Skip to main content Accessibility help
×
  • Cited by 14
Publisher:
Cambridge University Press
Online publication date:
July 2017
Print publication year:
2017
Online ISBN:
9781139031981

Book description

Dynamic compression is an experimental technique with interdisciplinary uses, ranging from enabling the creation of ultracondensed matter under previously impossible conditions to understanding the likely cause of unusual planetary magnetic fields. Readers can now gain an intuitive understanding of dynamic compression; clear and authoritative chapters examine its history and experimental method, as well as key topics including dynamic compression of liquid hydrogen, rare gas fluids and shock-induced opacity. Through an up-to-date history of dynamic compression research, Nellis also clearly shows how dynamic compression addresses and will continue to address major unanswered questions across the scientific disciplines. The past and future role of dynamic compression in studying and making materials at extreme conditions of pressure, density and temperature is made clear, and the means of doing so are explained in practical language perfectly suited for researchers and graduate students alike.

Reviews

'The book contains figures of high quality that enrich discussions of physical observations, theoretical concepts, and experimental methods. Schematics of the testing apparatus appropriate to each regime is particularly useful, as is the summary of applications and limitations of the early and recently developed experimental methods. The bibliography is notably comprehensive, consisting of on the order of 500 full references … In conclusion, the book Ultracondensed Matter by Dynamic Compression is strongly recommended as a reference work for researchers and students involved in the study of the high-pressure response of condensed matter. Summaries of experimental methods, an interesting and informative history of the field, and focused discussion on applications to metallic hydrogen are prominent and unique contributions of this book.'

John D. Clayton Source: Contemporary Physics

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References

Ahrens, T. J. (2005). Shock wave experiments. In Encyclopedia of Geomagnetism and Paleomagnetism. ed. Gubbins, D.. Dordrecht: Kluwer, pp. 912920.
Akahama, Y. and Kawamura, H. (2007). Diamond anvil Raman gauge in multimegabar pressure range. High Pressure Research, 27, 473482.
Alexander, C. S., Asay, J. R. and Haill, T. A. (2010). Magnetically applied pressure-shear: A new method for direct measurement of strength at high pressure. Journal of Applied Physics, 108, 126101-1126101-3.
Altshuler, L. V. (1965). Use of shock waves in high-pressure physics. Soviet Physics-Uspekhi, 8, 5291.
Altshuler, L. V. (2001). Lost World of Khariton. Sarov: RCNC-VNIIEF.
Altshuler, L. V., Kormer, S. B., Brazhnik, M. I., Vladimirov, L. A., Speranskaya, M. P. and Funtikov, A. I. (1960). The isentropic compressibility of aluminum, copper, lead and iron at high pressures. Soviet Physics – JETP, 11, 766776.
Altshuler, L. V., Podurets, M. A., Simakov, G. V. and Trunin, R. F. (1973). High-density forms of fluorite and rutile. Soviet Physics Solid State, 15, 969971.
Altshuler, L. V., Trunin, R. F., Krupnikov, K. K. and Panov., N. V. (1996). Explosive laboratory devices for shock wave compression studies. Physics-Uspekhi, 39, 539544.
Altshuler, L. V. et al. (1968). Soviet Journal of Experimental and Theoretical Physics, 54, 785789.
Anderson, M. S. and Swenson, C. A. (1974). Experimental compressions for normal hydrogen and normal deuterium to 25 kbar at 4.2 K. Physical Review B, 10, 51845191.
Ao, T., Asay, J. R., Chantrenne, S., Baer, M. R. and Hall, C. A. (2008). A compact strip-line pulsed power generator for isentropic compression experiments. Review of Scientific Instruments, 79, 013903-1013903-16.
Arnett, D. (1996). Supernovae and Nucleosynthesis (First edition). Princeton: Princeton University Press.
Asay, J. R., Chhabildas, L. C., Lawrence, R. J. and Sweeney, M. A. (2017). Impactful Times: Memories of 60 Years of Shock Wave Research at Sandia National Laboratories. Cham, Switzerland: Springer International Publishing AG.
Asay, J. R. and Shahinpoor, M. (Eds.). (1993). High Pressure Shock Compression of Solids. New York: Springer.
Ashcroft, N. W. (1968). Metallic hydrogen: A high-temperature superconductor? Physical Review Letters, 21, 17481749.
Ashcroft, N. W. (1991). Optical response near a band overlap: application to dense hydrogen. In Molecular Systems under High Pressure, eds. Pucci, R. and Piccitto, G.. New York: Elsevier, pp. 201222.
Babaev, E., Sudbo, A. and Ashcroft, N. W. (2004). A superconductor to superfluid phase transition in liquid metallic hydrogen. Nature, 431, 666668.
Bancroft, D., Peterson, E. L. and Minshall, S. (1956). Polymorphism of iron at high pressure. Journal of Applied Physics, 27, 291298.
Banishev, A. A., Shaw, W. L., Bassett, W. P. and Dlott, D. D. (2016). High-speed laser-launched flyer plate impacts studied with ultrafast strobe photography and photon Doppler velocimetry. International Journal of Impact Engineering. DOI 10.1007/s40870-016-0058-2.
Barker, L. M. (1984). High pressure quasi-isentropic experiments. In Shock Waves in Condensed Matter-1983, eds. Asay, J. R., Graham, R. A. and Straub, G. K.. New York: North-Holland, pp. 217224.
Barker, L. M. and Hollenbach, R. E. (1974). Shock wave study of the α⇔ε phase transition in iron. Journal of Applied Physics, 45, 48724887.
Barnes, J. F., Blewett, P. J., McQueen, R. G. and Meyer, K. A. (1974). Taylor instability in solids. Journal Applied Physics, 45, 727732.
Bassett, W. A. (2009). Diamond anvil cell, 50th birthday. High Pressure Research, 29, 163186.
Bastea, M. and Bastea, S. (2002). Electrical conductivities of lithium at megabar pressures. Physical Review B, 65, 193104-1193104-4.
Bastea, M., Mitchell, A. C. and Nellis, W. J. (2001). High-pressure insulator-metal transition in molecular fluid oxygen. Physical Review Letters, 86, 31083111.
Bean, V. E., Akimoto, S., Bell, P. M., Block, S., Holzapfel, W. B., et al. (1982). Toward an international practical pressure scale: an AIRAPT task group report. In High Pressure in Research and Industry, vol. 1, eds. Backman, C. M., Johannisson, T. and Tegner, L.. Uppsala: Arkitektkopia, pp. 144151.
Bean, V. E., Akimoto, S., Bell, P. M., Block, S., Holzapfel, W. B., et al. (1986). Another step toward an international practical pressure scale: 2nd AIRAPT IPPS Task Group Report. Physica, 139/140B, 5254.
Belov, S. I., Boriskov, G. V., Bykov, A. I., Il’kaev, R. I., Luk’yanov, N. B., et al. (2002). Shock compression of solid deuterium. JETP Letters, 76, 433435.
Benson, D. J. and Nellis, W. J. (1994). Dynamic compaction of copper powder: computation and experiment. Applied Physics Letters, 65, 418420.
Bergmann, O. R. and Barrington, J. (1966). Effect of explosive shock waves on ceramic powders. Journal of the American Ceramic Society, 49, 502507.
Bethe, H. A. and Teller, E. 1940. Deviations from Thermal Equilibrium in Shock Waves. Aberdeen Ballistics Research Laboratory, unpublished report. (Harvard University Library QC718.5.W3B56).
Bethe, H. A. 1942. On the Theory of Shock Waves for an Arbitrary Equation of State. U. S. Department of Commerce, Washington, DC, Technical Report PB-32189.
Boehler, R., Ross, M., Soderlind, P. and Boercker, D. (2001). High-pressure melting curves of argon, krypton, and xenon: deviation from corresponding states theory. Physical Review Letters, 86, 57315734.
Bonev, S. A., Schwegler, E., Ogitsu, T. and Galli, G. (2004). A quantum fluid of metallic hydrogen suggested by first-principles calculations. Nature (London), 431, 669672.
Boriskov, G. V., Bykov, A. I., Il’kaev, R. I., Selemir, V. D., Simakov, G. V., et al. (2005). Shock compression of liquid deuterium up to 109 GPa. Physical Review B, 71, 092104-1092104-4.
