Skip to main content Accessibility help
×
  • Cited by 103
Publisher:
Cambridge University Press
Online publication date:
July 2013
Print publication year:
2013
Online ISBN:
9781139094252

Book description

The self-potential method enables non-intrusive assessment and imaging of disturbances in electrical currents of conductive subsurface materials. It has an increasing number of applications, from mapping fluid flow in the subsurface of the Earth to detecting preferential flow paths in earth dams and embankments. This book provides the first full overview of the fundamental concepts of this method and its applications in the field. It discusses the historical perspective, laboratory investigations undertaken, the inverse problem and seismoelectric coupling, and concludes with the application of the self-potential method to geohazards, water resources and hydrothermal systems. Chapter exercises, online datasets and analytical software enable the reader to put the theory into practice. This book is a key reference for academic researchers and professionals working in the areas of geophysics, environmental science, hydrology and geotechnical engineering. It will also be valuable reading for related graduate courses.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References

Ahmad, M. U. (1964). A laboratory study of streaming potentials. Geophysical Prospecting, 12(1), 49–64.
Ahmed, S. & CarpenterP. J. (2003). Geophysical response of filled sinkholes, soil pipes and associated bedrock fractures in thin mantled karst, east central Illinois. Environmental Geology, 44, 705–716.
Aizawa, K., Ogawa, Y. & Ishido, T. (2009). Groundwater flow and hydrothermal systems within volcanic edifices: delineation by electric self-potential and magnetotellurics. Journal of Geophysical Research, 114, B01208, doi:10.1029/2008JB005910.
Al-Saigh, N. H., Mohammed, Z. S. & Dahham, M. S. (1994). Detection of water leakage from dams by self-potential method. Engineering Geology, 37(2), 115–121.
Ansari-Asl, K., Chanel, G. & Pun, T. (2007). Channel selection method for EEG classification in emotion assessment based on synchronisation likehood. In 15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3–7, 2007, copyright by EURASIP, pp. 1241–1245.
Antelman, M. S. (1989). The Encyclopedia of Chemical Electrode Potentials. New York, Plenum Press.
Araji, A., Revil, A., Jardani, A., Minsley, B. J. & Karaoulis, M. (2012). Imaging with cross-hole seismoelectric tomography. Geophysical Journal International, 188, 1285–1302.
Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 146, 54–62.
Arora, T., Linde, N., Revil, A. & Castermant, J. (2007). Non-intrusive determination of the redox potential of contaminant plumes by using the self-potential method. Journal of Contaminant Hydrology, 92, 274–292.
Asfahani, J., Radwan, Y. & Layyous, I. (2010). Integrated geophysical and morphotectonic survey of the impact of Ghab extensional tectonics on the Qastoon Dam, northwestern Syria. Pure Applied Geophysic, 167, 323–338.
Atalla, N., Panneton, R. & Debergue, P. (1998). A mixed displacement-pressure formulation for poroelastic materials. Journal of the Acoustical Society of America, 104, 1444–1452.
Aubert, M. & Atangana, Q. Y. (1996). Self-potential method in hydrogeological exploration of volcanic areas. Ground Water, 34, 1010–1016.
Aubert, M., Dana, I. I. N. & Gourgaud, A. (2000). Internal structure of the Merapi summit from self-potential measurements. Journal of Volcanology and Geothermal Research, 100, 337–343.
Avena, M. J. & De Pauli, C. P. (1998). Proton adsorption and electrokinetics of an Argentinean Montmorillonite. Journal of Colloid Interface Science, 202, 195–204.
Barrash, W. & Clemo, T. (2002). Hierarchical geostatistics and multifacies systems: Boise Hydrogeophysical Research Site, Boise, Idaho. Water Resources Research, 38(10), 1196, doi:10.1029/2002 WR001436, 2002.
Barrash, W. & Reboulet, E. C. (2004). Significance of porosity for stratigraphy and textual composition is subsurface coarse fluvial deposits, Boise Hydrogeophysical Research Site. Geological Society of America Bulletin, 116(9/10), 1059–1073, doi:10.1130/B25370.1.
Barrash, W., Clemo, T. & Knoll, M. D. (1999). Boise Hydrogeophysical Research Site (BHRS): objectives, design, initial geostatistical results. In: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, pp. 389–398. Oakland, California: Environmental & Engineering Geophysical Society.
Barus, C. (1882). On the Electrical Activity of Ore Bodies. In G. F. Becker (ed.), Geology of the Comstock Lode and the Washoe District, U. S. Geol. Surv. Monog., 309–367, 400–404.
Batchelor, G. K. (1972). An Introduction to Fluid Dynamics. Cambridge University Press.
Bear, J. & Verruijt, A. (1987). Modeling Groundwater Flow and Pollution. D. Reidel Publ. Co., Dordrecht, The Netherlands.
Berenger, J. P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114, 185–200.
