Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-05T23:06:53.971Z Has data issue: false hasContentIssue false

Geochemical and scintillometric characterization and correlation of amethyst geode-bearing Paraná lavas from the Quaraí and Los Catalanes districts, Brazil and Uruguay

Published online by Cambridge University Press:  19 July 2010

LÉO A. HARTMANN*
Affiliation:
Instituto de Geociências, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
WILSON WILDNER
Affiliation:
Geological Survey of Brazil (CPRM), Rua Banco da Província, 105, 90840-030 Porto Alegre, Rio Grande do Sul, Brazil
LAUREN C. DUARTE
Affiliation:
Instituto de Geociências, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
SANDRO K. DUARTE
Affiliation:
Instituto de Geociências, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
JULIANA PERTILLE
Affiliation:
Instituto de Geociências, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
KARINE R. ARENA
Affiliation:
Instituto de Geociências, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
LAURA C. MARTINS
Affiliation:
Instituto de Geociências, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
NORBERTO LESSA DIAS
Affiliation:
Geological Survey of Brazil (CPRM), Rua Banco da Província, 105, 90840-030 Porto Alegre, Rio Grande do Sul, Brazil
*
Author for correspondence: leo.hartmann@ufrgs.br

Abstract

Geochemical studies of the six lowermost lava flows of the Cretaceous Serra Geral Formation (Paraná volcanic province) in Quaraí (Brazil) and Artigas (Uruguay) were combined with flow-by-flow field studies of structures and scintillometric profiles to establish a consistent regional stratigraphic framework over at least 100 km. This greatly improves exploration capability for amethyst and agate geodes. A basalt, colada Mata Olho (Alegrete facies, Serra Geral Formation), was the first lava to flow over the ancient Botucatu desert in the region, but an andesite, colada Catalán, overstepped this basalt in many places, perhaps palaeohighs. Four basaltic andesites complete the lava stratigraphy in this formation, adding up to 300 m of lavas. The stratigraphic sequence of contrasting lava compositions is 51.0 wt% SiO2 in the first lava, followed by 57.5, 52.5, 56.0, 53.0 and finally 54.5 wt% SiO2. Overall MgO variation is between 2 and 7 wt%. All lavas in the two districts are low-Ti (<2.0 wt% TiO2) of the Gramado type. The characteristic contents of most major and trace elements (124 rock samples analysed) allow the ready identification of each lava. Contrasting rock chemistry also results in strong variation in scintillometric values (270 points measured in the field and nineteen continuous borehole profiles); from bottom to top of the stratigraphy, the cps values are 49±3.2, 123±10.3, 62±4.7, 94±4.6, ~45 and ~85. Colada Catalán has the structure of aa lava, particularly the contorted igneous banding and autobreccias in the upper and lower crusts. In some places, a 2 m thick, silicified sandstone layer lies on top of some coladas, and silicified sandstone forms breccias with volcanic rocks. Geochemistry of the six lavas indicates complex evolution, involving melting of lithospheric mantle, injection into the crust and assimilation of crust followed by fractional crystallization. This study indicates the possibility of world-class deposits of amethyst geodes on the Brazilian side of the border with Uruguay.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araújo, L. M., França, A. B. & Potter, P. E. 1999. Hydrogeology of the Mercosul aquifer system in the Paraná and Chaco-Paraná Basins, South America, and comparison with the Navajo-Nugget aquifer system, USA. Hydrological Journal 7, 317–36.Google Scholar