Bowden, S. A., Parnell, J. and Burchell, M. J. (2009). Survival of organic compounds in ejecta from hypervelocity impacts on ice. International Journal of Astrobiology, 8, 1925.
Bradley, D. K., Eggert, J. H., Hicks, D. G., Celliers, P. M., Moon, S. J., et al. (2004). Shock compressing diamond to a conducting fluid. Physical Review Letters, 93, 195506-1195506-4.
Bridgman, P. W. (1909). The measurement of high hydrostatic pressure, I. A simple pressure gauge. Proceedings of the American Academy of Arts and Sciences, 44, 201217.
Bridgman, P. W. (1935). Theoretically interesting aspects of high pressure phenomena. Reviews of Modern Physics, 7, 133.
Bridgman, P. W. (1956). High pressure polymorphism of iron. Journal of Applied Physics, 27, 659.
Bridgman, P. W. (1959). Compression and the α−β phases transition of plutonium. Journal of Applied Physics, 30, 214217.
Bridgman, P. W. (1963). In Solids Under Pressure, ed. Paul, W. and Warschauer, D. M., NY: McGraw-Hill, pp. 113.
Bridgman, P. W. (1964). Collected Experimental Papers (seven volumes). Cambridge: Harvard University Press.
Bushman, A. V., Kanel, G. I., Fortov, V. E. and Ni, A. L. (1992). Intense Dynamic Loading of Condensed Matter. Bristol: Taylor and Francis.
Calder, A. C., Fryxell, B., Plewa, T., Rosner, R. et al. (2002). On validating an astrophysical simulation code. Astrophysical Journal Supplement Series, 143, 201229.
Cavazonni, C., Chiarotti, G. L., Scandolo, S., Tosatti, E., et al. (1999). Superionic and metallic states of water and ammonia at giant planet conditions. Science, 283, 4446.
Celliers, P. M., Collins, G. W., Da Silva, L. B., Gold, D. M., Cauble, R., et al. (2000). Shock-induced transformation of liquid deuterium into a metallic fluid. Physical Review Letters, 84, 55645567.
Challis, J. (1848). On the velocity of sound. Philosophical Magazine, 32, 494499.
Charters, A. C., Denardo, B. P. and Rossow, V. J. (1957). Development of a piston-compressor type light-gas gun for the launching of free-flight models at high velocity. National Advisory Committee for Aeronautics Technical Note 4143.
Chau, R., Mitchell, A. C., Minich, R. and Nellis, W. J. (2001). Electrical conductivity of water compressed dynamically to pressures of 70–180 GPa (0.7–1.8 Mbar). Journal of Chemical Physics, 114, 13611365.
Chau, R., Mitchell, A. C., Minich, R. W. and Nellis, W. J. (2003a). Metallization of fluid nitrogen and the Mott transition in highly compressed low-Z fluids. Physical Review Letters, 90, 245501-1245501-4.
Chau, R., Bastea, M., Mitchell, A. C., Minich, R. W. and Nellis, W. J. (2003b). Planetary interior in the laboratory. Lawrence Livermore National Laboratory Report. UCRL-ID-151657.
Chau, R., Hamel, S. and Nellis, W. J. (2011). Chemical processes in the deep interior of Uranus. Nature Communications, 2, 203. DOI: 10.1038/ncomms1198.
Chen, Q. F., Zheng, J., Gu, Y. J., Chen, Y. L., Cai, L. C. and Shen, Z. J. (2014). Thermophysical properties of multi-shock compressed dense argon. Journal of Chemical Physics, 140, 074202-1074202-6.
Chen, Q. F., Zheng, J., Gu, Y. J. and Li, Z. G. (2015). Equation of state of dense neon and krypton plasmas in the partial ionization regime. Physics of Plasmas, 22, 122706-1122706-8.
Chen, T. T., Chen, J. T., Leslie, J. D. and Smith, H. J. T. (1969). Phonon spectrum of superconducting amorphous bismuth and gallium by electron tunneling. Physical Review Letters, 22, 526530.
Cheret, R. (1992). The life and work of Pierre-Henri Hugoniot. Shock Waves, 2, 14.
Cheret, R. (1993). Detonation of Condensed Explosives. New York: Springer.
Chijioke, A. D., Nellis, W. J., and Silvera, I. F. (2005a). High-pressure equations of state of Al, Cu, Ta, and W. Journal of Applied Physics, 98, 073526-1073526-8.
Chijioke, A. D., Nellis, W. J., Soldatov, A. and Silvera, I. F. (2005b). The ruby pressure standard to 150 GPa. Journal of Applied Physics, 98, 114905-1-114905-9.
Coe, R. S., Prevot, M. and Camps, P. (1995). New evidence for extraordinarily rapid change of the geomagnetic field reversal. Nature, 374, 687692.
Collins, L., Kress, J., Kwon, I., Windl, W., Lenosky, T., et al. (1998). Quantum molecular dynamics simulations of dense matter. Journal of Computer-Aided Materials Design, 5, 173191.
Courant, R. and Friedrichs, K. O. (1948). Supersonic Flow and Shock Waves. New York: Springer-Verlag, pp. 13.
Cronin, J. W. (2004). Fermi, E., The future of nuclear physics. In Fermi Remembered. Chicago: University of Chicago Press.
Dalladay-Simpson, P., Howie, R. T. and Gregoryanz, E. (2016). Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature, 529, 6367.
Davis, J.-P., Brown, J. L., Knudson, M. D. and Lemke, R. W. (2014). Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum. Journal of Applied Physics, 116, 204903-1204903-17.
Davison, L. and Graham, R. A. (1979). Shock compression of solids. Physics Reports, 55, 255379.
Decker, D. L., Bassett, W. A., Merrill, L., Hall, H. T. and Barnett, J. D. (1972). High-pressure calibration: A critical review. Journal of Physical and Chemical Reference Data, 1, 179.
Deemyad, S. and Silvera, I. F. (2008). Melting line of hydrogen at high pressures. Physical Review Letters, 100, 155701-1155701-4.
Dias, R. and Silvera, I. F. (2017). Observation of the Wigner-Huntington transition to solid metallic hydrogen. Science, 355, 715718.
Dick, R. D. and Kerley, G. I. (1980). Shock compression data for liquids. II. Condensed hydrogen and deuterium. Journal of Chemical Physics, 73, 52645271.
Dlott, D. D. (2011). New developments in the physical chemistry of shock compression. Annual Review of Physical Chemistry, 62, 575597.
Dorfman, S. M., Jiang, F., Mao, Z., Kubo, A., Meng, Y., et al. (2010). Phase transitions and equations of state of alkaline earth fluorides CaF2, SrF2, and BaF2 to Mbar pressures. Physical Review B, 81, 174121-1174121-13.
Dorogokupets, P. I., Sokolova, T. S., Daniliov, B. S., Litasov, K. D. (2012). Near-absolute equations of state of diamond, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, and W for quasi-hydrostatic conditions. Geodynamics & Tectonophysics, 3, 129166. DOI:10.5800/GT-2012–3-2-0067.
Drickhamer, H. G. and Balchan, A. S. (1961). High pressure electrical resistance cell, and calibration points above 100 kilobars. Review of Scientific Instruments, 32, 308313.
Dubrovinskaia, N., Dubrovinsky, L., Kantor, I., Crichton, W. A., Dmitriev, V., et al. (2005). Beating the miscibility barrier between iron group elements and magnesium by high-pressure alloying. Physical Review Letters, 95, 245502-1245502-4.
Dubrovinsky, L., Dubrovinskaia, N., Prakapenka, V. B. and Abakumov, A. M. (2012). Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nature Communications, 3, 1163-11163-7.
Duvall, G. E. and Graham, R. A. (1977). Phase transitions under shock-wave loading. Reviews of Modern Physics, 49, 523579.
Dynes, R. C., Rowell, J. M. and Schmidt, P. H. (1981). In Ternary Superconductors ed. Shenoy, G. K., Dunlap, B. D. and Fradin, F. Y.. Amsterdam: North Holland, pp. 169173.
Dzyabura, V., Zaghoo, M. and Silvera, I. F. (2013). Evidence of a liquid-liquid phase transition in hot dense hydrogen. Proceedings of National Academy of Sciences (U.S.A), 110, 80408044.