Bernabé, Y. (1998). Streaming potential in heterogeneous networks. Journal of Geophysical Research – Solid Earth, 103(B9), 20 827–20 841, doi:10.1029/98JB02126.
Bernabé, Y. & Revil, A. (1995). Pore-scale heterogeneity, energy dissipation and the transport properties of rocks. Geophysical Research Letters, 22, 12, 1529–1552.
Bigalke, J. & Grabner, E. W. (1997). The geobattery model: a contribution to large scale electrochemistry. Electrochimica Acta, 42, 3443–3452.
Bigalke, J., Junge, A. & Zulauf, G. (2004). Electronically conducting brittle-ductile shear zones in the crystalline basement of Rittsteig (Bohemian Massif, Germany): evidence from self-potential and hole-to-surface electrical measurements. International Journal of Earth Sciences, 93, 44–51.
Biot, M. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155–164.
Biot, M. (1956a). Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low-frequency range. Journal of the Acoustical Society of America, 28, 168–178.
Biot, M. A. (1956b). Theory of propagation of elastic waves in a fluid-saturated porous solid, II. Higher-frequency range. Journal of the Acoustical Society of America, 28, 178–191.
Biot, M. A. and Willis, D. G. (1957). The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 24, 594–601.
Bockris, J. O’M. & Reddy, A. K. N. (1970). Modern Electrochemistry, Vol. II. New York: Plenum Press.
Bogoslovsky, V. A. & Ogilvy, A. A. (1973). Deformation of natural electric fields near drainage structures. Geophysical Prospecting, 21, 716–723.
Bogoslovsky, V. A. & Ogilvy, A. A. (1977). Geophysical methods in the investigations of landslides. Geophysics, 42, 562–571.
Bolève, A., Crespy, A., Revil, A., Janod, F. & MattiuzzoJ. L. (2007a). Streaming potentials of granular media: influence of the Dukhin and Reynolds numbers. Journal of Geophysical Research, 112, B08204, doi:10.1029/2006JB004673.
Bolève, A., Revil, A., JanodF., Mattiuzzo, J. L. & Jardani, A. (2007b). Forward modeling and validation of a new formulation to compute self-potential signals associated with ground water flow. Hydrology and Earth System Sciences, 11, 1–11.
Bolève, A., Revil, A., Janod, F., Mattiuzzo, J. L. & FryJ.-J. (2009). Preferential fluid flow pathways in embankment dams imaged by self-potential tomography. Near Surface Geophysics, 7(5), 447–462.
Bolève, A., Janod, F., Revil, A., Lafon, A. & Fry, J.-J. (2011). Localization and quantification of leakages in dams using time-lapse self-potential measurements associated with salt tracer injection. Journal of Hydrology, 403(3–4), 242–252.
Börner, F. D. (1992). Complex conductivity measurements of reservoir properties. In Proceedings of the Third European Core Analysis Symposium, pp. 359–386, Advances in Core Evaluation v. 3: Reservoir Management – Reviewed Proceedings of the Society for Core Analysis Third European Core Analysis Symposium – Paris, eds. P. F. Worthington and Catherine Chardaire-Riviere. Harwood Academic, Neward, New Jersey.
Bou Matar, O., Prebrazhensky, V. & Pernod, P. (2005). Two-dimensional axisymmetric numerical simulation of supercritical phase conjugation of ultrasound in active solid media. Journal of the Acoustical Society of America, 118, 2880–2890.
Brooks, R. H. & Corey, A. T. (1964). Hydraulic properties of porous media. Hydrology Papers, 3. Colorado State University, Ft. Collins, Colorado.
Bussian, A. E. (1983). Electrical conductance in a porous medium. Geophysics, 48(9), 1258–1268, doi:10.1190/1.1441549:1983.
Casagrande, L. (1983). Stabilization of soils by means of electro-osmosis: state of art. Journal of Boston Society of Civil Engineers, 69(2), 255–302.
Castermant, J., Mendonça, C. A., Revil, A.et al. (2008). Redox potential distribution inferred from self-potential measurements during the corrosion of a burden metallic body. Geophysical Prospecting, 56, 269–282.
Chen, J., Hubbard, S. & Rubin, Y. (2001). Estimating the hydraulic conductivity at the South Oyster Site from geophysical tomographic data using Bayesian techniques based on the normal linear regression model. Water Resources Research, 37(6), 1603–1613.
Chew, W. C. & WeedonW. H. (1994). A 3-D perfectly matched medium from modified Maxwell's equations with stretched coordinates. Microwave and Optical Technology Letters, 7, 599–604.
Childers, S. E., Ciufo, S. & Lovley, D. R. (2002). Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature, 416, 767–769.
Christensen, T. H., Bjerg, P. L., BanwartS. A.et al. (2000). Characterization of redox conditions in groundwater contaminant plumes. Journal of Contaminant Hydrology, 45, 165–241.
Clavier, C., Coates, G. & Dumanoir, J. (1984). The theoretical and experimental basis for the dual-water model for the interpretation of shaly sands. Society of Petroleum Engineers Journal, 24(2), 153–169.
