10, 22452250 (2010).Google Scholar