Eakins, D. E. and Thadhani, N. N. (2009). Shock compression of reactive powder mixtures. International Materials Review, 54, 181213.
Earnshaw, S. (1860). On the mathematical theory of sound. Philosophical Transactions of the Royal Society of London, 150, 133148.
Edwards, P. P., Johnston, R. L., Rao, C. N. R., Tunstall, D. P. and Hensel, F. (1998). The metal-insulator transition: a perspective. Philosophical Transactions of the Royal Society of London A, 356, 522.
Eggert, J., Brygoo, S., Loubeyre, P., McWilliams, R. S., Celliers, P. M., et al. (2008). Hugoniot data for helium in the ionization regime, Physical Review Letters, 100, 124503-1124503-4.
Eggert, J. H., Hicks, D. G., Celliers, P. M., Bradley, D. K., McWilliams, R. S., et al. (2009). Melting temperature of diamond at ultrahigh pressure. Nature Physics, 6, 4043.
Eremets, M. I. (1996). High Pressure Experimental Methods. Oxford: Oxford University Press.
Erskine, D. J. and Nellis, W. J. (1991). Shock-induced martensitic phase transformation of oriented graphite to diamond. Nature, 349, 317319.
Erskine, D. J. and Nellis, W. J. (1992). Shock-induced martensitic transformation of highly oriented graphite to diamond. Journal of Applied Physics, 71, 48824886.
Erskine, D. (1994). High pressure Hugoniot of sapphire. In High Pressure Science and Technology – 1993, eds. Schmidt, S. C., Shaner, J. W., Samara, G. A. and Ross, M.. New York: American Institute of Physics Conference Proceedings 309, pp. 141143.
Feynman, R. P. (1963). Six Easy Pieces. New York: Basic Books,.
Forbes, J. W. (2012). Shock Wave Compression of Condensed Matter: A Primer (Shock Wave and High Pressure Phenomena). Heidelberg: Springer-Verlag.
Fortov, V. E., Ternovoi, V. A., Zhernokletov, M. V., Mochalov, M. A., Mikhailov, A. L., et al. (2003). Pressure-produced ionization of nonideal plasma in a megabar range of dynamic pressures. Journal of Experimental and Theoretical Physics, 97, 259278.
Fortov, V. E., Altshuler, L. V., Trunin, R. F. and Funtikov, A. I., eds. (2004). High-Pressure Shock Compression of Solids VII, Shock Waves and Extreme States of Matter. New York: Springer-Verlag.
Fortov, V. E. (2016). Extreme States of matter: High energy density physics (Second edition). New York: Springer.
Furakawa, Y., Sekine, T., Oba, M., Kakegawa, T. and Nakazawa, H. (2009). Biomolecule formation by oceanic impacts on early Earth. Nature Geoscience, 2, 6266.
Furnish, M. D., Chhabildas, J. C. and Reinhart, W. G. (1999). Time-resolved particle velocity measurements at impact velocities of 10 km/s. International Journal of Impact Engineering, 23, 261270.
Gatilov, L. A., Glukhodedov, V. D., Grigorev, F. V., Kormer, S.B., Kuleshova, L. V. and Mochalov, M. A. (1985). Electrical conductivity of shock compressed condensed argon at pressures from 20 to 70 GPa. Journal of Applied Mechanics and Technical Physics, 26, 8891.
Goncharov, A. F., Goldman, N., Fried, L. E., Crowhurst, J. C., Kuo, I. W., Mundy, C. J. and Zaug, J. M.. (2005). Dynamic ionization of water under extreme conditions. Physical Review Letters, 94, 125508-1125508-4.
Gorman, M. G., Briggs, R., McBride, E. E., Higginbotham, A., Arnold, B., et al. (2015). Direct observation of melting in shock-compressed bismuth with femtosecond X-ray diffraction. Physical Review Letters, 115, 095701-1095701-5.
Grady, D. E. (1998). Shock-wave compression of brittle solids. Mechanics of Materials, 29, 181203.
Graham, R. A. (1993). Solids Under High Pressure Shock Compression. New York: Springer.
Graham, R. A. (1994). Bridgman’s concern. In High Pressure Science and Technology – 1993, eds. Schmidt, S. C., Shaner, J. W., Samara, G. A. and Ross, M.. New York: American Institute of Physics Conference Proceedings 309, pp. 312.
Granzow, K. D. (1983). Spherical harmonic representation of the magnetic field in the presence of a current density. Geophysical Journal of the Royal Astronomical Society, 74, 489505.
Gratz, A. J., Nellis, W. J. and Hinsey, N. A. (1993a). Observations of high-velocity, weakly shocked ejecta from experimental impacts. Nature, 363, 522524.
Gratz, A. J., DeLoach, L. D., Clough, T. M. and Nellis, W. J. (1993b). Shock amorphization of cristobalite. Science, 259, 663666.
Grigoryev, F. B., Kormer, S. B., Mikhailova, O. L., Mochalov, M. A. and Urlin, V. D. (1985). Temperatures of shock compressed liquid nitrogen and argon. Journal of Experimental and Theoretical Physics, 88, 12711280.
Gross, D. J. and Wilczek, F. (1973). Ultraviolet behavior of non-abelian gauge theories. Physical Review Letters, 30, 13431346.
Hall, C. A., Asay, J. R., Knudson, M. D., Stygar, W. A., Spielman, R. B. and Pointon, T. D. (2001). Experimental configuration for isentropic compression of solids using pulsed magnetic loading. Review of Scientific Instruments, 72, 35873595.
Hamann, S. D. and Linton, M. (1966). Electrical conductivity of water in shock compression. Transactions of the Faraday Society, 62, 22342241.
Hamilton, D. C., Nellis, W. J., Mitchell, A. C., Ree, F. H. and van Thiel, M. (1988a). Electrical conductivity and equation of state of shock compressed liquid oxygen. Journal of Chemical Physics, 88, 50425050.
Hamilton, D. C., Mitchell, A. C., Ree, F. H. and Nellis, W. J. (1988b). Equation of state of 1-butene shocked to 54 GPa (540 kbars). Journal of Chemical Physics, 88, 77067708.
Hare, D. E., Holmes, N. C. and Webb, D. J. (2002). Shock-wave-induced optical emission from sapphire in the stress range 12 to 45 GPa: Images and spectra. Physical Review B, 66, 014108-1014108-11.
Hawke, R. S., Burgess, T. J., Duerre, D. E., Huebel, J. G., Keeler, R. N., et al. (1978). Observation of electrical conductivity of isentropically compressed hydrogen at megabar pressures. Physical Review Letters, 41, 994997.
Helled, R., Anderson, J. D., Podolak, M. and Schubert, G. (2011). Interior models of Uranus and Neptune. Astrophysical Journal, 726, 15-115-7.
Hemley, R. J., Chiarotti, G. L., Bernasconi, M. and Ulivi, L. (2002). High Pressure Phenomena: Proceedings of the International School of Physics “Enrico Fermi.” Amsterdam: IOS Press.
Hensel, F. and Edwards, P. P. (1996). The changing phase of expanded metals. Physics World, 4, 4346.
Hensel, F., Marceca, E. and Pilgrim, W. C. (1998). The metal-non-metal transition in compressed metal vapours. Journal of Physics: Condensed Matter, 10, 1139511404.
Herman, F. and Skillman, S. (1963). Atomic Structure Calculations. Englewood Cliffs, NJ: Prentice-Hall.
Hicks, D. G., Celliers, P. M., Collins, G. W., Eggert, J. H. and Moon, S. J. (2003). Shock-induced transformation of Al2O3 and LiF into semiconducting liquids. Physical Review Letters, 91, 035502-1035502-4.
Hicks, D. G., Boehly, T. R., Celliers, P. M., Eggert, J. H., Moon, S. J., et al. (2009). Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa. Physical Review B, 79, 014112-1014112-18.
Hide, R. (1969). Interaction between the Earth’s liquid core and solid mantle. Nature, 222, 10551056.