Augustin, A. H. 2007. Geologia do depósito de ágata e ametista do depósito Novo São João, Santana do Livramento, RS. MS thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil (in Portuguese). Internet: www.lume.ufrgs.br/bitstream/handle/10183/12017/000620019.pdf?sequence=1.Google Scholar
Bellieni, G., Comin-Chiaramonti, P., Ernesto, M., Melfi, A. J., Pacca, I. G. & Piccirillo, E. M. 1984. Flood basalt to rhyolite suites in the southern Paraná plateau (Brazil): paleomagnetism, petrogenesis and geodynamic implications. Journal of Petrology 25, 579618.CrossRefGoogle Scholar
Bondre, N. R. & Hart, W. K. 2008. Morphological and textural diversity of the Steens Basalt lava flows, Southeastern Oregon, USA: implications for emplacement style and nature of eruptive episodes. Bulletin of Volcanology 70, 9991019.CrossRefGoogle Scholar
Carlson, R. W. 1991. Physical and chemical evidence on the cause and source characteristics of flood basalt volcanism. Australian Journal of Earth Sciences 38, 525–44.CrossRefGoogle Scholar
Cartwright, J. A. 2010. Regionally extensive emplacement of sandstone intrusions: a brief review. Basin Research, doi: 10.1111/j.1365-2117.2009.00455.x.CrossRefGoogle Scholar
Coltice, N., Phillips, B. R., Bertrand, N., Ricard, Y. & Rey, P. 2007. Global warming of the mantle at the origin of flood basalts over supercontinents. Geology 35, 391–4.CrossRefGoogle Scholar
Comin-Chiaramonti, P., Riccomini, C., Slejko, F., De Min, A., Ruberti, E. & Gomes, C. B. 2010. Cordierite-bearing lavas from Jaguarão, southern Brazil: petrological evidence for crustal melts during early rifting of Gondwana. Gondwana Research, doi:10.1016/j.gr.2009.12.007, in press.CrossRefGoogle Scholar
Commin-Fischer, A., Berger, G., Polvé, M., Dubois, M., Sardini, P., Beaufort, D. & Formoso, M. L. L. 2010. Petrography and chemistry of SiO2 filling phases in the amethyst geodes from the Serra Geral Formation deposit, Rio Grande do Sul, Brazil. Journal of South American Earth Sciences 29, 751–60.CrossRefGoogle Scholar
CPRM. 2009. Mapa geológico do Rio Grande do Sul. Geological Survey of Brazil (CPRM).Google Scholar
Duarte, L. C., Hartmann, L. A., Vasconcellos, M. A. Z., Medeiros, J. T. N. & Theye, T. 2009. Epigenetic formation of amethyst-bearing geodes from Los Catalanes gemological district, Artigas, Uruguay, southern Paraná Magmatic Province. Journal of Volcanology and Geothermal Research 184, 427–36.CrossRefGoogle Scholar
Ernesto, M., Marques, L. S., Piccirillo, E. M., Molina, E. C., Ussami, N., Comin-Chiaramonti, P. & Bellieni, G. 2002. Paraná Magmatic Province-Tristan da Cunha plume system: fixed versus mobile plume, petrogenetic consideration and alternative heat sources. Journal of Volcanology and Geothermal Research 118,1536.CrossRefGoogle Scholar
Ewart, A., Milner, S. C., Armstrong, R. A. & Duncan, A. R. 1998. Etendeka volcanism of the Goboboseb mountains and Messum Igneous Complex, Namibia. Part I: geochemical evidence of early cretaceous Tristan plume melts and the role of crustal contamination in the Paraná–Etendeka CFB. Journal of Petrology 39, 191225.CrossRefGoogle Scholar