Clayton, R. & Engquist, B. (1977). Absorbing boundary conditions for acoustic and elastic wave equations. Bulletin of the Seismological Society of America, 67, 1529–1540.
Closson, D., Karaki, N. A., Hussein, M. J.et al. (2003). Subsidence et effondrements le long du littoral jordanien de la mer Morte: apport de la gravimétrie et de l'interférométrie radar différentielle. Comptes Rendus Geosciences, 335, 869–879.
Corwin, R. F. & Hoover, D. B. (1979). The self-potential method in geothermal exploration. Geophysics, 44(2), 226–245.
Coussy, O. (1995). Mechanics of Porous Continua. Wiley, Chichester.
Crespy, A., Revil, A., Linde, N.et al. (2008). Detection and localization of hydromechanical disturbances in a sandbox using the self-potential method. Journal of Geophysical Research, 113, B01205, doi:10.1029/2007JB005042.
Cruden, D. M. & Varnes, D. J. (1996). Landslide types and processes and mitigation. In Turner AK and Schuster R. L. (eds.) Landslides – Investigation and Mitigation. Transportation Research Board, Spec. Rep. 247. National Academy of Sciences, Washington, DC, pp. 36–75.
Curie, P. (1894). Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique. Journal de Physique (Paris), 3, 393–415.
DegondP., Génieys, S. & Ansgar Jüngel, A. (1998). A steady-state system in non-equilibrium thermodynamics including thermal and electrical effects. Mathematical Methods in the Applied Sciences, 21, 1399–1413.
de Groot, D. V. (1961). Non-equilibrium thermodynamics of systems in an electromagnetic field. J. Nucl. Energy. Part C: Plasma Physics, 2, 188–193.
de Groot, D. V. & Mazur, P. (1984). Non-Equilibrium Thermodynamics. Dover, New York.
de la Peña, L. A. & Puente, C. I. (1979). The geothermal field of Cerro Prieto. In: Elders, W. A. (ed.) Geology and geothermics of the Salton Trough: Riverside, University of California, Inst. of Geophysics and Planetary Phys., Report UCR/IGPP-79/23, 20–35.
Descostes, M., Blin, V., Bazer-Bachi, F.et al. (2008). Diffusion of anionic species in Callovo-Oxfordian argillites and Oxfordian limestones (Meuse/Haute–Marne, France). Applied Geochemistry, 23, 655–677.
Detournay, E. & Cheng, A. H.-D. (1993). Fundamentals of poroelasticity. Chapter 5 in Comprehensive Rock Engineering: Principles, Practice and Projects, Vol. II, Analysis and Design Method, ed. C. Fairhurst, Pergamon Press, pp. 113–171.
Deutsch, C. V. & Journel, A. G. (1992). GSLIB: Geostatistical Software Library and User's Guide. Oxford University Press, New York.
Deutsch, C. V. & Journel, A. G. (1998). GSLIB: A Geostatistical Software Library and User's Guide, 2nd edn. Oxford University Press, London.
Dimick, N. J. (2007). The ability to predict ground water flow in a structurally faulted river valley with naturally occurring hot springs using multivariate geochemical analyses. MS Thesis, Colorado School of Mines.
Draper, D. (1995). Assessment and propagation of model uncertainty. Journal of the Royal Statistical Society, Series B, 57, 45–97.
Dullien, F. A. L. (1992). Porous Media: Fluid Transport and Pore Structure, 2nd edn, 574 pp. Academic, San Diego.
Ellingsrud, S., Eidesmo, T. & Strack, K.-M. (2008). CSEM: a fast growing technology, SEG Annual Meeting, Las Vegas.
Erchul, R. A. & Slifer, D. W. (1987). The use of spontaneous potential in the detection of groundwater flow patterns and flow rate in karst areas. Karst Hydrogeology, Proc. 2nd Conference, Orlando, pp. 217–226.
ErmakovaL. E., Sidorova, M., Jura, N. & Savina, I. (1997). Adsorption and electrokientic characteristics of micro- and macroporous glasses in 1:1 electrolytes. Journal of Membrane Science, 131, 125–141.
Fitterman, D. V. (1976). Theoretical resistivity variations along stressed stike-slip faults, Journal of Geophysical Research, 81, 4909–4915.
Fitterman, D. V. & Corwin, R. F. (1982). Inversion of self-potential data from the Cerro Prieto geothermal field, Mexico. Geophysics, 47, 938–945.
Fourie, F. D. (2003). Application of electroseismic techniques to geohydrological investigations in Karoo Rocks. PhD Thesis, University of the Free State, Bloemfontein, South Africa.
Fournier, C. (1989). Spontaneous potentials and resistivity surveys applied to hydrogeology in a volcanic area: case history of the Chaîne des Puys (Puy-de-Dôme, France). Geophysical Prospecting, 37, 647–668.
