Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T04:35:38.465Z Has data issue: false hasContentIssue false

Recent Research Progress of Long-wavelength Emitting Long-persistent Luminescence Materials

Published online by Cambridge University Press:  20 March 2014

Wei Zeng
Affiliation:
Department of Materials Science, School of Physical Science and Technology, Lanzhou University, 730000, PR China.
Yuhua Wang*
Affiliation:
Department of Materials Science, School of Physical Science and Technology, Lanzhou University, 730000, PR China.
Yanqin Li
Affiliation:
Department of Materials Science, School of Physical Science and Technology, Lanzhou University, 730000, PR China.
Xuhui Xu
Affiliation:
Department of Materials Science, School of Physical Science and Technology, Lanzhou University, 730000, PR China.
*
Get access

Abstract

Blue and Green long-persistent luminescence materials have been fully developed, and are well featured in production and application. However, long-wavelength emitting materials are very rare relatively. This paper presents some work from our laboratory on the recent progress in long-wavelength emitting long-persistent luminescence materials: Sr3Al2O5Cl2: Eu2+, Tm3+, Sr2SnO4: Sm3+ and Ca2BO3Cl: Eu2+, Dy3+. The initial intensity of Sr3Al2O5Cl2: Eu2+, Tm3+ can reach nearly 5000 mcd/m2 and its afterglow can last about 220 min at recognizable intensity level. Sr2SnO4: Sm3+ has a red emission and its afterglow time of which sintered in vacuum atmosphere increased substantially. With optimum doping concentration and sufficient excitation with UV light, the yellow afterglow of Ca2BO3Cl: Eu2+, Dy3+ can persist over 48 h.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Matsuzawa, T., Aoki, Y., Takeuchi, N., Murayama, Y., J. Electrochem. Soc. 1996 143 2670.CrossRefGoogle Scholar
Kang, C.C., Liu, R.S., Chang, J.C., Lee, B.J., Chem. Mater. 2003 15 3966.CrossRefGoogle Scholar
Clabau, F., Rocquefelte, X., Jobic, S., Deniard, P., Whangbo, M., Garcia, A., Mercier, T. Le, Chem. Mater. 2005 17 3904.CrossRefGoogle Scholar
Liu, Y., Lei, B., Shi, C., Chem. Mater. 2005 17 2108.CrossRefGoogle Scholar
Sun, X., Zhang, J., Zhang, X., Luo, Y., Wang, X.J., J. Phys. D: Appl. Phys. 2008 41 195414.CrossRefGoogle Scholar
Lian, S., Qi, Y., Rong, C., Yu, L., Zhu, A., Yin, D. and Liu, S., J. Phys. Chem. C, 2010, 114, 71967204.CrossRefGoogle Scholar
de Chermont, Q. L., Chaneac, C., Seguin, J., Pelle, F., Maitrejean, S., Jolivet, J. P., Gourier, D., Bessodes, M. and Scherman, D., Proc. Natl. Acad. Sci., 2007, 104, 92669271.CrossRefGoogle Scholar
Matsuzawa, T., Aoki, Y., Takeuchi, N. and Murayama, Y., J. Electrochem. Soc., 1996, 143, 26702673.CrossRefGoogle Scholar
Yamamoto, H. and Matsuzawa, T., J. Lumin., 1997, 72-4, 287289.CrossRefGoogle Scholar
Wang, X., Zhang, Z., Tang, Z. and Lin, Y., Mater. Chem. Phys., 2003, 80, 15.CrossRefGoogle Scholar
Lin, Y., Tang, Z. and Zhang, Z., Mater. Lett., 2001, 51, 1418.CrossRefGoogle Scholar
Fei, Q., Chang, C. and Mao, Dali, J. Alloy. Compd. 2005 390 133137 CrossRefGoogle Scholar
Pan, Z., Lu, Y. Y. and Liu, F., Nat. Mater., 2012, 11, 5863.CrossRefGoogle Scholar
Allix, M., Chenu, S., Véron, E., Poumeyrol, T., Kouadri-Boudjelthia, E. A., Alahraché, S., Porcher, F., Massiot, D., and Fayon, F., Chem. Mater., 2013, 25, 16001606 CrossRefGoogle Scholar
Dong, K., Liao, J., Xiao, S., Yang, X. and Ding, J., J. Mater. Res., 2012, 27, 25352539 CrossRefGoogle Scholar
Li, Y., Wang, Y., Gong, Y., Xu, X., and Zhou, M., Opt. Express, 2010, 18 2485324858 CrossRefGoogle Scholar
Xu, X., Wang, Y., Gong, Y., Zeng, W., and Li, Y., Opt. Express, 2010, 18 1698916994 CrossRefGoogle Scholar
Zeng, W., Wang, Y., Han, S., Chen, W., Li, G., Wang, Y. and Wen, Y., J. Mater. Chem. C, 2013, 1, 30043011 CrossRefGoogle Scholar