Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T17:51:29.955Z Has data issue: false hasContentIssue false

Oxygen adsorption on tin oxide nanosized powders characterized by FTIR spectrometry and Relation with the sensor properties

Published online by Cambridge University Press:  10 February 2011

J. Tribout
Affiliation:
LMCTS, ESA 6015 CNRS, Faculty of Sciences, F-87060 Limoges (France).
F. Chancel
Affiliation:
LMCTS, ESA 6015 CNRS, Faculty of Sciences, F-87060 Limoges (France).
M.-I. Baraton
Affiliation:
IWW, Technische Universitat Clausthal, D-38678 Clausthal-Zellerfeld (Germany)
H. Ferkel
Affiliation:
IWW, Technische Universitat Clausthal, D-38678 Clausthal-Zellerfeld (Germany)
W. Riehemann
Affiliation:
IWW, Technische Universitat Clausthal, D-38678 Clausthal-Zellerfeld (Germany)
Get access

Abstract

The surfaces of two tin oxide nanosized powders synthesized by laser evaporation and presenting different average grain sizes were studied by Fourier transform infrared spectrometry. The oxygen adsorption onto activated and oxidized surfaces appeared to be dependent upon the grain size. Moreover, the nature of surface acidic sites probed by pyridine was shown to be dependent on the oxidizing treatment. A simultaneous study of the infrared energy variations and the spectrum perturbations when CO and mixtures of CO and O2 were in contact with the SnO2 samples, showed both the formation of CO2 and the CO reducing effect. The need of an oxygen environment for the surface recovery was clearly brought in evidence as well as the importance of the temperature in the CO sensing mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Willett, M. J., Thesis, University of Nottingham, U.K. (1987).Google Scholar
2. Eastwood, P.G., Claypole, T.C., Watson, J., Coles, G.S.V., Meas. Sci. Technol. 4, 524 (1993).Google Scholar
3. Göpel, W., Schierbaum, K.D., Sensors and Actuators B26–27, 1 (1995).Google Scholar
4. Prutton, M., Introduction to Surface Physics, Oxford Science Public., Oxford (1995).Google Scholar
5. Baraton, M.-I., High Temp. Chem. Processes 3, 545 (1994).Google Scholar
6. Ferkel, H., Naser, J., Riehemann, W., Nanostruct. Mater. 8, 457 (1997).Google Scholar
7. Thornton, E. W., Harrison, P.G., J. Chem. Soc., Faraday Trans. 1 71, 461 (1975).Google Scholar
8. Harrison, P.G., Maunders, B. M., J. Chem. Soc., Faraday Trans. 1 80, 1341 (1984).Google Scholar
9. Davydov, A. A., Kin. Katal. 20, 1245 (1979).Google Scholar
10. Gundrizer, T. A., Davydov, A.A., Reac. Kinet.Catal. Lett. 3 n°1, 63 (1975).Google Scholar
11. Harrison, P.G., Guest, A., J. Chem. Soc., Faraday Trans. 1 83, 3383 (1987).Google Scholar
12. Davydov, A.A., Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides, John Wiley & Sons, New York, 1990, pp. 819.Google Scholar
13. Busca, G., J. Mol. Struc. 105, 11 (1983).Google Scholar
14. Harrison, P.G., Thornton, E. W., J. Chem. Soc., Faraday Trans. 1 71, 1013 (1975).Google Scholar
15. Manassidis, I., Goniakowski, J., Kantorovich, L.N., Gillan, M.J., Surf. Sci. 339, 258 (1995).Google Scholar
16. Lantto, V., Romppainen, P., Surf. Sci. 192, 243 (1987).Google Scholar
17. Baraton, M.-I., Sensors and Actuators B 31, 33 (1996).Google Scholar
18. Watson, J., Ihokura, K., Coles, G.S.V., Meas. Sci. Technol. 4, 711 (1993).Google Scholar
19. Busca, G., Lorenzelli, V., Mater. Chem. 7, 89 (1982).Google Scholar