Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-19T00:28:23.006Z Has data issue: false hasContentIssue false

Nitrogen Isotopes in Deep Time

Published online by Cambridge University Press:  21 January 2021

Colin Mettam
Affiliation:
University College London
Aubrey L. Zerkle
Affiliation:
University of St Andrews, Scotland

Summary

Nitrogen is an essential nutrient for life, and its sources and cycling have varied over earth history. Stable isotope ratios of nitrogen compounds (expressed as δ15N, in ‰) are preserved in the sedimentary record and track these changes, providing important insights into associated biogeochemical feedbacks. Here we review the use of nitrogen stable isotope geochemistry in unravelling the evolution of the global N cycle in deep time. We highlight difficulties with preservation, unambiguous interpretations, and local versus global effects. We end with several case studies illustrating how depositional and stratigraphic context is crucial in reliably interpreting δ15N records in ancient marine sediments, both in ancient anoxic (Archean) and more recent well oxygenated (Phanerozoic) environments.
Get access
Type
Element
Information
Online ISBN: 9781108847186
Publisher: Cambridge University Press
Print publication: 18 February 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ader, M., Thomazo, C., Sansjofre, P., Busigny, V., Papineau, D., Laffont, R., Cartigny, P. , and Halverson, G. P., 2016, Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks: Assumptions and perspectives: Chemical Geology, v. 429 , pp. 93110.Google Scholar
Algeo, T., Henderson, C. M., Ellwood, B., Rowe, H., Elswick, E., Bates, S., Lyons, T., Hower, J. C., Smith, C., Maynard, B., Hays, L. E., Summons, R. E., Fulton, J. M., and Freeman, K. H., 2012, Evidence for a diachronous Late Permian marine crisis from the Canadian Arctic region: GSA Bulletin, v. 124, pp. 1424–48.Google Scholar
Algeo, T. J. and Twitchett, R. J., 2010, Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences: Geology, v. 38, pp. 1023–6.CrossRefGoogle Scholar
Altabet, M. A. and Francois, R., 1994, Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization: Global Biogeochemical Cycles, v. 8, no. 1, pp. 103–16.CrossRefGoogle Scholar
Bahlmann, E., Bernasconi, S. M., Bouillon, S., Houtekamer, M., Korntheuer, M., Langenberg, F., Mayr, C., Metzke, M., Middelburg, J. J., Nagel, B., Struck, U., Voss, M., and Emeis, K. C., 2010, Performance evaluation of nitrogen isotope ratio determination in marine and lacustrine sediments: An inter-laboratory comparison: Organic Geochemistry, v. 41, pp. 312.Google Scholar
Baursachs, T., Schouten, S., Compaore, J., Wollenzien, U., Stal, L. J., and Damste, J. S. S., 2009, Nitrogen isotopic fractionation associated with growth on dinitrogen gas and nitrate by cyanobacteria: Limnology and Oceanography, v. 54, pp. 1403–11.Google Scholar
Beaumont, V., Agrinier, P., Javoy, M., and Robert, F., 1994, Determination of the CO contribution to the 15N/14N ratio measured by mass spectrometry: Analytical Chemistry, v. 66, pp. 2187–9.Google Scholar
Beaumont, V. and Robert, F., 1999, Nitrogen isotope ratios of kerogens in Precambrian cherts: A record of the evolution of atmosphere chemistry?: Precambrian Research, v. 96 , pp. 6382.Google Scholar
Bebout, G. E. and Fogel, M. L., 1992, Nitrogen-isotope compositions of metasedimentary rocks in the Catalina Schist, California – implications for metamorphic devolatilization history: Geochimica et Cosmochimica Acta, v. 56, no. 7, pp. 2839–49.Google Scholar