Fox, R. W. (1830). On the electromagnetic properties of metalliferous veins in the mines of Cornwall. Philosophical Transactions of the Royal Society, 120, 399–414.
Frash, L. P. & Gutierrez, M. (2012). Development of a new temperature controlled true-triaxial apparatus for simulating enhanced geothermal systems (EGS) at the laboratory scale. In Proceedings 37th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, January 30th–February 1st, 2012, SGP-TR-194.
Frenkel, J. (1944). On the theory of seismic and seismoelectric phenomena in a moist soil. Journal Physics (Soviet), 8(4), 230–241.
Friborg, J. (1996). Experimental and theoretical investigations into the streaming potential phenomenon with special reference to applications in glaciated terrain. PhD thesis, Lulea University of Technology, Sweden.
Furini, S., Zerbetto, F. & Cavalcanti, S. (2006). Application of the Poisson–Nernst–Planck theory with space-dependent diffusion coefficients to KcsA. Biophysical Journal, 91(9), 3162–3169.
Gallipoli, M., Lapenna, V., Lorenzo, P.et al. (2000). Comparison of geological and geophysical prospecting techniques in the study of a landslide in Southern Italy. European Journal of Environmental and Engineering Geophysics, 4, 117–128.
Gaucher, E., Robelin, C., Matray, J. M.et al. (2004). ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the Callovo-Oxfordian Formation by investigative drilling. Physics and Chemistry of the Earth, 29, 55–77, doi:10.1016/j.pce.2003.11.006.
Gelman, A. G., Roberts, G. O. & Gilks, W. R. (1996). Efficient Metropolis jumping rules, In Bayesian Statistics V, pp. 599–608, J. M. Bernardoet al. (eds.). Oxford University Press, New York.
Gelman, A. G., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004). Bayesian Data Analysis, 2nd edn. London CRC Press, London.
Gex, P. (1980). Electrofiltration phenomena associated with several dam sites. Bulletin of the Society Vaud Science and Nature, 357, 39–50.
Gex, P. (1993). Electrofiltration measurements on the Frasse landslide, the Pre-Alps of western Switzerland. Hydrogeologie, 3, 239–246.
Goldie, M. (2002). Self-potentials associated with the Yanacocha high sulfidation gold deposit in Peru. Geophysics 67, 684–689.
Gómez-Ortiz, D. & Agarwal, B. N. P. (2005). 3DINVER.M: a Matlab® program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg's algorithm. Computers & Geosciences, 31(4), 513–520.
Gonçalvès, J., Rousseau-Gueutin, P. & Revil, A. (2007). Introducing interacting diffuse layers in TLM calculations: a reappraisal of the influence of the pore size on the swelling pressure and the osmotic efficiency of compacted bentonites. Journal of Colloid and Interface Science, 316(1), 92–99.
Grech, R. T., Cassar, J., Muscat, K. P.et al. (2008). Review on solving the inverse problem in EEG source analysis. Journal of NeuroEngineering and Rehabilitation, 5, 25, doi:10.1186/1743-0003-5-25.
Green, D. J. (2000). Discussion: geophysical studies at Kartchner Caverns State Park, Arizona. Journal of Cave and Karst Studies, 62(1), 27.
Gouveia, W. P. & Scales, A. J. (1998). Bayesian seismic waveform inversion: parameter estimation and uncertainty analysis. Journal of Geophysical Research, 103(B2), 2759–2779, doi:10.1029/97JB02933.
Haario, H., Saksman, E. & Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli, 7, 223–242.
Haario, H., Laine, M., Lehtinen, M., Saksman, E. & Tamminen, J. (2004). McMC methods for high dimensional inversion in remote sensing, Journal of the Royal Stastistical Society, Series B, 66, 591–607.
Haas, A. & Revil, A. (2009). Electrical signature of pore scale displacements. Water Resources Research, 45, W10202, doi:10.1029/2009WR008160.
Hack, R. (2000). Geophysics for slope stability. Surveys in Geophysics, 21, 423–448.
Hallenburg, J. K. (1998). Standard Methods of Geophysical Formation Evaluation, PennWell Books, Tulsa, Okla.
Hansen, P. C. (1998). Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia.
Helmholtz, H. (1879). Study concerning electrical boundary boundary layers. Weidemann Annal Physik Chemie, 7, 337–382, 3rd Ser.
Hildebrand, F. B. (1965). Methods of Applied Mathematics, 2nd edn. Englewood Cliffs, Prentice-Hall.
Hostetler, J. D. (1984). Electrode electrons, aqueous electrons, and redox potentials in natural waters. American Journal of Science, 284, 734–759.
Hutchinson, D. J., Harrap, R., Diederichs, M., Villeneuve, M. & Kjelland, N. (2003). Geotechnical rule development for ground instability assessment using intelligent GIS and networked monitoring sensors. In 3rd Canadian Conference on Geotechnique and Natural Hazards. Edmonton, Alberta, Canada. June 9 and 10, 2003.
