Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T01:18:34.462Z Has data issue: false hasContentIssue false

Growth of Silica Nanowires Catalysed by Pd Ion Implantation into Si(100)

Published online by Cambridge University Press:  01 February 2011

Parveen Kumar Sekhar
Affiliation:
Nanomaterials and Nanomanufacturing Research Center, Department of Electrical Engineering, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
Dinesh Kumar Sood
Affiliation:
dsood@rmit.edu.au, RMIT,Australia, School of Electrical and Computer Engineering, Australia
Shekhar Bhansali
Affiliation:
bhansali@eng.usf.edu, University of South Florida, Electrical Engineering, United States
Get access

Abstract

Selective synthesis of silica nanowires on silicon wafers catalyzed by Pd ion implantation is reported.Nanoclusters of palladium silicide acts as seeds for nucleation of wires following a Vapor-Liquid-Solid (VLS) growth model. The consumption of silicide towards nanowire growth is confirmed through Rutherford Backscattering Spectrometry (RBS).The influence of growth time, implantation dose and heating temperature on the structure and morphology of the wires is investigated. Optimization of the these tunable parameters would be needed to facilitate controlled and directed bottom-up growth of silica nanowires.Such selective synthesis may enable a large number of applications in wide areas of future technologies such as localization of light, low dimensional waveguides for functional microphotonics, scanning near field optical microscopy (SNOM), optical interconnects, sacrificial templates, optical transmission antennae and biosensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, Y. W., Liang, C. H., Meng, G. W., Peng, X. S. and Zhang, L. D., J.Mater.Chem 12, 651653 (2002).Google Scholar
2. Nira, Laura Ann Bauer Birenbaum, S. and Meyer, Gerald J., J.Mater.Chem 14, 517526 (2004).Google Scholar
3. Yu, D.P., Hang, Q.L., Zhang, H.Z., Bai, Z.G., Wang, J.J., Zou, Y.H, Qian, W., Xiong, G.C., and Feng, S.Q., Appl. Phys. Lett 73, 3076 (1998).Google Scholar
4. Tong, L., Lou, J., Gattas, R.R., He, S., Chen, X., Liu, L., and Mazur, E., Nano Lett. 5, 259 (2005).Google Scholar
5. Law, M., Goldberger, J., Yang, P., Annu. Rev. Mater. Sci. 34, 83, (2004).Google Scholar
6. Kovtyukhova, Nina I., Mallouk, Thomas E. and Mayer, Theresa S., Adv.Mater 15, 780785 (2003).Google Scholar
7. Whang, Dongmok, Jin, Song and Lieber, Charles M., Jpn.Jnl.Appl.Phys 43, 44654470 (2004).Google Scholar
8. Yang, P., Wu, Y., Yan, H., Dr. Huang, M., Messer, B. and Song, J. H.,Chem.Eur.J 8,1261- 1268 (2002).Google Scholar
9. Wagner, R.S. and Ellis, W.C., Appl. Phys Lett 4, 89 (1964).Google Scholar
10. Patolsky, F. and Lieber, C.M, Mater. Today 8, 20 (2005).Google Scholar
11. Rao, C.N.R., Gundiah, G, Deepak, F.L, Govindaraja, A., and Cheetam, A.K, Jnl.Mater.Chem 31, 5 (2003).Google Scholar
12. Sood, D.K., Sekhar, P.K. and Bhansali, S., Appl. Phys. Lett (Accepted), (2006).Google Scholar
13. Tong, L., Lou, J. and Mazur, E., Optics Express 12, 10251035.Google Scholar
14. Brown, I. G., Rev. Sci. Instrum. 65, 3061 (1994).Google Scholar
15. Ziegler, J. F. and Biersack, J. P., “The Stopping and Range of Ions in Matter” (SRIM), http//www.SRIM.org, 2005.Google Scholar
16. Dearnaley, G., Ion Implantation, American Elsevier Publishing Co. (New York, 1973).Google Scholar
17. Baker, H., “ASM Handbook, Vol.3, Alloy Phase Diagrams”, ASM International (Materials Park, 1999), p. 2.340.Google Scholar