Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-12T03:05:23.478Z Has data issue: false hasContentIssue false

Effects of trap height, location, and spacing on pheromone-baited trap catch efficacy for oriental fruit moths (Lepidoptera: Tortricidae) in a peach orchard

Published online by Cambridge University Press:  23 May 2014

W.N. Kong
Affiliation:
College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China Laboratory for Integrated Pest Management of Insect, Institute of Plant Protection, Shanxi Academy of Agricultural Science, Taiyuan, China
R.S. Hu
Affiliation:
College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
Z.G. Zhao
Affiliation:
College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
J. Li
Affiliation:
Pomology Institute, Shanxi Academy of Agricultural Science, Taigu, Shanxi, China
Z.W. Zhang
Affiliation:
College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
S.C. Li
Affiliation:
College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
R.Y. Ma*
Affiliation:
College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
*
1Corresponding author (e-mail: maruiyan2004@163.com).

Abstract

The establishment of standardised methods for monitoring the oriental fruit moth Grapholitha molesta (Busck) (Lepidoptera: Tortricidae) requires the identification of factors that significantly affect trap catch efficacy. We examined the effects of trap height, trap location, and inter-trap spacing on trap catches in a conventional peach orchard. Traps were placed at heights of up to 3.0 m above the ground and sets of nine traps were positioned in grids with inter-trap distances of 10–50 m to determine the optimum trap height, location, and spacing. Traps were checked daily over 10 days for males during four periods corresponding to peak moth flight. Moth catches were higher when traps were placed toward the tops (2.5 m) and outside the canopy (3.0 m). Moth catches in traps located upwind and outside tended to be higher than in the central trap for all inter-trap distances. When inter-trap distances were shorter than 30 m, interference between traps occurred. Our results provide an efficient trap distribution for monitoring G. molesta in peach orchards.

Résumé

La mise en place de méthodes normalisées pour la surveillance de la tordeuse orientale du pêcher Grapholitha molesta (Busck) (Lepidoptera: Tortricidae) nécessite l'identification des facteurs qui affectent de manière significative l'efficacité de capture par piège. Nous avons examiné les effets de la hauteur du piège, l'emplacement du piège, et l'espacement inter-piège sur les prises des pièges dans un verger de pêchers classique. Les pièges ont été placés à une hauteur de 3,0 m au-dessus du sol et une série de neuf pièges ont été placés dans des grilles avec des distances inter-pièges de 10 à 50 m pour déterminer la hauteur de piège, l'emplacement et l'espacement optimaux. Les pièges ont été vérifiés quotidiennement pour les mâles pendant 10 jours au cours des quatre périodes correspondant au pic de vol des papillons. Les captures de papillons étaient plus élevées lorsque les pièges ont été placés vers le haut (2,5 m) et à l'extérieur de la canopée (3,0 m). Les captures de papillons dans les pièges situés en amont et à l'extérieur ont tendance à être plus élevées que dans le piège central pour toutes les distances inter-pièges. Quand les distances inter-pièges étaient plus courtes que 30 m, une interférence entre les pièges s'est produite. Nos résultats fournissent une distribution de pièges efficace pour le suivi de G. molesta dans les vergers de pêchers.

Type
Insect Management
Copyright
© Entomological Society of Canada 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Jon Sweeney