Huang, Q. & Liu, T. (2006). Earthquakes and tide response of geoelectric potential field at the Niijima station. Chinese Journal of Geophysics, 49(6), 1745–1754.
Huygue, J. M. & Janssen, J. D. (1997). Quadriphasic mechanics of swelling incompressible porous media. International Journal of Engineering Science, 35(8), 793–802.
Ikard, S. J., Revil, A., Jardani, A.et al. (2012). Saline pulse test monitoring with the self-potential method to nonintrusively determine the velocity of the pore water in leaking areas of earth dams and embankments. Water Resources Research, 48, W04201, doi:10.1029/2010WR010247.
Ishido, T. (1989). Self-potential generation by subsurface water flow through electrokinetic coupling. Lecture Notes in Earth Science, 27, 121–133.
Ishido, T. (2004). Electrokinetic mechanism for the “W”-shaped self-potential profile on volcanoes. Geophysical Research Letters, 31, L15616, doi:10.1029/2004GL020409.
Ishido, T. & Pritchett, J. W. (1999). Numerical simulation of electrokinetic potentials associated with subsurface fluid flow. Journal of Geophysical Research, 104(B7), 15247–15259.
Iuliano, T., Mauriello, P. & Patella, D. (2002). Looking inside Mount Vesuvius by potential fields integrated probability tomographies. Journal of Volcanology and Geothermal Research, 113, 363–378.
Ivanov, A. G. (1939). Effect of electrization of earth layers by elastic waves passing through them. Doklady Akademii nauk SSSR, 24, 42–45.
Jackson, D. B. & Kauahikaua, J. (1987). Regional self-potential anomalies at Kilauea Volcano. USGS Professional Paper, 1350, 947–959.
Jackson, M. D. (2008). Characterization of multiphase electrokinetic coupling using a bundle of capillary tubes model. Journal of Geophysical Research, 113, B04201, doi:10.1029/2007JB005490.
Jackson, M. D. (2010). Multiphase electrokinetic coupling: insights into the impact of fluid and charge distribution at the pore scale from a bundle of capillary tubes model. Journal of Geophysical Research, 115, B07206, doi:10.1029/2009JB007092.
Jardani, A. & Revil, A. (2009). Stochastic joint inversion of temperature and self-potential data. Geophysical Journal International, 179(1), 640–654, doi:10.1111/j.1365–246X.2009.04295.x, 2009.
Jardani, A., Dupont, J. P. & Revil, A. (2006a). Self-potential signals associated with preferential groundwater flow pathways in sinkholes. Journal of Geophysical Research, 111, B09204, doi:10.1029/2005JB004231.
Jardani. A., Revil, A. & Dupont, J. P. (2006b). Self-potential Tomography applied to the determination of cavities. Geophysical Research Letters, 33, L13401, doi:10.1029/2006GL026028.
Jardani, A., Revil, A., Santos, F., Fauchard, C. & Dupont, J. P. (2007a). Detection of preferential infiltration pathways in sinkholes using joint inversion of self-potential and EM-34 conductivity data. Geophysical Prospecting, 55, 1–11, doi:10.1111/j.1365–2478.2007.00638.x.
Jardani, A., Revil, A., Bolève, A.et al. (2007b). Tomography of groundwater flow from self-potential (SP) data. Geophysical Research Letters, 34, L24403, doi:10.1029/2007GL031907.
Jardani, A., Revil, A., Bolève, A. & Dupont, J. P. (2008). 3D inversion of self-potential data used to constrain the pattern of ground water flow in geothermal fields. Journal of Geophysical Research, 113, B09204, doi:10.1029/2007JB005302.
Jardani, A., Revil, A., Barrash, W. et al. (2009). Reconstruction of the water table from self-potential data: a bayesian approach. Ground Water, 47(2), 213–227.
Jardani, A., Revil, A., Slob, E. & Sollner, W. (2010). Stochastic joint inversion of 2D seismic and seismoelectric signals in linear poroelastic materials. Geophysics, 75(1), N19–N31, doi:10.1190/1.3279833.
Jardani, A., Revil, A. & Dupont, J. P. (2012). Stochastic joint inversion of hydrogeophysical data for salt tracer test monitoring and hydraulic conductivity imaging. Advances in Water Resources, 52, 62–77.
Jardine, P. M., Wilson, G. V & Luxmoore, R. J. (1988). Modeling the transport of inorganic ions through undisturbed soil columns from two contrasting watersheds. Soil Science Society of America Journal, 52, 1252–1259.
Jardine, P. M., Jacobs, G. K. & Wilson, G. V. (1993a). Unsaturated transport processes in undisturbed heterogeneous porous media. I. Inorganic contaminants. Soil Science Society of America Journal, 57, 945–953.
Jardine, P. M., Jacobs, G. K. & O’Dell, J. D. (1993b). Unsaturated transport processes in undisturbed heterogeneous porous media II. Co-contaminants. Soil Science Society of America Journal, 57, 954–962.
