Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T03:25:14.087Z Has data issue: false hasContentIssue false

A Fluorescence Study Of Polyimide Cure Kinetics

Published online by Cambridge University Press:  15 February 2011

D.A. Hoffmann
Affiliation:
Department of Materials Science and Engineering and Department of Chemical Engineering, Stanford University, Stanford, CA 94305
H. Ansari
Affiliation:
Chemical Engineering, Stanford University, Stanford, CA 94305
C.W. Frank
Affiliation:
Chemical Engineering, Stanford University, Stanford, CA 94305
Get access

Abstract

Isothermal annealing studies reveal long term increases in charge transfer fluorescence in spin-cast BTDA-ODA/MPD films. Due to the amorphous nature of these materials, the increase in charge transfer complex (CTC) population is attributed to thermally activated hindered rotation leading to local segmental correlations. This ordering process is driven by the non-equilibrium structure of the initially imidized film. Increased in-plane orientation at higher spin speeds produces a stress activation effect, lowering the energy barrier for segmental rotation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Wachsman, E.D. and Frank, C.W., Polymer 22. 1191 (1988).Google Scholar
2 Hasegawa, H., Masakatsu, K., Mita, I. and Yokota, R., Eur. Polym. J. 25, 349 (1989).CrossRefGoogle Scholar
3 Martin, P.S., Wachsman, E.D. and Frank, C.W. in Polyimides, edited by Feger, C., Khojasteh, M.M. and McGrath, J.E. (Elsevier, New York, 1989) pp. 371378.Google Scholar
4 Wachsman, E.D., Martin, P.S. and Frank, C.W., A.C.S. Symp. Ser. 407, 26 (1989).Google Scholar
5 Numata, S., Fujisaki, K. and Kinjo, N. in Polyimides, edited by Mittal, K. L., (Plenum Press, New York, 1984) Vol.1, pp. 259271.Google Scholar
6 Struick, L.C.E., Physical Aging in Amorphous Polymers and Other Materials, (Elsevier Scientific Publishing Co., Amsterdam,1978)Google Scholar
7 Flory, P.J., Macromolecules, 11, 1141 (1978).CrossRefGoogle Scholar
8 Takahashi, N., Yoon, D.Y. and Parrish, W., Macromolecules, 17, 2583 (1984).Google Scholar
9 Kochi, M., Isoda, S., Yokota, R., Mita, I. and Kambe, in Polyimides, edited by Mittal, K. L. (Plenum Press, New York, 1984) Vol.2, pp. 671681.Google Scholar
10 Numata, S., Oohara, S., Fujisaki, K., Imaizumi, J. and Kinjo, N., J. Appl. Polym. Sci. 31, 101, (1986).CrossRefGoogle Scholar
11 Cohen, Y. and Reich, S., Polym. Sci. 19 599 (1981).Google Scholar
12 Kosbar, L. L., Kuan, S. W. J., Frank, C. W. and Pease, R. F. W. ACS Symp. Ser. 381 95 (1989).CrossRefGoogle Scholar
13 Russell, T.P., Gugger, H. and Swalen, J.D., J. Polym. Sci. 21., 1745 (1983).Google Scholar
14 Kuleznev, V. N. and Shershnev, V.A., The Chemistry and Physics of Polymers, (Mir Publishers, Moscow, 1990), p. 195.Google Scholar