References

Agelopoulos, N., Birkett, M., Hick, J.A., Hooper, A.M., Pickett, J.A., Pow, E.M., et al. 1999. Exploiting semiochemicals in insect control. Pesticide Science, 55: 225235.3.0.CO;2-7>CrossRefGoogle Scholar
Ahmad, T.R. 1987. Effects of pheromone trap design and placement on capture of almond moth, Cadra cautella (Lepidoptera:Pyralidae). Journal of Economic Entomology, 80: 897900.CrossRefGoogle Scholar
Alpizar, D., Fallas, M., Oehlschlager, A.C., Gonzalez, L.M., Chinchilla, C.M., and Bulgarelli, J. 2002. Pheromone mass trapping of the West Indian sugarcane weevil and the American palm weevil (Coleoptera: Curculionidae) in palmito palm. Florida Entomologist, 85: 426430.CrossRefGoogle Scholar
Bacca, T., Lima, E.R., Picanço, M.C., Guedes, R.N.C., and Viana, J.H.M. 2006. Optimum spacing of pheromone traps for monitoring the coffee leaf miner Leucoptera coffeella . Entomologia Experimentalis et Applicata, 119: 3945.CrossRefGoogle Scholar
Byers, J.A. 1999. Effects of attraction radius and flight paths on catch of scolytid beetles dispersing outward through rings of pheromone traps. Journal of Chemical Ecology, 25: 9851005.CrossRefGoogle Scholar
Cardé, R.T. and Minks, A.K. 1995. Control of moth pests by mating disruption: successes and constraints. Annual Review of Entomology, 40: 559585.CrossRefGoogle Scholar
Cardé, R.T. and Minks, A.K. 1997. Insect pheromone research, new directions. Chapman and Hall, New York, United States of America. Pp. 333445.CrossRefGoogle Scholar
Giblin-Davis, R.M., Weissling, T.J., Oehlschlager, A.C., and Gonzalez, L.M. 1994. Field responses of Rhynchophorus cruentatus (Coleoptera: Curculionidae) to its aggregation pheromone and fermenting plant volatiles. Florida Entomologist, 77: 164177.CrossRefGoogle Scholar
Gut, L.J. and Brunner, J.F. 1996. Implementing codling moth mating disruption in Washington pome fruit orchards. Washington State University, Wenatchee, Washington, United States of America.Google Scholar
Il’ichev, A.L., Williams, D.G., and Milner, A.D. 2004. Mating disruption barriers in pome fruit for improved control of oriental fruit moth Grapholita molesta Busck (Lep., Tortricidae) in stone fruit under mating disruption. Journal of Applied Entomology, 128: 126132.CrossRefGoogle Scholar
Jansson, R.K., Heath, R.R., and Coffelt, J.A. 1989. Temporal and spatial patterns of sweet potato weevil (Coleoptera: Curculionidae) counts in pheromone-baited traps in sweet potato fields in southern Florida. Environmental Entomology, 18: 691697.CrossRefGoogle Scholar
Kanga, L.H.B., Pree, D.J., van Lier, J.L., and Walker, G.M. 2003. Management of insecticide resistance in oriental fruit moth (Grapholita molesta; Lepidoptera: Tortricidae) populations from Ontario. Pest Management Science, 59: 921927.CrossRefGoogle ScholarPubMed
Knight, A.L. 2007. Influence of within-orchard trap placement on catch of codling moth (Lepidoptera: Tortricidae) in sex pheromone-treated orchards. Environmental Entomology, 36: 425432.CrossRefGoogle ScholarPubMed
Kovanci, O.B., Schal, C., Walgenbach, J.F., and Kennedy, G.G. 2005. Comparison of mating disruption with pesticides for management of oriental fruit moth (Lepidoptera: Tortricidae) in North Carolina apple planting. Journal of Economic Entomology, 98: 12481258.CrossRefGoogle Scholar
Kovanci, O.B., Schal, C., Walgenbach, J.F., and Kennedy, G.G. 2006. Effects of pheromone loading, dispenser age, and trap height on pheromone trap catches of the oriental fruit moth in apple orchards. Phytoparasitica, 34: 252260.CrossRefGoogle Scholar
Laboke, P.O., Ogenga-Latigo, M.W., Smit, N.E.J., Downham, M.C.A., Odongo, B., Hall, D.R., et al. 2000. Environmental factors affecting catches of sweat potato weevils, Cylas brunneus (Fabricius) and C. puncticollis (Boheman) in pheromone traps. African Potato Association Conference Proceedings, 5: 217227.Google Scholar
Lu, P.F., Huang, L.Q., and Wang, C.Z. 2010. Semiochemicals used in chemical communication in the oriental fruit moth (Grapholitha molesta) (Lepidoptera: Tortricidae). Acta Entomologica Sinica, 53: 13901403.Google Scholar