Johnson, D. L. & Sen, P. N. (1988). Dependence of the conductivity of a porous medium on electrolyte conductivity. Physical Review B, 37, 3502–3510.
Jougnot, D., Revil, A. & Leroy, P. (2009). Diffusion of ionic tracers in the Callovo-Oxfordian clay-rock using the Donnan equilibrium model and the electrical formation factor. Geochimica et Cosmochimica Acta, 73, 2712–2726.
Jougnot, D., Ghorbani, A., Revil, A., Leroy, P. & Cosenza, P. (2010b). Spectral induced polarization of partially saturated clay-rocks: a mechanistic approach. Geophysical Journal International, 180(1), 210–224, doi:10.1111/j.1365–246X.2009.04426.x.
Jougnot, D., Linde, N., Revil, A. & Doussan, C. (2012). Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils. Vadose Zone Journal, 11(1), doi:10.2136/vzj2011.0086.
Kappenman, E. S. & Luck, S. J. (2010). The effects of electrode impedance on data quality and statistical significance. ERP Recordings, 47(5), 888–904, doi:10.1111/j.1469–8986.2010.01009.x.
KaraoulisM., Revil, A., Werkema, D. D.et al. (2011). Time-lapse 3D inversion of complex conductivity data using an active time constrained (ATC) approach. Geophysical Journal International, 187, 237–251, doi:10.1111/j.1365–246X.2011.05156.x.
Karaoulis, M., Revil, A., Zhang, A. J. & Werkema, D. D. (2012). Time-lapse cross-gradient joint inversion of cross-well DC 1 resistivity and seismic data: a numerical investigation. Geophysics, 77, D141–D157, doi:10.1190/GBO2012–0011.1.
Kawakami, N. & Takasugi, S. (1994). SP Monitoring during hydraulic fracturing using the TG-2 well. European Assoc. of Exploration Geophysicists; 56th meeting and tech. exhibition, Vienna, Austria.
Kemper, W. D. & Rollins, J. B. (1966). Osmotic efficiency coefficients across compacted clays. Soil Science Society of America Proceedings, 30(5), 529–534.
KimY. J., Moon, J. W., Roh, Y. & Brooks, S. C. (2009). Mineralogical characterization of saprolite at the FRC background site in Oak Ridge, Tennessee. Environmental Geology, 58, 1301–1307.
Koch, K., Kemna, A., Irving, J. & Holliger, K. (2011). Impact of changes in grain size and pore space on the hydraulic conductivity and spectral induced polarization response of sand. Hydrology and Earth System Sciences, 15, 1785–1794, doi:10.5194/hess-15-1785-2011.
Kooner, Z. S., Jardine, P. M. & Feldmen, S. (1995). Competitive surface complexation reactions of SO2 −4 and natural organic carbon on soil. Journal of Environmental Quality, 24, 656–662.
Kowalsky, M. B., Finsterle, S., Peterson, J.et al. (2005). Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data. Water Resource Research, 41(11), W11425.
Kulessa, B., Murray, T. & Rippin, D. (2006). Active seismoelectric exploration of glaciers. Geophysical Research Letters, 33, L07503, doi:10.1029/2006GL025758.
Kuwano, O., Nakatani, M. & Yoshida, S. (2006). Effect of the flow state on streaming current. Geophysical Research Letters, 33, L21309, doi:10.1029/2006GL027712.
Laignel, B., Dupuis, E., Rodet, J., Lacroix, M. & Massei, N. (2004). An example of sedimentary filling in the chalk karst of the Western Paris Basin: characterization, origins, and hydrosedimentary behavior. Z. F. Géomorphologie, 48(2), 219–243.
Lake, C. B. & Rowe, R. K. (2000). Diffusion of sodium and chloride through geosynthetic clay liners. Geotextiles and Geomembranes, 18, 2–4, 103–131.
Lange, A. L. (1999). Geophysical studies at Kartchner caverns State Park, Arizona. Journal of Cave and Karst Studies, 61(2), 68–72.
Lange, A. L. (2000). Reply: Geophysical studies at Kartchner caverns State Park, Arizona. Journal of Cave and Karst Studies, 62(1), 28–29.
Lapenna, V., Lorenzo, P., Perrone, A.et al. (2003). High-resolution geoelectrical tomographies in the study of the Giarrossa landslide (Potenza, Basilicata). Bulletin of Engineering Geology and the Environment, 62, 259–268.
Lapenna, V., Lorenzo, P., Perrone, A.et al. (2005). 2D electrical resistivity imaging of some complex landslides in Lucanian Apennine chain, southern Italy. Geophysics, 70(3), B11–B18.
Lappin-Scott, H. M. & Costerton, J. W. (1995). Microbial Biofilms. Cambridge University Press.
Leroy, P. & Revil, A. (2004). A triple layer model of the surface electrochemical properties of clay minerals. Journal of Colloid and Interface Science, 270(2), 371–380.