Frank, H. T., Gomes, M. E. B. & Formoso, M. L. L. 2009. Review of the extent and the volume of the Serra Geral Formation, Paraná Basin, South America. Pesquisas em Geociências (UFRGS/Porto Alegre) 36, 4957.CrossRefGoogle Scholar
Garland, F., Turner, S. & Hawkesworth, C. 1996. Shifts in the source of the Paraná basalts through time. Lithos 37, 223–43.CrossRefGoogle Scholar
Gilg, H. A., Morteani, G., Kostitsyn, Y., Preinfalk, C., Gatter, I. & Strieder, A. J. 2003. Genesis of amethyst geodes in basaltic rocks of the Serra Geral Formation (Ametista do Sul, Rio Grande do Sul, Brazil): a fluid inclusion, REE, oxygen, carbon, and Sr isotope study on basalt, quartz, and calcite. Mineralium Deposita 38, 1009–25.CrossRefGoogle Scholar
Hartmann, L. A. 2008. Amethyst geodes formed from hot water in dinosaur times. Gráfica da UFRGS, Porto Alegre, 57 pp.Google Scholar
Hergt, J. M., Peate, D. W. & Hawkesworth, C. J. 1991. The petrogenesis of Mesozoic Gondwana low-Ti flood basalts. Earth and Planetary Science Letters 105, 134–48.CrossRefGoogle Scholar
Holz, M., Soares, A. P. & Soares, P. C. 2008. Preservation of aeolian dunes by pahoehoe lava: an example from the Botucatu Formation (Early Cretaceous) in Mato Grosso do Sul state (Brazil), western margin of the Paraná Basin in South America. Journal of South American Earth Sciences 25, 398404.CrossRefGoogle Scholar
Hon, K., Gansecki, C. & Kauahikaua, J. 2003. The transition from aa to pahoehoe crust on flows emplaced during the Pu'u ‘O'o-Kupaianaha eruption. US Geological Survey Professional Paper 1676.Google Scholar
Hurst, A., Cartwright, J. A. & Duranti, D. 2003. Fluidisation structures in sandstone produced by upward injection through a sealing lithology. In Subsurface sediment mobilization (eds Rensbergen, P. van, Hills, R. R. & Maltman, A. J.), pp. 123–37. Geological Society of London, Special Publication no. 216.Google Scholar
Jerram, D. A., Mountney, N., Holzforster, F. & Stolhofen, H. 1999. Internal stratigraphic relationships in the Etendeka Group in the Huab Basin, NW Namibia: understanding the onset of flood volcanism. Journal of Geodynamics 28, 393418.CrossRefGoogle Scholar
Kilbum, C. R. J. 1981. Pahoehoe and a'a lavas: a discussion and continuation of the model of Peterson and Tilling. Journal of Volcanology and Geothermal Research 11, 373–82.Google Scholar
Kilbum, C. R. J. 1990. Surfaces of a'a flow fields on Mount Etna, Sicily: morphology, rheology, crystallization and scaling phenomena. In Lava Flows and Domes. Emplacement Mechanisms and Hazard Implications (ed. Fink, J. H.), pp. 129–56. Berlin: Springer.Google Scholar
Krüger, Y., Gilg, H. A., Taubald, H. & Frenz, M. 2009. Microthermometry of monophase inclusions and stable isotopes: new insights in the genesis of amethyst geodes from Brazil. XX European Current Research on Fluid Inclusions Congress, Granada, Spain, September 25–30, 2009, abstract, 2 pp.Google Scholar
Kumar, K. V., Chavan, C., Sawant, S., Raju, K. N., Kanakdande, P., Patode, S., Deshpande, K., Krishnamacharyulu, S. K. G., Vaideswaran, T. & Balaram, V. 2010. Geochemical investigation of a semi-continuous extrusive basaltic section from the Deccan Volcanic Province, India: implications for the mantle and magma chamber processes. Contributions to Mineralogy and Petrology 159, 839–62.CrossRefGoogle Scholar