Hide, R., Clayton, R. W., Hager, B. H., Spieth, M. A. and Voorhdes, C. V. (2013). Topographic core-mantle coupling and fluctuations in the Earth’s rotation. In Relating Geophysical Structures and Processes: The Jeffreys Volume, Geophysical Monograph 76, Vol. 16, eds. Aki, K. and Dmowska, R., IUGG, pp. 107–120.
Holme, R. (1997). Three dimensional kinematic dynamos with equatorial symmetry: Application to the magnetic fields of Uranus and Neptune. Physics of the Earth and Planetary Interiors, 102, 105122.
Holmes, N. C., Nellis, W. J., Graham, W. B. and Walrafen, G. E. (1985). Spontaneous Raman scattering from shocked water. Physical Review Letters, 55, 24332436.
Holmes, N. C., Moriarty, J. A., Gathers, G. R. and Nellis, W. J. (1989). The equation of state of platinum to 660 GPa (6.6 Mbar). Journal of Applied Physics, 66, 29622967.
Holmes, N. C., Ross, M. and Nellis, W. J. (1995). Temperature measurements and dissociation of shock-compressed liquid deuterium and hydrogen. Physical Review B, 52, 1583515845.
Holmes, N. C., Nellis, W. J. and Ross, M. (1998). Sound velocities in shocked liquid deuterium. In Shock Compression of Condensed Matter – 97, eds. Schmidt, S. C., Dandekar, D. P., and Forbes, J. W.. Woodbury, NY: American Institute of Physics Conference Proceedings 429, pp. 6164.
Holst, B., French, M. and Redmer, R. (2011). Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen. Physical Review B, 83, 235120-1235120-8.
Holzapfel, W. B. (2005). Progress in the realization of a practical pressure scale for the range 1–300 GPa. High Pressures Research, 25, 8796.
Holzapfel, W. B. (2010). Equations of state for Cu, Ag, and Au and problems with shock wave reduced isotherms. High Pressures Research, 30, 372394.
Hoover, W. G. (1979). Structure of a shock-wave front in a liquid. Physical Review Letters, 42, 15311534.
Horie, Y. and Sawaoka, A. B. (1993). Shock Compression Chemistry of Materials. Tokyo: KTK Scientific Publishers.
Hu, S. X., Goncharov, V. N., Boehly, T. R., McCrory, R. L., Skupsky, S., et al. (2015). Impact of first-principles properties of deuterium-tritium on inertial confinement fusion target designs. Physics of Plasmas, 22, 056304-1056304-14.
Huang, J. W., Liu, Q. C., Zeng, X. L., Zhou, X. M. and Luo, S. N. (2015). Refractive indices of Gd3Ga5O12 single crystals under shock compression to 100–290 GPa. Journal of Applied Physics, 118, 205902-1205902-4.
Hubbard, W. B. (1981). Interiors of the Giant Planets. Science, 214, 145149.
Hubbard, W. B. (1984). Planetary Interiors. New York: Van Nostrand-Rheinhold, New York.
Hubbard, W. B., Nellis, W. J., Mitchell, A. C., Holmes, N. C., et al. (1991). Interior structure of Neptune: Comparison with Uranus. Science, 253, 648651.
Hubbard, W. B., Podolak, M. and Stevenson, D. J. (1995). The interior of Neptune. In Neptune and Triton, eds. Cruikshank, D. P.. Tuscon: University of Arizona Press, pp. 109138.
Hugoniot, H. (1887). Sur la propagation du mouvement dans les corps et spécialement dans les gaz parfaits-I. Journal of Ecole Polytechnique, 157, 398.
Hugoniot, H. (1889). Sur la propagation du mouvement dans les corps et spécialement dans les gaz parfaits-II. Journal Ecole Polytechnique, 158, 1126.
Hurricane, O. A., Callahan, D. A., Casey, D. T., Celliers, P. M., et al. (2014). Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343348.
Inoue, K., Kanzaki, H. and Suga, S. (1979). Fundamental absorption spectra of solid hydrogen. Solid State Communications, 30, 627629.
Ioffe, A. F. and Regal, A. R. (1960). Non-crystalline, amorphous, and liquid electronic semiconductors. Progress in Semiconductors, 4, 237291.
Irwin, P. G. J. (2003). Giant Planets of Our Solar System: Atmospheres, Composition, and Structure. New York: Springer-Verlag.
Isbell, W. M. (2005). Shock Waves: Measuring Dynamic Response of Materials. London: Imperial College Press.
Jacobs, J. A. (1975). The Earth’s Core. London: Academic Press.
Jaffe, J. E. and Ashcroft, N. W. (1981). Superconductivity in liquid metallic hydrogen. Physical Review B, 23, 61766179.
Jamieson, J. C. and Lawson, A. W. (1962). X-ray diffraction studies in the 100 kilobar pressure range. Journal of Applied Physics, 33, 776780.
Jayaraman, A. (1983). Diamond anvil cell and high-pressure physical investigations. Reviews of Modern Physics, 55, 65108.
Jayaraman, A. (1984). The diamond-anvil high-pressure cell. Scientific American, April, 54–63.
Jones, A. H., Isbell, W. M. and Maiden, C. J. (1966). Measurement of the very-high-pressure properties of materials using a light-gas gun. Journal of Applied Physics, 37, 34933499.
Kalantar, D. H., Belak, J. F., Collins, G. W., Colvin, J. D., Davies, M. H., et al. (2005). Direct observation of the α−ε transition in shock-compressed iron via nanosecond X-ray diffraction. Physical Review Letters, 95, 075502-1075502-4.
Kanel, G. I., Razorenov, S. V. and Fortov, V. E. (2004). Shock-Wave Phenomena and the Properties of Condensed Matter. New York: Springer.
Kanel, G. I., Nellis, W. J., Savinykh, A. S., Razorenov, S. V. and Rajendran, A. M. (2009). Response of seven crystallographic orientations of sapphire crystals to shock stresses of 16–86 GPa. Journal of Applied Physics, 106, 043524-1043524-10.
Kaxiras, E., Broughton, J. and Hemley, R. J. (1991). Onset of metallization and related transitions in solid hydrogen. Physical Review Letters, 67, 11381141.
Kerley, G. I. (1983). A model for the calculation of thermodynamic properties of a fluid. In Molecular-Based Study of Fluids, eds. Haile, J. M. and Mansoori, G. A.. Washington DC: American Chemical Society, pp. 107138.
Klimenko, V. Y. and Dremin, A. N. (1979). In Detonatsiya, Chernogolovka, eds. Breusov, O. N. et al. Moscow: Soviet Academy of Sciences, p. 79.
Knudson, M. D., Hanson, D. L., Bailey, J. E., Hall, C. A., Asay, J. R. and Anderson, W. W. (2001). Equation of state measurements in liquid deuterium to 70 GPa. Physical Review Letters, 87, 255501-1255501-4.
Knudson, M. D., Hanson, D. L., Bailey, J. E., Hall, C. A. and Asay, J. R. (2003a). Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa. Physical Review Letters, 90, 035505-1035505-4.
Knudson, M. D., Lemke, R. W., Hayes, D. B., Hall, C. A., Deeney, C. and Asay, J. R. (2003b). Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique. Journal of Applied Physics, 94, 44204431.
Knudson, M. D., Hanson, D. L., Bailey, J. E., Hall, C. A., Asay, J. R. and Deeney, C. (2004). Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques. Physical Review B, 69, 144209-1144209-20.
Knudson, M. D., Asay, J. R. and Deeney, C. (2005). Adiabatic release measurements in aluminum from 240- to 500-GPa states on the principal Hugoniot. Journal of Applied Physics, 97, 073514-1073514-14.
Knudson, M. D. and Desjarlais, M. P. (2009). Shock compression of Quartz to 1.6 TPa: Redefining a pressure standard. Physical Review Letters, 103, 255501-1255501-4.
Knudson, M. D. and Desjarlais, M. P. (2013). Adiabatic release measurements in α-quartz between 300 and 1200 GPa: Characterization of α-quartz as a standard in the multimegabar regime. Physical Review B, 88, 184107-1184107-18.
Knudson, M. D., Desjarlais, M. P., Becker, A., Lemke, R. W., Cochrane, K. R., et al. (2015). Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science, 348, 14551459.
Kondo, K. and Ahrens, T. J. (1983) Heterogeneous shock-induced thermal radiation in minerals. Physics and Chemistry of Minerals, 9, 173181.