Boyd, S. R. and Philippot, P., 1998, Precambrian ammonium biogeochemistry: a study of the Moine metasediments, Scotland: Chemical Geology, v. 144, pp. 257–68.CrossRefGoogle Scholar
Brunner, B., Contreras, S., Lehmann, M. F., Matantseva, O., Rollog, M., Kalvelage, T., Klockgether, G., Lavik, G., Jetten, M. S. M., Kartal, B., and Kuypers, M. M. M., 2013, Nitrogen isotope effects induced by anammox bacteria: Proceedings of the National Academy of Sciences, v. 110, no. 47, pp. 18994–9.Google Scholar
Busigny, V., Lebeau, O., Ader, M., Krapez, B. , and Bekker, A., 2013, Nitrogen cycle in the Late Archean ferruginous ocean: Chemical Geology, v. 362 , pp. 115–30.CrossRefGoogle Scholar
De Pol-Holz, R., Robinson, R. S., Hebbeln, D., Sigman, D. M., and Ulloa, O., 2009, Controls on sedimentary nitrogen isotopes along the Chile margin: Deep-Sea Research Part Ii-Topical Studies in Oceanography, v. 56, no. 16, pp. 1100–12.Google Scholar
Freudenthal, T., Wagner, T., Wenzhofer, F., Zabel, M., and Wefer, G., 2001, Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: Evidence from stable nitrogen and carbon isotopes: Geochimica et Cosmochimica Acta, v. 65, no. 11, pp. 1795–808.Google Scholar
Fulton, J. M., Arthur, M. A., Thomas, B., and Freeman, K. H., 2018, Pigment carbon and nitrogen isotopic signatures in euxinic basins: Geobiology, v. 16, pp. 429–45.CrossRefGoogle ScholarPubMed
Gao, X., Yang, Y., and Wang, C., 2012, Geochemistry of organic carbon and nitrogen in surface sediments of coastal Bohai Bay inferred from their ratios and stable isotopic signatures: Marine Pollution Bulletin, v. 64, pp. 1148–55.Google Scholar
Garvin, J., Buick, R., Anbar, A. D., Arnold, G. L., and Kaufman, A. J., 2009, Isotopic evidence for an aerobic nitrogen cycle in the latest Archean: Science, v. 323, pp. 1045–8.Google Scholar
Godfrey, L. V. and Falkowski, P. G., 2009, The cycling and redox state of nitrogen in the Archaean ocean: Nature Geoscience.Google Scholar
Granger, J., Sigman, D. M., Lehmann, M. F., and Tortell, P. D., 2008, Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria: Limnology and Oceanography, v. 53, no. 6, pp. 2533–45.Google Scholar
Grasby, S., Beauchamp, B., Bond, D. P. G., Wignall, P. B., Talavera, C., Galloway, J. M., Piepjohn, K., Reinhardt, L., and Blomeier, D., 2015, Progressive environmental deterioration in northwestern Pangea leading to the latest Permian Extinction: GSA Bulletin, v. 127, pp. 1331–47.Google Scholar
Hoch, M. P., Fogel, M. L., and Kirchman, D. L., 1992, Isotope fractionation associated with ammonium uptake by a marine bacterium: Limnology and Oceanography, v. 37, no. 7, pp. 1447–59.Google Scholar
Ishida, A., Kitajima, K., Williford, K. H., Tuite, M. L., Kakegawa, T., and Valley, J. W., 2018, Simultaneous in situ analysis of carbon and nitrogen isotope ratios in organic matter by secondary ion mass spectrometry: Geostandards and Geoanalytical Research, pp. 115.Google Scholar
Junium, C. K. and Arthur, M. A., 2007, Nitrogen cycling during the cretaceous, Cenomanian-Turonian oceanic anoxic event II: Geochemistry Geophysics Geosystems, v. 8.Google Scholar
Kipp, M. A., Stueken, E. E., Yun, M., Bekker, A. , and Buick, R., 2018, Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic era: Earth and Planetary Science Letters, v. 500 , pp. 117–26.CrossRefGoogle Scholar