Machado, F. B., Nardy, A. J. R., Squisato, E. & Oliveira, M. A. F. 2005. O vulcanismo Serra Geral na porção NE da Bacia do Paraná: Aspectos petrográficos e geoquímicos. III Simpósio de Vulcanismo e Ambientes Associados, Cabo Frio, RJ, Sociedade Brasileira de Geologia, Núcleo RJ, CD, 6 pp.Google Scholar
Mangan, M., Wright, T. L., Swanson, D. A. & Byerly, G. R. 1985. Major oxide, trace element, and glass chemistry pertinent to regional correlation of Grande Ronde Basalt flows, Columbia River Basalt Group, Washington. U.S. Geological Survey Open-File Report 85–747.CrossRefGoogle Scholar
Mantovani, M. S. M., Marques, L. S., Sousa, M. A., Civetta, L., Atalla, L. & Innocenti, F. 1985. Trace element and strontium isotope constraints on the origin and evolution of Paraná continental flood basalts of Santa Catarina State, southern Brazil. Journal of Petrology 26, 187209.CrossRefGoogle Scholar
Marques, L. S., Ernesto, M., Piccirillo, E. M., Bellieni, G., Figueiredo, A. M. G. & Min, A. 2005. Identificação de diferentes pulsos magmáticos no enxame de diques toleíticos da Serra do Mar. III Simpósio de Vulcanismo e Ambientes Associados, Cabo Frio, RJ, Sociedade Brasileira de Geologia, Núcleo RJ, CD, 6 pp.Google Scholar
Marsh, S. C. & Milner, S. C. 2007. Stratigraphic correlation of the Awahab and Tafelberg Formations, Etendeka Group, Namibia, and location of an eruptive site for flood basalt volcanism. Journal of African Earth Sciences 48, 329–40.CrossRefGoogle Scholar
Milner, M. T., Wright, T. L., Swanson, D. A. & Byerly, G. R. 1986. Regional correlation of Grande Ronde Basalt flows, Columbia River Basalt Group, Washington, Oregon, and Idaho. Geological Society of America Bulletin 97, 1300–18.Google Scholar
Milner, S. C., Duncan, A. R., Whittingham, A. M. & Ewart, A. 1995. Trans-Atlantic correlation of eruptive sequences and individual silicic units within the Paraná-Etendeka igneous province. Journal of Volcanology and Geothermal Research 69, 137–57.CrossRefGoogle Scholar
Morteani, G., Kostitsyn, Y., Preinfalk, C. & Gilg, H. A. 2010. The genesis of the amethyst geodes at Artigas (Uruguay) and the paleohydrology of the Guaraní aquifer: structural, geochemical, oxygen, carbon, strontium isotope and fluid inclusion study. International Journal of Geological Sciences, doi: 10.1007/s00531-009-0439-z, in press.CrossRefGoogle Scholar
Nakamura, K., Wildner, W., Shibuya, A., Masuta, K., Murakami, T. & Romanini, S. 2003. Mineral exploration of the Cu–Ni PGE deposits in the Paraná Basin Southern Brazil, phase II. Tokyo: Japan Mining Engineering Center for International Cooperation – JMEC/Geological Survey of Brazil – CPRM, 687 pp. (internal report).Google Scholar
Nardy, A. J. R., Squisato, E., Machado, F. B. & Oliveira, M. A. F. 2005. Os derrames básicos da borda leste da Bacia do Paraná no Estado de São Paulo: Considerações preliminares. III Simpósio de Vulcanismo e Ambientes Associados, Cabo Frio, RJ, Sociedade Brasileira de Geologia, Núcleo RJ, CD, 6 pp.Google Scholar
Paula-e-Silva, F., Kiang, C. H. & Caetano-Chang, M. R. 2009. Sedimentation of the Cretaceous Bauru Group in São Paulo, Paraná Basin, Brazil. Journal of South American Earth Sciences 28, 2539.CrossRefGoogle Scholar
Peate, D. W. 1997. The Paraná-Etendeka Province. In Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (eds Mahoney, J. J. & Coffin, M.), pp. 217–45. American Geophysical Union.Google Scholar