Kormer, S. B. (1968). Optical study of the characteristics of shock-compressed condensed dielectrics. Soviet Physics-Uspekhi, 11, 229254.
Kraus, R. G., Senft, L. E. and Stewart, S. T. (2011). Impact onto H2O ice: Scaling laws for melting, vaporization and final crater size. Icarus, 214, 724738.
Kraus, R. G., Stewart, S. T., Swift, D. C., Bolme, C. A., Smith, R. F., et al. (2012). Shock vaporization of silica and the thermodynamics of planetary impact events. Journal of Geophysical Research, 117, E09009-1E09009-22.
Kraus, R. G., Root, S., Lemke, R. W., Stewart, S. T., Jacobsen, S. B. and Mattsson, T. R. (2015). Impact vaporization of planetesimal cores in the late stages of planet formation. Nature Geoscience, 8, 269272.
Kraus, D., Ravasio, A., Gauthier, M., Gericke, D. O., et al. (2016). Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nature Communications, 7, DOI: 10.1038/ncomms10970.
Krehl, P. O. K. (2015). The classical Rankine-Hugoniot jump conditions, an important cornerstone of modern shock wave physics: Ideal assumptions vs. reality. European Physical Journal H, 40, 159204.
Kuhlbrodt, S., Redmer, R., Reinholz, H., Ropke, G., Holst, B., et al. (2005). Electrical conductivity of Noble gases at high pressures. Contributions to Plasma Physics, 45, 6169.
Kunc, K., Loa, I. and Syassen, K. (2003). Equation of state and phonon frequency calculations of diamond at high pressures. Physical Review B, 68, 094107-1094107-9.
Landau, L. D. and Zeldovich, Y. B. (1943). On the relation between the liquid and the gaseous states of metals. Acta Physico-Chimica USSR, 18, 174.
Laudernet, Y., Clerouin, J. and Mazevet, S. (2004). Ab initio simulations of the electrical and optical properties of shock-compressed SiO2. Physical Review B, 70, 165108-1165108-5.
Lee, K. K. M., Benedetti, L. R., Jeanloz, R., Celliers, P., Eggert, J. H., et al. (2006) Laser-driven shock experiments on precompressed water: Implications for “icy” giant planets. Journal of Chemical Physics, 125, 014701-1014701-7.
Lemke, R. W., Knudson, M. D. and Davis, J-P. (2011). Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator. International Journal of Impact Engineering, 38, 480485.
Lin, F., Morales, M. A., Delaney, K. T., Peirleoni, C., Martin, R. M. and Ceperley, D. M. (2009). Electrical conductivity of high-pressure liquid hydrogen by Quantum Monte Carlo methods. Physical Review Letters, 103, 256401-1256401-4.
Lindl, J., Landen, O., Edwards, J., Moses, E. and Team, NIC. (2014). Review of the National Ignition Campaign 2009–2012. Physics of Plasmas, 21, 020501-1020501-72.
Liu, T.-P. (1986). Shock waves for compressible Navier-Stokes equations are stable. Communications on Pure and Applied Mathematics, 39, 565594.
Liu, H., Tse, J. S. and Nellis, W. J. (2015). The electrical conductivity of Al2O3 under shock compression. Scientific Reports, 5, 12823-112823-9.
Liu, Q., Zhou, X., Zeng, X. and Luo, S. N. (2015). Sound velocity, equation of state, temperature and melting of LiF single crystals under shock compression. Journal of Applied Physics, 117, 045901-1045901-6.
Lorenzen, W., Holst, B. and Redmer, R. (2010). First-order liquid-liquid phase transition in dense hydrogen. Physical Review B, 82, 195107-1195107-6.
Loubeyre, P., LeToullec, R., Hausermann, D., Hanfland, M., Hemley, R. J., et al. (1996). X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature (London), 383, 702704.
Lucas, M., Winey, J. M. and Gupta, Y. M. (2015). Sound velocities in highly oriented pyrolytic graphite shocked to 18 GPa: Orientational order dependence and elastic instability. Journal of Applied Physics, 118, 245903-1245903-9.
Luo, S.-N., Akins, J. A. and Ahrens, T. J. (2004). Shock-compressed MgSiO3 glass, enstatite, olivine, and quartz: Optical emission, temperatures, and melting. Journal of Geophysical Research, 109, B05205-1B05205-14.
Lyzenga, G. A. and Ahrens, T. J. (1982). One-dimensional isentropic compression. In Shock Waves in Condensed Matter – 1981, eds. Nellis, W. J., Seaman, L. and Graham, R. A.. New York: American Institute of Physics Conference Proceedings 78, pp. 231235.
Lyzenga, G. A., Ahrens, T. J., Nellis, W. J. and Mitchell, A. C. (1982). The temperature of shock-compressed water. Journal of Chemical Physics, 76, 62826286.
Mao, H.-K., Bell, P. M., Shaner, J. W. and Steinberg, D. J. (1978). Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar. Journal of Applied Physics, 49, 32763283.
Mao, H. K. and Hemley, R. J. (1994). Ultrahigh-pressure transitions in solid hydrogen. Reviews of Modern Physics, 66, 671692.
Mao, Z., Dorfman, S. M., Shieh, S. R., Lin, J. F., Prakapenka, V. B., et al. (2011). Equation of state of a high-pressure phase of Gd3Ga5O12. Physical Review B, 83, 054114-1054114-6.
Marsh, S. P., ed. (1980). LASL Shock Hugoniot Data. Berkeley: University of California Press.
Mashimo, T., Chau, R., Zhang, Y., Kobayoshi, T., Sekine, T., et al. (2006). Transition to a virtually incompressible oxide phase at shock pressures of 120 GPa (1.2 Mbar): Gd3Ga5O12. Physical Review Letters, 96, 105504-1105504-4.
Mattesson, T. R., Root, S., Mattsson, A. E., Shulenburger, L., Magyar, R. J. and Flicker, D. G. (2014). Validating density-functional theory simulations at high energy-density conditions with liquid krypton shock experiments to 850 GPa on Sandia’s Z machine. Physical Review B, 90, 184105-1184105-10.
McMahan, A. K. (1976). Bulletin of the American Physical Society, 21, 1303.
McMahon, J. M. and Ceperley, D. M. (2011). Ground-state structures of atomic metallic hydrogen. Physical Review Letters, 106, 165302-1165302-4.
McMinis, J., Clay, R. C. III, Donghwa, L., and Morales, M. A. (2015). Molecular to atomic phase transition in hydrogen under pressure. Physical Review Letters, 114, 105305-1105305-4.
McQueen, R. G., Marsh, S. P., Taylor, J. W., Fritz, J. N. and Carter, W. J. (1970). The equation of state of solids from shock wave studies. In High-Velocity Impact Phenomena, ed. Kinslow, R.. New York: Academic, pp. 293417, 515–568.
McQueen, R. G., Hopson, J. W. and Fritz, J. N. (1982). Optical technique for determining rarefaction wave velocities at very high pressures. Review of Scientific Instruments, 53, 245250.
McWilliams, R. S., Dalton, D. A., Mahmood, M. F. and Goncharov, A. F. (2016). Optical properties of fluid hydrogen at the transition to the conducting state. Physical Review Letters, 116, 255501-1255501-6.
Medvedev, A. B. (2010). Crater formation possibly associated with an ascending thermal plume. New Concepts in Global Tectonics Newsletter, 56, 8698.
Melosh, H. J. (1989). Impact Cratering. New York: Oxford University Press.
Mendelssohn, K. (1966). The Quest for Absolute Zero. New York: World University Library.
Mermin, N. D. and Ashcroft, N. W. (2006). Hans Bethe’s contributions to solid-state physics. International Journal of Modern Physics B, 20, 22272236.
Meyers, M. A. (1994). Dynamic Behavior of Materials. New York: Wiley.
Mikaelian, K. O. (1985). Richtmyer-Meshkov instabilities in stratified fluids. Physical Review A, 31, 410419.
Militzer, B. and Ceperley, D. M. (2000). Path integral Monte Carlo calculation of the deuterium Hugoniot. Physical Review Letters, 85, 18901893.
Mintsev, V. B. and Fortov, V. E. (2015). Transport properties of warm dense matter behind intense shock waves. Laser and Particle Beams, 33, 4150.