Knies, J., Grasby, S., Beauchamp, B., and Schubert, C. J., 2013, Water mass denitrification during the latest Permian extinction in the Sverdrup Basin, Arctic Canada: Geology, v. 41, pp. 167–70.CrossRefGoogle Scholar
Koehler, M. C., Buick, R., Kipp, M. A., Stueken, E. E., and Zaloumis, J., 2018, Transient surface ocean oxygenation recorded in the ~2.66-Ga Jeerinah Formation, Australia: Proceedings of the National Academy of Sciences, v. 2018, pp. 16.Google Scholar
Kump, L. R., Junium, C. K., Arthur, M. A., Brasier, A., Fallick, A., Melezhik, V., Lepland, A., Crne, A. E., and Luo, G., 2011, Isotopic evidence for massive oxidation of organic matter following the Great Oxidation Event: Science, v. 334, pp. 1694–6.Google Scholar
Looy, C. V., Twitchett, R. J., Dilcher, D. L., Van Konijnenburg-Van Cittert, J. H. A., and Visscher, H., 2001, Life in the end-Permian dead zone: PNAS, v. 98, pp. 7879–83.Google Scholar
Macko, S. A. and Estep, M. F., 1984, Microbial alteration of stable nitrogen and carbon isotopic compositions of organic matter: Organic Geochemistry, v. 6, pp. 787–90.Google Scholar
Mandernack, K. W., Mills, C. T., Johnson, C. A., Rahn, T., and Kinney, C., 2009, The δ15N and δ18O values of N2O produced during the co-oxidation of ammonia by methanotrophic bacteria: Chemical Geology, v. 267, pp. 96107.CrossRefGoogle Scholar
Megonigal, J.P., Hines, M.E., Visscher, P.T., 2003, 8.08 – Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes. In: Treatise on Geochemistry, Holland, and Turekian, (eds.), pp. 317424.Google Scholar
Mettam, C., Zerkle, A. L., Claire, M. C., Izon, G., Junium, C. K., and Twitchett, R. J., 2017, High-frequency fluctuations in redox conditions during the latest Permian mass extinction: Palaeogeography Palaeoclimatology Palaeoecology, v. 485, pp. 210–23.Google Scholar
Meyers, P. A., 1997, Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes: Organic Geochemistry, v. 27, pp. 213–50.CrossRefGoogle Scholar
Möbius, J., Lahajnar, N., and Emeis, K. C., 2010, Diagenetic control of nitrogen isotope ratios in Holocene sapropels and recent sediments from the Eastern Mediterranean Sea: Biogeosciences Discussions, v. 7, pp. 1131–65.Google Scholar
Nishizawa, M., Miyazaki, J., Makabe, A., Koba, K., and Takai, K., 2014, Physiological and isotopic characteristics of nitrogen fixation by hyperthermophilic methanogens: Key insights into nitrogen anabolism of the microbial communities in Archean hydrothermal systems: Geochimica et Cosmochimica Acta, v. 138, pp. 117–35.Google Scholar
Olsen, S. L., Kump, L. R., and Kasting, J. F., 2013, Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases: Chemical Geology, v. 362, pp. 3543.Google Scholar
Papineau, D., Mojzsis, S. J., Karhu, J. A., Marty, B., 2005, Nitrogen isotopic composition of ammoniated phyllosilicates: case studies from Precambrian metamorphosed sedimentary rocks: Chemical Geology, v. 216, pp. 3758.CrossRefGoogle Scholar
Peters, K. E., Sweeney, R. E., and Kaplan, I. R., 1978, Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter: Limnology and Oceanography, v. 23, pp. 598604.CrossRefGoogle Scholar
Pinti, D. L. and Hashizume, K., 2011, Early Life Records from Nitrogen Isotopes. In: Golding, S., and Glikson, M. , eds., Earliest Life on Earth: Habitats, Environments, and Methods of Detection: Dordrecht, Springer.Google Scholar
Polissar, P. J., Fulton, J. M., Junium, C. K., Turich, C. H., and Freeman, K. H., 2009, Measurement of 13C and 15N isotopic composition on nanomolar quantitities of C and N: Analytical Chemistry, v. 81, pp. 755–63.CrossRefGoogle Scholar