Peate, D. W. & Hawkesworth, C. J. 1996. Lithospheric to astenospheric transition in low-Ti basalts from southern Paraná, Brazil. Chemical Geology 127, 124.CrossRefGoogle Scholar
Peate, D. W., Hawkesworth, C. J. & Mantovani, M. S. M. 1992. Chemical stratigraphy of Paraná lavas (South America): classification of magma types and their spatial distribution. Bulletin of Volcanology 55, 119–39.CrossRefGoogle Scholar
Peate, D. W., Hawkesworth, C. J., Mantovani, M. S. M., Rogers, N. W. & Turner, S. P. 1999. Petrogenesis and stratigraphy of the high-Ti/Y Urubici magma type in the Paraná flood basalt province and implications for the nature of Dupal-type mantle in the South Atlantic region. Journal of Petrology 40, 451–73.CrossRefGoogle Scholar
Peate, D. W., Hawkesworth, C. J., Mantovani, M. S. M. & Shukowski, W. 1990. Mantle plumes and flood basalt stratigraphy in the Paraná, South America. Geology 18, 1223–6.2.3.CO;2>CrossRefGoogle Scholar
Perinoto, J. A. J., Etchebehere, M. L. C., Simões, L. S. A. & Zanardo, A. 2008. Diques clásticos na Formação Corumbataí (P) no nordeste da Bacia do Paraná, SP: Análise sistemática e significações estratigráficas, sedimentológicas e tectônicas. Revista Geociências (UNESP) 27, 469–91.Google Scholar
Peterson, D. W. & Tilling, R. I. 1980. Transition of basaltic lava from pahoehoe to aa, Kilauea volcano, Hawaii: field observations and key factors. Journal of Volcanology and Geothermal Research 7, 271–93.CrossRefGoogle Scholar
Petry, K., Jerram, D. A., Almeida, D. P. M. & Zerfass, H. 2007. Volcanic-sedimentary features in the Serra Geral Fm., Paraná Basin, southern Brazil: examples of dynamic lava-sediment interactions in an arid setting. Journal of Volcanology and Geothermal Research 159, 313–25.CrossRefGoogle Scholar
Pinto, V. M., Hartmann, L. A. & Wildner, W. 2010. Epigenetic hydrothermal origin of native copper and supergene enrichment in the Vista Alegre district, Paraná basaltic province, southernmost Brazil. International Geology Review, doi: 10.1080/00206810903464547, in press.CrossRefGoogle Scholar
Proust, D. & Fontaine, C. 2007. Amethyst-bearing lava flows in the Paraná basin (Rio Grande do Sul, Brazil): cooling, vesiculation and formation of the geodic cavities. Geological Magazine 144, 5365.CrossRefGoogle Scholar
Renne, P. R., Ernesto, M., Pacca, I. G., Coe, R. S., Glen, J. M., Prévot, M. & Perrin, M. 1992. The age of Paraná flood volcanism, rifting of Gondwanaland and the Jurassic–Cretaceous boundary. Science 258, 975–9.CrossRefGoogle ScholarPubMed
Richards, M. A., Duncan, R. A. & Courtillot, V. E. 1989. Flood basalts and hot-spot tracks: plume heads and tails. Science 246, 103–7.CrossRefGoogle ScholarPubMed
Rocha, E. R. V., Marques, L. S. & Figueiredo, A. M. G. 2005. Concentrações de terras raras e outros elementos traços em rochas intrusivas e extrusivas do norte da Província Magmática do Paraná: Resultados preliminares. III Simpósio de Vulcanismo e Ambientes Associados, Cabo Frio, RJ, Sociedade Brasileira de Geologia, Núcleo RJ, CD, 6 pp.Google Scholar
Rowland, S. K. & Walker, G. P. L. 1990. Pahoehoe and aa in Hawaii: volumetric flow rate controls the lava structure. Bulletin of Volcanology 52, 615–28.CrossRefGoogle Scholar
Scherer, C. M. S. 2000. Eolian dunes of the Botucatu Formation (Cretaceous) in southernmost Brazil: morphology and origin. Sedimentary Geology 137, 6384.CrossRefGoogle Scholar