Mitchell, A. C. and Nellis, W. J. (1981a). Diagnostic system of the Lawrence Livermore National Laboratory two-stage light-gas gun. Review of Scientific Instruments, 52, 347359.
Mitchell, A. C. and Nellis, W. J. (1981b). Shock compression of aluminum, copper, and tantalum. Journal of Applied Physics, 52, 33633374.
Mitchell, A. C. and Nellis, W. J. (1982). Equation of state and electrical conductivity of water and ammonia shocked to the 100 GPa (1 Mbar) pressure range. Journal of Chemical Physics, 76, 62736281.
Mitchell, A. C., Nellis, W. J., Moriarty, J. A., Heinle, R. A., Tipton, R. E. and Repp, G. W. (1991). Equation of state of Al, Cu, Mo, and Pb at shock pressures up to 2.4 TPa (24 Mbar). Journal of Applied Physics, 69, 29812986.
Mochalov, M. A., Glukhodedov, V. D., Kirshanov, S. I. and Lebedeva, T. S. (2000). Electric conductivity of liquid argon, krypton and xenon under shock compression up to pressure of 90 GPa. In Shock Compression of Condensed Matter – 1999, eds. Furnish, M. D., Chhabildas, L. C. and Hixson, R. S.. New York: American Institute of Physics, pp. 983986.
Morales, M. A., Pierleoni, C., Schwegler, E. and Ceperley, D. M. (2010). Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations. Proceedings of the National Academy of Sciences, 107, 1279912803.
Mott, N. F. (1934). The resistance of liquid metals. Proceedings of the Royal Society of London. Series A, 146:857, 465472.
Mott, N. F. (1936). The Theory of the Properties of Metals and Alloys. New York: Dover.
Mott, N. F. (1972). Conduction in non-crystalline systems IX. The minimum metallic conductivity. Philosophical Magazine, 26, 10151026.
Motz, H. (1979). The Physics of Laser Fusion. Academic: London.
Nellis, W. J. (1999). Metastable solid metallic hydrogen. Philosophical Magazine B, 79, 655661.
Nellis, W. J. (2000). Making metallic hydrogen. Scientific American, 282, 8490.
Nellis, W. J. (2002a). In High Pressure Phenomena. ed. Hemley, R. J., Chiarotti, G. L., Bernasconi, M. and Ulivi, L.. Amsterdam: IOS Press.
Nellis, W. J. (2002b). Shock compression of deuterium near 100 GPa pressures. Physical Review Letters, 89, 165502-1165502-4.
Nellis, W. J. (2003). Shock-compression of a free-electron gas. Journal of Applied Physics, 94, 272275.
Nellis, W. J. (2005). High pressure effects in supercritical rare-gas fluids. In Electronic Excitations in Liquefied Rare Gases, eds. Schmidt, W. F. and Illenberger, E.. Stevenson Ranch, CA: American Scientific Publishers, pp. 2950.
Nellis, W. J. (2006a). Dynamic compression of materials: metallization of fluid hydrogen at high pressures. Reports on Progress in Physics, 69, 14791580.
Nellis, W. J. (2006b). Sensitivity and accuracy of Hugoniot measurements at ultrahigh pressures. In Shock Compression of Condensed Matter – 2005, eds. Furnish, M. D., Elert, M., Russell, T. P. and White, C. T.. Melville, NY: American Institute of Physics, pp. 115118.
Nellis, W. J. (2007a). Discovery of metallic fluid hydrogen at 140 GPa and ten-fold compressed liquid density. Review of High Pressure Science and Technology (Japan), 17, 328333.
Nellis, W. J. (2007b). Adiabat-reduced isotherms at 100 GPa pressures. High Pressure Research, 27, 393407.
Nellis, W. J. (2010). P. W. Bridgman’s contributions to the foundations of shock compression of condensed matter. Journal of Physics: Conference Series, 215, 012144-1012144-4.
Nellis, W. J. (2012). Possible magnetic fields of super Earths generated by convecting, conducting oxides. American Institute of Physics Conference Proceedings, 1426, 863866.
Nellis, W. J. (2013). Wigner and Huntington: The long quest for metallic hydrogen. High Pressure Research, 33, 369376.
Nellis, W. J. (2015a). Dynamic high pressure: Why it makes metallic fluid hydrogen. Journal of Physics and Chemistry of Solids, 84, 4956.
Nellis, W. J. (2015b). The unusual magnetic fields of Uranus and Neptune. Modern Physics Letters B, 29, 1430018-11430018-29.
Nellis, W. J. (2017). Magnetic fields of Uranus and Neptune: Metallic fluid hydrogen. In Shock Compression of Condensed Matter (the Proceedings of the 19th Biennial APS Conference on Shock Compression of Condensed Matter), eds. Germann, T. G., Chau, R. and Sewell, T. D..
Nellis, W. J. and Mitchell, A. C. (1980). Shock compression of liquid argon, nitrogen, and oxygen to 90 GPa (900 kbar). Journal of Chemical Physics, 73, 61376145.
Nellis, W. J., Mitchell, A. C., Ross, M. and van Thiel, M. (1980). Shock compression of liquid methane and the principle of corresponding states. In High Pressure Science and Technology Vol. 2, eds. Vodar, B. and Marteau, Ph.. Oxford: Pergamon, pp. 10431047.
Nellis, W. J., Ree, F. H., van Thiel, M. and Mitchell, A. C. (1981). Shock compression of liquid carbon monoxide and methane to 90 GPa (900 kbar). Journal of Chemical Physics, 75, 30553063.
Nellis, W. J., Mitchell, A. C., van Thiel, M., Devine, G. J., Trainor, R. J. and Brown, N. (1983). Equation-of-state data for molecular hydrogen and deuterium at shock pressures in the range 2–76 GPa (20–760 kbar). Journal of Chemical Physics, 79, 14801486.
Nellis, W. J., Holmes, N. C., Mitchell, A. C., Trainor, R. J., Governo, G. K., Ross, M. and Young, D. A. (1984a). Shock compression of liquid helium to 56 GPa (560 kbar). Physical Review Letters, 53, 12481251.
Nellis, W. J., Holmes, N. C., Mitchell, A. C. and van Thiel, M. (1984b). Phase transition in fluid nitrogen at high densities and temperatures. Physical Review Letters, 53, 16611664.
Nellis, W. J., Ree, F. H., Trainor, R. J., Mitchell, A. C. and Boslough, M. B. (1984c). Equation of state and optical luminosity of benzene, polybutene, and polyethylene shocked to 210 GPa (2.1 Mbar). Journal of Chemical Physics, 80, 27892799.
Nellis, W. J., Hamilton, D. C., Holmes, N. C., Radousky, H. B., Ree, F. H., Mitchell, A. C. and Nicol, M. (1988a). The nature of the interior of Uranus based on studies of planetary ices at high dynamic pressure. Science, 240,779781.
Nellis, W. J., Maple, M. B. and Geballe, T. H. (1988b). Synthesis of metastable superconductors by high dynamic pressure. In SPIE Vol. 878 Multifunctional Materials, ed. Gunshor, R. L.. Bellingham: Society of Photo-Optical Instrumentation Engineers, pp. 29.
Nellis, W. J., Radousky, H. B., Hamilton, D. C., Mitchell, A.C., Holmes, N. C., Christianson, K. B. and van Thiel, M. (1991a). Equation-of-state, shock-temperature, and electrical-conductivity data of dense fluid nitrogen in the region of the dissociative phase transition. Journal of Chemical Physics, 94, 22442257.
Nellis, W. J., Mitchell, A. C., Ree, F. H., Ross, M., Holmes, N. C., Trainor, R. J. and Erskine, D. J. (1991b). Equation of state of shock-compressed liquids: Carbon dioxide and air. Journal of Chemical Physics, 95, 52685272.
Nellis, W. J., Mitchell, A. C., McCandless, P. C., Erskine, D. J. and Weir, S. T. (1992). Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures. Physical Review Letters, 68, 2937-1941.
Nellis, W. J., Ross, M. and Holmes, N. C. (1995). Temperature measurements of shock-compressed liquid hydrogen: Implications for the interior of Jupiter. Science, 269, 12491252.