Robinson, R. S., Kienast, M., Albuquerque, A. L., Altabet, M., Contreras, S., De Pol Holz, R., Dubois, N., Francois, R., Galbraith, E., Hsu, T.-C., Ivanochko, T., Jaccard, S., Kao, S.-J., Kiefer, T., Kienast, S., Lehmann, M. F., Martinez, P., McCarthy, M., Moebius, J., Pedersen, T., Quan, T. M., Ryabenko, E., Schmittner, A., Schneider, R., Schneider-Mor, A., Shigemitsu, M., Sinclair, D., Somes, C., Studer, A., Thunell, R. , and Yang, J.-Y., 2012, A review of nitrogen isotopic alteration in marine sediments: Paleoceanography, v. 27.CrossRefGoogle Scholar
Saitoh, M., Ueno, Y., Nishizawa, M., Isozaki, Y., Takai, K., Yao, J., and Ji, Z., 2014, Nitrogen isotope chemostratigraphy across the Permian-Triassic boundary at Chaotian, Sichuan, South China: Journal of Asian Earth Sciences, v. 93, pp. 113–28.Google Scholar
Schoepfer, S. D., Henderson, C. M., Garrison, G. H., and Ward, P. D., 2012, Cessation of a productive coastal upwelling system in the Panthalassic Ocean at the Permian-Triassic boundary: Palaeogeography Palaeoclimatology Palaeoecology, v. 313, pp. 181–8.Google Scholar
Stüeken, E. E., Buick, R., Guy, B., and Koehler, M. C., 2015a, Isotopic evidence for biological nitrogen fixation by Mo-nitrogenase from 3.2 Gyr: Nature, v. 520, p. 666–9.Google Scholar
Stüeken, E. E., Buick, R., and Schauer, A. J., 2015b, Nitrogen isotope evidence for alkaline lakes on late Archean continents: Earth and Planetary Science Letters, v. 411, p. 110.CrossRefGoogle Scholar
Stüeken, E. E., Kipp, M. A., Koehler, M. C. , and Buick, R., 2016a, The evolution of Earth’s biogeochemical nitrogen cycle: Earth-Science Reviews, v. 160 , p. 220–39.Google Scholar
Stüeken, E. E., Zaloumis, J., Meixnerova, J., and Buick, R., 2017, Differential metamorphic effects on nitrogen isotopes in kerogen extracts and bulk rocks: Geochimica et Cosmochimica Acta, v. 217, p. 8094.Google Scholar
Thomazo, C., Ader, M., and Philippot, P., 2011, Extreme 15 N-enrichments in 2.72-Gyr-old sediments: evidence for a turning point in the nitrogen cycle: Geobiology, v. 9, no. 2, p. 107–20.Google Scholar
Voss, M., Bange, H. W., Dippner, J. W., Middelburg, J. J., , Montoya, J. P., Ward, B., 2013, The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change. Philosophical Transactions Royal Society of London B Biological Science. v. 368.Google Scholar
Weiss, M. C., Sousa, F. L., N. , Neukirchen, S., Roettger, M., Nelson-Sathi, S., and Martine, W. F. , 2016, The physiology and habitat of the last universal common ancestor: Nature Microbiology, v. 1, p. 16116.Google Scholar
Yang, J., Junium, C. K., Grassineau, N. V., Nisbet, E. G., Izon, G., Mettam, C., Martin, A., and Zerkle, A. L., 2019, Ammonium availability in the Late Archaean nitrogen cycle: Nature Geoscience, v. 12, no. 7, p. 553–7.Google Scholar
Zerkle, A. L., House, C. H., Cox, R. P., and Canfield, D. E., 2006, Metal limitation of cyanobacterial N2 fixation and implications for the Precambrian nitrogen cycle: Geobiology, v. 4, p. 285–97.Google Scholar
Zerkle, A. L., Poulton, S. W., Newton, R. J., Mettam, C., Claire, M. W., Bekker, A. , and Junium, C. K., 2017, Onset of the aerobic nitrogen cycle during the Great Oxidation Event: Nature, v. 542 , p. 465–7.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nitrogen Isotopes in Deep Time
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Nitrogen Isotopes in Deep Time
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Nitrogen Isotopes in Deep Time
Available formats
×