Leroy, P. & Revil, A. (2009). Spectral induced polarization of clays and clay-rocks. Journal of Geophysical Research, 114, B10202. doi:10.1029/2008JB006114.
Leroy, P., Revil, A., Altmann, S. & Tournassat, C. (2007). Modeling the composition of the pore water in a clay-rock geological formation (Callovo-Oxfordian, France). Geochimica et Cosmochimica Acta, 71(5), 1087–1097, doi:10.1016/j.gca.2006.11.009.
Leroy, P., Revil, A., Kemna, A., Cosenza, P. & Gorbani, A. (2008). Spectral induced polarization of water-saturated packs of glass beads. Journal of Colloid and Interface Science, 321(1), 103–117.
Levenston, M. E., Frank, E. H. & Grodzinsky, A. J. (1999). Electrokinetic and poroelastic coupling during finite deformations of charged porous media. Journal of Applied Mechanics, 66, 323–333.
Limbach, F. W. (1975). The Geology of the Buena Vista area, Chaffee County Colorado. MS thesis, Colorado School of Mines, T-1692.
Linde, N. & Revil, A. (2007). Inverting residual self-potential data for redox potentials of contaminant plumes. Geophysical Research Letters, 34, L14302, doi:10.1029/2007GL030084.
Linde, N., Jougnot, D., Revil, A.et al. (2007a). Streaming current generation in two-phase flow conditions. Geophysical Research Letters, 34(3), L03306, doi:10.1029/2006GL028878.
Linde, N., Revil, A., Bolève, A.et al. (2007b). Estimation of the water table throughout a catchment using self-potential and piezometric data in a Bayesian framework. Journal of Hydrology, 334, 88–98.
Lipsicas, M. (1984). Molecular and surface interactions in clay intercalates, in Physics and Chemistry of Porous Media, edited by D. L. Johnson and P. N. Sen, pp. 191–202, American Institute of Physics, College Park, Md.
Lippmann, M. J. & Bodvarsson, G. S. (1982). Modeling Studies on Cerro Prieto, Presented at the 4th Symposium on the Cerro Prieto Geothermal Field, pp. CP–25, Lawrence Berkeley Lab., Guadalajara, Mexico, August 10–12, 1982, Report LBL-14897.
Lippmann, M. J. & Bodvarsson, G. S. (1983). Numerical studies of the heat and mass transport in the Cerro Prieto geothermal field, Mexico. Water Resource Research, 19, 753–767.
Lo, W.-C., Sposito, G. & Majer, E. (2002). Immiscible two-phase fluid flows in deformable porous media. Advances in Water Resources, 25(8–12), 1105–1117.
Lo, W.-C., Sposito, G. & Majer, E. (2005). Wave propagation through elastic porous media containing two immiscible fluids. Water Resources Research, 41, W02025, doi:10.1029/2004WR003162.
Lockhart, N. C. (1980). Electrical properties and the surface characteristics and structure of clays, II. Kaolinite: a nonswelling clay. Journal of Colloid Interface Science, 74, 520–529.
Loke, M. H. & Barker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting, 44, 131–152.
Lu, N., Godt, J. W. & Wu, D. T. (2010). A closed-form equation for effective stress in unsaturated soil. Water Resources Research, 46, W05515, doi:10.1029/2009WR008646.
Lyons, D. J. & van de Kamp, P. C. (1980). Subsurface geological and geophysical study of the Ceerro Prieto geothermal field, Berkeley. Lawrence Berkeley Laboratory, LBL-10540.
Ma, C. & Eggleton, R. A. (1999). Cation exchange capacity of kaolinite. Clays and Clay Minerals, 47, 174–180.
Macaskill, J. B. & Bates, R. G. (1978). Standard potential of the silver–silver chloride electrode. Pure and Applied Chemistry, 50, 1701–1706.
Mahardika, H., Revil, A. & Jardani, A. (2012). Waveform joint inversion of seismograms and electrograms for moment tensor characterization of tracking events. Geophysics, 77(5), 1D23–1D39, doi:10.1190/GEO2012-0019.1,2012.
Maineult, A., Bernabé, Y. & Ackerer, P. (2006). Detection of advected, reacting redox fronts from self-potential measurements. Journal of Contaminant Hydrology, 86, 32–52.
Maineult, A., Strobach, E. & Renner, J. (2008). Self-potential signals induced by periodic pumping tests. Journal of Geophysical Research, 113, B1: B01203.
Malusis, M. A. & Shackelford, C. D. (2004). Predicting solute flux through a clay membrane barrier. Journal of Geotechnical and Geological Engineering, 130(5), 477–487, doi:10.1061/(ASCE)1090–0241.
Malusis, M. A., Shackelford, C. D. & Olsen, H. W. (2003). Flow and transport through clay membrane barriers. In: 3rd British Geotechnical Society Geoenvironmental Engineering Conference, Edinburgh, Scotland. Engineering Geology, 70(3–4), 235–248, doi:10.1016/50013-7952(03)00092-9.