Nellis, W. J., Weir, S. T. and Mitchell, A. C. (1996). Metallization and electrical conductivity of hydrogen in Jupiter. Science, 273, 936938.
Nellis, W. J., Holmes, N. C., Mitchell, A. C., Hamilton, D. C. and Nicol, M. (1997). Equation of state and electrical conductivity of “synthetic Uranus,” a mixture of water, ammonia, and isopropanol, at shock pressure up to 200 GPa (2 Mbar). Journal of Chemical Physics, 107, 90969100.
Nellis, W. J., Louis, A. A. and Ashcroft, N. W. (1998). Metallization of fluid hydrogen. Philosophical Transactions of the Royal Society, 356, 119138.
Nellis, W. J., Weir, S. T. and Mitchell, A. C. (1999). Minimum metallic conductivity of fluid hydrogen at 140 GPa (1.4 Mbar). Physical Review B, 59, 34343449.
Nellis, W. J., Hamilton, D. C. and Mitchell, A. C. (2001). Electrical conductivities of methane, benzene and polybutene shock-compressed to 60 GPa (600 kbar). Journal of Chemical Physics, 115, 10151019.
Nellis, W. J., Mitchell, A. C. and Young, D. A. (2003). Equation-of-state measurements for aluminum, copper and tantalum. Journal of Applied Physics, 93, 304310.
Norman, G., Saitov, I., Stegailov, V. and Zhilyaev, P. (2013). Atomistic modeling and simulation of warm dense matter. Conductivity and Reflectivity. Contributions to Plasma Physics, 53, 300310.
Norman, G., Saitov, I. and Stegailov, V. (2015). Plasma-plasma and liquid-liquid first-order phase transitions. Contributions to Plasma Physics, 55, 215221.
Nuckolls, J., Wood, L., Thiessen, A and Zimmerman, G. (1972). Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature, 239, 139142.
Ohta, K., Ichimaru, K., Einaga, M., Kawaguchi, S., Shimizu, K., Matsuoka, T., Hirao, N. and Ohishi, Y. (2015). Phase boundary of hot dense fluid hydrogen. Scientific Reports, 5, 16560-116560-7.
Ozaki, N., Nellis, W. J., Mashimo, T., Ramzan, M., Ahuja, R., Kaewmaraya, T., Kimura, T., Knudson, M., Miyanishi, K., Sakawa, Y., Sano, T. and Kodama, R. (2016). Dynamic compression of dense oxide (Gd3Ga5O12) from 0.4 to 2.6 TPa: Universal Hugoniot of fluid metals. Scientific Reports, 6, 26000-126000-9.
Pfaffenzeller, O. and Hohl, D. (1997). Structure and electrical conductivity in fluid high-density hydrogen. Journal of Physics: Condensed Matter, 9, 1102311034.
Piermarini, G. and Block, S. (1958). The diamond anvil pressure cell. Available at www.nvlpubs.nist.gov/nistpubs/sp958-lide/100-103.pdf
Podolak, M., Hubbard, W. B. and Stevenson, D. J. (1991). In Uranus, eds. Bergstrahl, J. T., Miner, E. D. and Matthews, M. S.. Tuscon: University of Arizona Press, pp. 2961.
Politzer, H. D. (1973). Reliable perturbative results for strong interactions. Physical Review Letters, 30, 13461349.
Price, M. C., Solscheid, C., Burchell, M. J., Josse, L., Adamek, N. and Cole, M. J. (2013). Survival of yeast spores in hypervelocity impact events up to velocities of 7.4 km/s. Icarus, 222, 263272.
Radousky, H. B., Nellis, W. J., Ross, M., Hamilton, D. C., and Mitchell, A. C. (1986). Molecular dissociation and shock-induced cooling in fluid nitrogen at high densities and temperatures. Physical Review Letters, 57, 24192422.
Radousky, H. B., Mitchell, A. C. and Nellis, W. J. (1990). Shock temperature measurements of planetary ices: NH3, CH4, and “synthetic Uranus”. Journal of Chemical Physics, 93, 82358239.
Ragan, C. E. III (1984). Shock wave experiments at threefold compression. Physical Review A, 29, 13911402.
Rankine, W. J. M. (1870). On the thermodynamic theory of waves of finite longitudinal disturbance. Philosophical Transactions of the Royal Society of London, 160, 277288.
Ree, F. H. (1979). Systematics of high-pressure and high-temperature behavior of hydrocarbons. Journal of Chemical Physics, 70, 974983.
Rice, M. H., McQueen, R. G. and Walsh, J. M. (1958). Compression of solids by strong shock waves. Solid State Physics, 6, 163.
Richardson, C. F. and Ashcroft, N. W. (1997). High temperature superconductivity in metallic hydrogen: Electron-electron enhancements. Physical Review Letters, 78, 18121.
Riemann, B. (1860). Uber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Abhandlungen der Gesellschaft der Wissenschaften zu Gottingen. Mathematisch-physikalische Klasse, 8, 43.
Root, S., Magyar, R. J., Carpenter, J. H., Hanson, D. L. and Mattsson, T. R. (2010). Shock compression of a fifth period element: liquid xenon to 840 GPa. Physical Review Letters, 105, 085501-1085501-4.
Ross, M. (1996). Insulator-metal transition of fluid molecular hydrogen. Physical Review B, 54, R9589R9591.
Ross, M. (1998). Linear-mixing model for shock-compressed liquid deuterium. Physical Review B, 58, 669677.
Ross, M., Nellis, W. and Mitchell, . (1979). Shock-wave compression of liquid argon to 910 kbar. Chemical Physics Letters, 68, 532535.
Ross, M. and Ree, F. H. (1980). Repulsive forces of simple molecules and mixtures at high density and temperature. Journal of Chemical Physics, 73, 61466152.
Ross, M., Ree, F. H. and Young, D. A. (1983). The equation of state of molecular hydrogen at very high density. Journal of Chemical Physics, 79, 14871494.
Rossler, U. (1976). Formation and trapping of electron excitations in neon cryocrystals. In Rare Gas Solids, Vol. I. eds. Klein, M. L. and Venables, J. A.. New York: Academic, p. 545.
Rozsnyai, B. F., Albritton, J. R., Young, D. A., Sonnad, V. N. and Liberman, D. A. (2001). Theory and experiment for ultrahigh pressure shock Hugoniots. Physics Letters A, 291, 226231.
Ruoff, A. L. (1967). Linear shock-velocity-particle-velocity relationship. Journal of Applied Physics, 38, 49764980.
Ruoff, A. L., Xia, H., Luo, H. and Vohra, Y. K. (1990). Miniaturization techniques for obtaining static pressures comparable to the pressures at the center of the earth: X-ray diffraction at 416 GPa. Review of Scientific Instruments, 61, 38303833.
Ruzmaikin, A. A. and Starchenko, S. V. (1991). On the origin of Uranus and Neptune magnetic fields. Icarus, 93, 8287.
Sagnotti, L., Scardia, G., Giaccio, B., Liddicoat, J. C., Nomade, S., et al. (2014). Extremely rapid directional change during Matuyama-Brunhes geomagnetic polarity reversal. Geophysical Journal International, 199, 11101124.
Saitov, I. (2016). Density functional theory for dielectric properties of warm dense matter. Molecular Physics, 114, 446452.
Schmidt, W. F. and Illenberger, E., eds. (2005). Electronic Excitations in Liquefied Rare Gases. Stevenson Ranch, CA: American Scientific Publishers.
Schott, G. L., Shaw, M. S. and Johnson, J. D. (1985). Shocked states from initially liquid oxygen-nitrogen systems. Journal of Chemical Physics, 82, 42644375.
Schwager, B., Chudinovskikh, L. Gavriliuk, A. and Boehler, R. (2004). Melting curve of H2O to 90 GPa measured in a laser-heated diamond cell. Journal of Physics: Condensed Matter, 16, S1177S1179.
Schwarzschild, B. (2003). Inertial confinement fusion driven by pulsed power yields thermonuclear neutrons. Physics Today, 56(7), 1921.
Sekine, T. (2000). Shock wave diagnostics of sp2 and van der Waals bonding of carbon. In Manghnani, M. H., Nellis, W. J. and Nicol, M. F., editors, Science and Technology of High Pressure, Proceedings of AIRAPT-17. Hyderabad: Universities Press, pp. 229232.