McNally, P.S. and Barnes, M.M. 1981. Effects of codling moth pheromone trap placement, orientation and density on trap catches. Environmental Entomology, 10: 2226.CrossRefGoogle Scholar
Murad, Z. 2001. Using pheromones to trap banana weevil borers. Banana Topics, 30: 16.Google Scholar
Myers, C.T., Hull, L.A., and Krawczyk, G. 2006. Seasonal and cultivar-associated variation in oviposition preference of oriental fruit moth (Lepidoptera: Tortricidae) adults and feeding behavior of neonate larvae in apples. Journal of Economic Entomology, 99: 349358.CrossRefGoogle ScholarPubMed
Phillips, T.W. 1997. Semiochemicals of stored product insects: research and applications. Journal of Stored Products Research, 33: 1730.CrossRefGoogle Scholar
Riedl, H., Croft, B.A., and Howitt, A.J. 1976. Forecasting codling moth phenology based on pheromone trap catches and physiological time models. The Canadian Entomologist, 108: 449460.CrossRefGoogle Scholar
Riedl, H., Howell, J.F., McNally, P.S., and Westigard, P.H. 1986. Codling moth management: use and standardization of pheromone trapping systems. Bulletin 1918. University of California, Berkeley, California, United States of America.Google Scholar
Riedl, H., Hoying, S.A.W., Barnett, W., and DeTar, J.E. 1979. Relationship of within-tree placement of the pheromone trap to codling moth catches. Environmental Entomology, 8: 765769.CrossRefGoogle Scholar
Riga, E., Lacey, L.A., Guerra, N., and Headrick, H.L. 2006. Control of the oriental fruit moth, Grapholita molesta, using entomopathogenic nematodes in laboratory and fruit bin assays. Journal of Nematology, 38: 168171.Google ScholarPubMed
Rothschild, G.H.L. and Minks, A.K. 1977. Some factors influencing the performance of pheromone traps for oriental fruit moth in Australia. Entomologia Experimentalis et Applicata, 22: 171182.CrossRefGoogle Scholar
Rothschild, G.L.H. and Vickers, R.A. 1991. Biology, ecology and control of the oriental fruit moth. In Tortricid pests: their biology, natural enemies and control. Edited by L.P.S. Van Der Geest and H.H. Evenhuis. Elsevier, New York, New York, United States of America. Pp. 389412.Google Scholar
Sappington, T.W. and Spurgeon, D.W. 2000. Variation in boll weevil (Coleoptera: Curculionidae) captures in pheromone traps arising from wind speed moderation by brush lines. Environmental Entomology, 29: 807814.CrossRefGoogle Scholar
Sarzynski, E.M. and Liburd, O.E. 2004. Effect of trap height and within-planting location on captures of cranberry fruit worm (Lepidoptera: Pyralidae) in highbush blueberries. Agricultural and Forest Entomology, 6: 199204.CrossRefGoogle Scholar
Schlyter, F. 1992. Sampling range, attraction range and effective attraction radius: estimates of trap efficiency and communication distance in coleopteran pheromone and host attractant systems. Journal of Applied Entomology, 114: 439454.CrossRefGoogle Scholar
Smit, N.E.J.M., Downham, M.C.A., Laboke, P.O., Hall, D.R., and Odongo, B. 2001. Mass trapping male Cylas spp. with sex pheromones: a potential IPM component in sweet potato production in Uganda. Crop Protection, 20: 643651.CrossRefGoogle Scholar
Snedecor, G.W. and Cochran, W.G. 1967. Statistical methods. Iowa State University Press, Ames, Iowa, United States of America.Google Scholar
Suckling, D.M. 2000. Issues affecting the use of pheromones and other semiochemicals in orchards. Crop Protection, 19: 677683.CrossRefGoogle Scholar
Wall, C. and Perry, J.N. 1982. The behaviour of moths responding to pheromone sources in the field: a basis for discussion. Les Colloques de l’Institut National de la Recherche Agronomique, 7: 169186.Google Scholar
Weakley, C.V., Kirsch, P., and Rice, R.E. 1987. Control of Oriental fruit moth by mating disruption. California Agriculture, 1987: 78.Google Scholar
Wedding, R., Anderbrant, O., and Jönsson, P. 1995. Influence of wind conditions and intertrap spacing on pheromone trap catches European pine sawfly, Neodiprion sertifer . Entomologia Experimentalis et Applicata, 77: 223232.CrossRefGoogle Scholar
Zhao, Z.G., Rong, E.H., Li, S.C., Zhang, L.J., Kong, W.N., Hu, R.S., et al. 2013. Research on the practical parameters of sex pheromone traps for the oriental fruit moth. Pest Management Science, 69: 11811186.CrossRefGoogle ScholarPubMed