Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-07T14:20:54.643Z Has data issue: false hasContentIssue false

Raman Spectra from One Carbon Nanotube

Published online by Cambridge University Press:  15 March 2011

M. S. Dresselhaus
Affiliation:
Dept. of Electrical Engineering and Computer Science Dept. of Physics
A. Jorio
Affiliation:
Dept. of Physics
A. G. Souza Filho
Affiliation:
Dept. of Physics Dept. de Física, Univ. Federal do Ceará, Fortaleza-CE, 60455-760 Brazil
G. Dresselhaus
Affiliation:
Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
R. Saito
Affiliation:
Department of Electronic Engineering, University of Electro-Communications, Chofu, 182-8585 Tokyo, Japan
M. A. Pimenta
Affiliation:
Dept. de Física, Univ. Federal de Minas Gerais, Belo Horizonte-MG, 30123-970, Brazil

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The use of Raman spectroscopy as a characterization tool for individual single wall carbon nanotubes is briefly reviewed. New physical phenomena occurring at the single nanotube level are discussed, with special emphasis given to the use of resonance Raman scattering for the structural determination of (n, m) for individual nanotubes, based on diameter and chirality dependent phenomena associated with the radial breathing mode, the G-band and the G[prime]-band features. Examples are given to show how single nanotube spectroscopy provides insight into the use of Raman spectroscopy for the characterization of nanotube bundles and for the study of new physical phenomena occurring at the single nanotube level.

Type
Article
Copyright
Copyright © Materials Research Society 2002

References

[1] Dresselhaus, M. S. and Eklund, P. C., Advances in Physics 49, 705814 (2000).Google Scholar
[2] Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).Google Scholar
[3] Jorio, A., Saito, R., Hafner, J. H., Lieber, C. M., Hunter, M., McClure, T., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. Lett. 86, 11181121 (2001).Google Scholar
[4] Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 61, 29812990 (2000).Google Scholar
[5] Odom, T. W., Huang, J. L., Kim, P., and Lieber, C. M., Nature (London) 391, 6264 (1998).Google Scholar
[6] Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., and Achiba, Y., Synthetic Metals 103, 25552558 (1999).Google Scholar
[7] Dresselhaus, G., Pimenta, M. A., Saito, R., Charlier, J.-C., Brown, S. D. M., Corio, P., Marucci, A., and Dresselhaus, M. S.. In Science and Applications of Nanotubes, edited by Tománek, D. and Enbody, R. J., pages 275295, Kluwer Academic, New York, 2000. Proceedings of the International Workshop on the Science and Applications of Nanotubes, Michigan State University, East Lansing, MI, USA, July 24-27, 1999.Google Scholar
[8] Temple, P. A. and Hathaway, C. E., Phys. Rev. B 7, 36853697 (1973).Google Scholar
[9] Hafner, J. H., Cheung, C. L., Oosterkamp, T. H., and Lieber, C. M., J. Phys. Chem. B 105, 743 (2001).Google Scholar
[10] Filho, A. G. Souza, Jorio, A., Hafner, J. H., Lieber, C. M., Saito, R., Pimenta, M. A., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 63, 241404R (2001).Google Scholar
[11] Jorio, A., Filho, A. G. Souza, Dresselhaus, G., Dresselhaus, M. S., Saito, R., Hafner, J. H., Lieber, C. M., Matinaga, F. M., Dantas, M. S. S., and Pimenta, M. A., Phys. Rev. B 63, 5416 (2001).Google Scholar
[12] Jorio, A., Matinaga, F. M., Righi, A., Dantas, M. S. S., Pimenta, M. A., A. G. Souza Filho, J. Mendes Filho, Hafner, J. H., Lieber, C. M., Saito, R., Dresselhaus, G., and Dresselhaus, M. S., (to be published).Google Scholar
[13] Jorio, A., Filho, A. G. Souza, Dresselhaus, G., Dresselhaus, M. S., Swan, A. K., Goldberg, B., Ünlü, M. S., Pimenta, M. A., Hafner, J. H., Lieber, C. M., and Saito, R., (to be published).Google Scholar
[14] Pimenta, M. A., Hanlon, E. B., Marucci, A., Corio, P., Brown, S. D. M., Empedocles, S. A., Bawendi, M. G., Dresselhaus, G., and Dresselhaus, M. S., Brazilian J. Phys. 30, 423427 (2000).Google Scholar
[15] Filho, A. G. Souza, Jorio, A., Dresselhaus, G., Dresselhaus, M. S., Swan, Anna K., Ünlü, M. S., Goldberg, B. B., Saito, R., Hafner, J. H., Lieber, C. M., and Pimenta, M. A., (to be published).Google Scholar
[16] Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Filho, A. G. Souza, and Saito, R., Carbon (to be published) (2002).Google Scholar
[17] Milnera, M., Kurti, J., Hulman, M., and Kuzmany, H., Phys. Rev. Lett. 84, 13241327 (2000).Google Scholar
[18] Jorio, A., Filho, A. G. Souza, Brar, V. W., Swann, A. K., Ünlü, M. S., Goldberg, B. B., Righi, A., Hafner, J. H., Lieber, C. M., Saito, R., Dresselhaus, G., and Dresselhaus, M. S., (to be published).Google Scholar
[19] Tuinstra, F. and Koenig, J. L., J. Chem. Phys. 53, 1126 (1970).Google Scholar
[20] Saito, R., Jorio, A., Filho, A. G. Souza, Dresselhaus, G., Dresselhaus, M. S., and Pimenta, M. A., Phys. Rev. Lett. 87, in press (2001).Google Scholar
[21] Thomsen, C. and Reich, S., Phys. Rev. Lett. 85, 5214 (2000).Google Scholar
[22] Filho, A. G. Souza, Jorio, A., Dresselhaus, G., Dresselhaus, M. S., Swan, A. K., Ünlü, M. S., Goldberg, B. B., Hafner, J. H., Lieber, C. M., Pimenta, M. A., and Saito, R.. In Making Functional Materials with Carbon Nanotubes: MRS Symposium Proceedings, Boston, December 2001, edited by Nikolaev, P., Bernier, P., Ajayan, P., and Iwasa, Y., page Z6.17, Materials Research Society Press, Pittsburgh, PA, 2002.Google Scholar
[23] Filho, A. G. Souza, Jorio, A., Samsonidze, Ge. G., Dresselhaus, G., Dresselhaus, M. S., Swan, A. K., Goldberg, B. B., Ünlü, M. S., Saito, R., Hafner, J. H., Lieber, C. M., and Pimenta, M. A., (to be published).Google Scholar