Sekine, T. and Kobayashi, T. (1999). Shock-induced process during compression of graphite perpendicular to the c-axis. Bulletin of the American Physical Society, Conference on Shock Compression of Condensed Matter, abstract #L4.06.
Smith, R. F., Eggert, J. H., Jeanloz, R., Duffy, T. S., Braun, D. G., et al. (2014). Ramp compression of diamond to 5 terapascals. Nature, 511, 330333.
Stanley, S. and Bloxham, J. (2004). Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature, 428, 151153.
Stanley, S. and Bloxham, J. (2006). Numerical dynamo models of Uranus’ and Neptune’s magnetic fields. Icarus, 184, 556572.
Starchenko, S. V. (1993). Non-axisymmetric magnetic structure generation in planets sun and galaxies. Proceedings of the International Astronomical Union. DOI: 10.1007/978-94-011–0772-3_48
Stevenson, D. J. (1982). Interiors of the Giant Planets. Annual Review of Earth and Planetary Science, 10, 257295.
Stevenson, D. J. (1983). Planetary magnetic fields. Reports on Progress in Physics, 46, 555620.
Stevenson, D. J. (1998). States of matter in massive planets. Journal of Physics: Condensed Matter, 10, 1122711234.
Stevenson, D. J. (2010). Planetary magnetic fields: Achievements and prospects. Space Science Reviews, 152, 651664.
Stewart, J. W. (1956). Compression of solidified gases to 20,000 kg/cm2 at low temperature. Journal of Physics and Chemistry of Solids, 1, 146158.
Stewart, S. T., Seifter, A. and Obst, A. (2008). Shocked H2O ice: Thermal emission measurements and the criteria for phase changes during impact events. Geophysical Research Letters, 35, L23203-1L23203-4.
Stokes, E. E. (1848). On a difficulty in the theory of sound. Philosophical Magazine, 33, 349356.
Strutt, J. W., Rayleigh, Lord. (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proceedings of the London Mathematical Society, 14, 170177.
Strutt, J. W., Rayleigh, Lord. (1910). Aerial plane waves of finite amplitude. Proceedings of the Royal Society of London, 84, 247284.
Subramanian, N., Goncharov, A. F., Struzhkin, V. V., Somayazulu, M. and Hemley, R. J. (2011). Bonding changes in hot fluid hydrogen at megabar pressures. Proceedings of the National Academy of Sciences, 108, 60146019.
Tamblyn, I. and Bonev, S. A. (2010a). Structure and phase boundaries of compressed liquid hydrogen. Physical Review Letters, 104, 065702.
Tamblyn, I. and Bonev, S. A. (2010b). A note on the metallization of compressed liquid hydrogen. Journal of Chemical Physics, 132, 134503.
Taylor, G. I. (1950). The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proceedings of the Royal Society of London, Ser. A, 201, 192196.
Thomson, W. (Lord Kelvin). (1848). On an absolute thermometric scale founded on Carnot’s theory of the motive power of heat, and calculated from Regnault’s observations. Cambridge Philosophical Society, Proceedings for June 5, 100–106.
Trainor, R. J. and Lee, Y. T. (1982). Analytic models for design of laser-generated shock-wave experiments. Physics of Fluids, 25, 18981907.
Trunin, R. F. (1998). Shock Compression of Condensed Materials. Cambridge: Cambridge University Press.
Trunin, R. F., ed. (2001). Experimental Data on Shock Compression and Adiabatic Expansion of Condensed Matter. Sarov: Russian Federal Nuclear Center-VNIIEF.
Trunin, R. F., Boriskov, G. V., Bykov, A. I., Medvedev, A. B., Simakov, G. V. and Shuikin, A. N. (2008). Shock compression of liquid nitrogen at a pressure of 320 GPa. JETP Letters, 88,189191.
Trunin, R. F., Urlin, V. D. and Medvedev, A. B. (2010). Dynamic compression of hydrogen isotopes at megabar pressures. Physics-Uspekhi, 53, 577593.
Tubman, N. M., Liberatore, E., Pierleoni, C., Holzmann, M. and Ceperley, D. M. (2015). Molecular-atomic transition along the deuterium Hugoniot curve with coupled electron-ion Monte Carlo simulations. Physical Review Letters, 115, 045301.
Urlin, V. D., Mochalov, M.A. and Mikhailova, O. L. (1997). Quasi-isentropic compression of liquid argon up to 500 GPa. JETP, 84, 11451148.
Urtiew, P. A. (1974). Effect of shock loading on transparency of sapphire crystals. Journal of Applied Physics, 45, 34903493.
U.S. National Aeronautics and Space Agency Voyager Program. http://www.nasa.gov/voyager.
van Thiel, M. and Alder, B. J. (1966a). Shock compression of liquid hydrogen. Molecular Physics, 10, 427435.
van Thiel, M. and Alder, B. J. (1966b). Shock compression of Argon. Journal of Chemical Physics, 44, 10561065.
van Thiel, M., Hord, L. B., Gust, W. H., Mitchell, A. C., D’Addario, M., et al. (1974). Shock compression of deuterium to 900 Kbar. Physics of Earth and Planetary Interiors, 9, 5777.
Vargaftik, N. B. (1975). Handbook of Physical Properties of Liquids and Gases (Second edition). New York: Hemisphere.
Von Baeyer, H. C. (1993). The Fermi Solution: Essays on Science. New York: Random House.
Von Neumann, J. and Richtmyer, R. D. (1950). A method for the numerical calculation of hydrodynamic shocks. Journal of Applied Physics, 21, 232237.
Wang, Y., Ahuja, R. and Johansson, B. (2002). Reduction of shock-wave data with mean-field potential approach. Journal of Applied Physics, 92, 66166620.
Weir, S. T., Mitchell, A. C. and Nellis, W. J. (1996a). Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Physical Review Letters, 76, 18601863.
Weir, S. T., Mitchell, A. C. and Nellis, W. J. (1996b). Electrical resistivity of single-crystal Al2O3 shock-compressed in the pressure range 91-220 GPa (0.91-2.20 Mbar).
Wigner, E. and Huntington, H. B. (1935). On the possibility of a metallic modification of hydrogen. Journal of Chemical Physics, 3, 764770.
Wilkins, M. L. (1999). Computer Simulation of Dynamic Phenomena. Berlin: Springer.
Yakushev, V. V., Postnov, V. I., Fortov, V. E. and Yakysheva, T. I. (2000). Electrical conductivity of water during quasi-isentropic compression to 130 GPa. Journal of Experimental and Theoretical Physics, 90, 617622.
Zaghoo, M., Salamat, A. and Silvera, I. F. (2016). Evidence of a first-order phase transition to metallic hydrogen. Physical Review B, 93, 155128.
Zeldovich, Ya. B. and Raizer, Yu. P. (1966). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Volumes I and II. New York: Academic.
Zhang, D.-Y., Liu, F.-S., Hao, G.-Y. and Sun, Y.-H. (2007). Shock-induced emission from Sapphire in High-pressure phase of Rh2O3 (II) structure. Chinese Physics Letters, 24, 23412344.
Zhernokhletov, M. V., Simakov, G. V., Sutulov, Yu. N. and Trunin, R. F. (1995). Isentropic compression of matter by a pulsed magnetic field. High Temperature, 33, 36272.
Zhernokhletov, M. V. (2005). Methods for Study of Substance Properties under Intensive Dynamic Loading. New York: Springer-Velar.
Zhou, X., Li, J., Nellis, W. J., Wang, X., Li, J., et al. (2011). Pressure-dependent Hugoniot elastic limit of Gd3Ga5O12 single crystals. Journal of Applied Physics, 109, 083536.
Zhou, X., Nellis, W. J., Li, J., Li, J., Zhao, W., et al. (2015). Optical emission, shock-induced opacity, temperatures, and melting of Gd3Ga5O12 single crystals shock-compressed from 41 to 290 GPa. Journal of Applied Physics, 118, 055903.
Zubarev, V. N. and Telegin, G. S. (1962). The impact compressibility of liquid nitrogen and solid carbon dioxide. Soviet Physics Doklady, 142, 309312.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.