Scherer, C. M. S. 2002. Preservation of Aeolian genetic units by lava flows in the Lower Cretaceous of the Paraná Basin, southern Brazil. Sedimentology 49, 97116.CrossRefGoogle Scholar
Scherer, C. M. S. & Lavina, E. L. C. 2006. Stratigraphic evolution of a fluvial–eolian succession: the example of the Upper Jurassic–Lower Cretaceous Guará and Botucatu formations, Paraná Basin, Southernmost Brazil. Gondwana Research 9, 475–84.CrossRefGoogle Scholar
Schmitt, J. C., Camatti, C. & Barcellos, R. C. 1991. Depósitos de ametista e ágata no estado do Rio Grande do Sul. In Principais depósitos minerais do Brasil – Gemas e rochas ornamentais (eds Schobbenhaus, C., Queiroz, E. T. & Coelho, C. E. S.), pp. 271–85. Brasília, co-edition CPRM/DNPM, 4 (A).Google Scholar
Silver, P. G., Behn, M. D., Kelley, K., Schmitz, M. & Savage, B. 2006. Understanding cratonic flood basalts. Earth and Planetary Science Letters 245, 190201.CrossRefGoogle Scholar
Soares, A. P., Soares, P. C. & Holz, M. 2008. Correlações estratigráficas conflitantes no limite Permo-Triássico no sul da Bacia do Paraná: O contato entre duas sequências e implicações na configuração espacial do aquífero Guarani. Revista Pesquisas em Geociências (UFRGS) 35, 115–33.CrossRefGoogle Scholar
Turner, S. P., Peate, D. W., Hawkesworth, C. J. & Mantovani, M. S. M. 1999. Chemical stratigraphy of the Paraná basalt succession in western Uruguay: further evidence for the diachronous nature of the Paraná magma types. Journal of Geodynamics 28, 459–69.CrossRefGoogle Scholar
Waichel, B. L., Lima, E. F., Lubachesky, R. & Sommer, C. A. 2006. Pahoehoe flows from the central Paraná Continental Flood Basalts. Bulletin of Volcanology 68, 599610.CrossRefGoogle Scholar
Waichel, B. L., Scherer, C. M. S. & Frank, H. T. 2008. Basaltic lava flows covering aeolian dunes in the Paraná Basin in southern Brazil: features and emplacement aspects. Journal of Volcanology and Geothermal Research 171, 5972.CrossRefGoogle Scholar
White, R. S. & McKenzie, D. 1995. Mantle plumes and flood basalts. Journal of Geophysical Research 100, 17543–85.CrossRefGoogle Scholar
Wildner, W., Santos, J. O. S., Hartmann, L. A. & McNaughton, N. J. 2006. Clímax final do vulcanismo Serra Geral em 135 Ma: primeiras idades U–Pb em Zircão. Anais do 43° Congresso Brasileiro de Geologia, núcleo Bahia-Sergipe, Extended abstract, Aracaju-SE, Brazil, 126–31.Google Scholar
Wood, D. A., Gibson, I. L. & Thompson, R. N. 1976. Element mobility during zeolite-facies metamorphism of the Tertiary basalts of eastern Iceland. Contributions to Mineralogy and Petrology 55, 241–55.CrossRefGoogle Scholar
Wooden, J. L., Czamanske, G. K., Fedorenko, V. A., Arndt, N. T., Chauvel, C., Bouse, R. M., King, B.-S. W., Knight, R. J. & Siem, D. F. 1993. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril'sk area, Siberia. Geochimica et Cosmochimica Acta 57, 3677–704.CrossRefGoogle Scholar
Zalán, P. V., Wolff, S., Conceição, J. C. J., Marques, A., Astolfi, M. A. M., Vieira, I. S., Appi, V. T. & Zanotto, O. A. 1990. Bacia do Paraná. In Origem e Evolução de Bacias Sedimentares (eds Raja-Gabaglia, G. P. & Milani, E. J.), pp. 135–68. PETROBRÁS/SEREC/CEN-SUD, Rio de Janeiro.Google Scholar
Supplementary material: File

Hartmann Supplementary Material

Appendix.doc

Download Hartmann Supplementary Material(File)
File 1.3 MB