Manon, A., Mazor, E., Jimenez, M.et al. (1977). Extensive geochemical studies in the geothermal field of Cerro Prieto, Mexico. LBB report 7019.
Mariner, R. H., Swanson, J. R., Orris, G. J., Presser, T. S. & Evans, W. C. (1980). Chemical and isotopic data for water of thermal springs of Oregon. USGS open file report, 80–737.
Martínez-Pagán, P., Jardani, A., Revil, A. & Haas. (2010). A. self-potential monitoring of a salt plume: a sandbox experiment. Geophysics, 75(4), WA17–WA25.
Matheron, G. (1965). Les variables régionolisées et lewr estimation: une application de la théorie des fonctions aléatoires auk science de la nature. Masson, Paris.
Matteucci, M. C. (1865). Sur les courants electriques de la terre [On the electrical currents of the earth]. Annales de chimie et de physique, 4(4), 177–192.
Mauritsch, H. J., Seiberl, W., Arndt, R.et al. (2000). Geophysical investigations of large landslides in the Carnic region of southern Austria. Engineering Geology, 56, 373–388.
McCann, D. M. & Forster, A. (1990). Reconnaissance geophysical methods in landslide investigations. Engineering Geology, 29, 59–78.
McKay, L. D., Driese, S. G., Smith, K. H. & Vepraskas, M. J. (2005). Hydrogeology and pedology of saprolite formed from sedimentary rock, eastern Tennessee, USA. Geoderma, 126, 27–45.
Melkior, T., Yahiaoui, S., Thoby, D., Motellier, S. & Barthes, V. (2007). Diffusion coefficients of alkaline cations in Bure mudrock. Physics and Chemistry of the Earth, 32, 453–462.
Mendonça, C. A. (2008). Forward and inverse self-potential modeling in mineral exploration. Geophysics, 73(1), F33–F43.
Merkler, G. P, Militzer, H., Hötzl, H., Armbruster, H. & Brauns, J. (1989). Detection of subsurface flow phenomena. Lecture Notes in Earth Sciences, 27. Springer, Berlin/Heidelberg. ISBN 9783540518754.
Meyer, K. H. & Sievers, J. F. (1936). La perméabilité des membranes. I. Théorie de la perméabilité ionique. Helvetica Chimica Acta, 19, 649.
Michalak, A. M. (2008). A Gibbs sampler for inequality-constrained geostatistical interpolation and inverse modeling. Water Resources Research, 44, W09437, doi:10.1029/2007WR006645.
Migunov, N. & KokorevA. (1977). Dynamic properties of the seismoelectric effect of water saturated rocks. Izvestiya, Earth Physics, 13, 443–446.
Mikhailov, O. V., Haartsen, M. W. & Toksoz, M. N. (1997). Electroseismic investigation of the shallow subsurface: field measurements and numerical modelling. Geophysics, 62, 97–105.
Mikhailov, O., QueenV. J. & Toksöz, M. N. (2000). Using borehole electroseismic measurements to detect and characterize fractured (permeable) zones. Geophysics, 65, 1098–1112.
Miller, M. G. (1999). Active breaching of a geometric segment boundary in the Sawatch Range normal fault, Colorado, USA. Journal of Structural Geology, 21, 769–776.
Minsley, B. J. (2007). Modeling and inversion of self-potential data. PhD Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.
Minsley, B. J., Sogade, J. & Morgan, F. D. (2007a). Three-dimensional source inversion of self-potential data. Journal of Geophysical Research, 112, B02202, doi : 1029/2006JB004262.
Minsley, B. J., Sogade, J. & Morgan, F. D. (2007b). Three-dimensional self-potential inversion for subsurface DNAPL contaminant detection at the Savannah River Site, South Carolina. Water Resources Research, 43, W04429, doi:10.1029/2005WR003996.
Minsley, B. J., ColesD. A., Vichabian, Y. & Morgan, F. D. (2008). Minimization of self-potential survey mis-ties acquired with multiple reference locations. Geophysics, 73(2), F71–F81, doi:10.1190/1.2829390.
Minsley, B. J., Burton, L. B., Ikard, S. & Powers, H. M. (2011). Hydrogeophysical Investigations at Hidden Dam, Raymond, California. Journal of Environmental & Engineering Geophysics, 16(4), 145–164.
Mitchell, J. K. (1993). Fundamentals of Soil Behavior. New York, John Wiley & Sons.
Moore, J. R., Boleve, A., Sanders, J. W. & Glaser, S. D. (2011). Self-potential investigation of moraine dam seepage. Journal of Applied Geophysics, 74, 277–286.
Morency, C. & Tromp, J. (2008). Spectral-element simulations of wave propagation in porous media. Geophysical Journal International, 175, 301–345.
Mualem, Y. (1986). Hydraulic conductivity of unsaturated soils: prediction and formulas. Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd edn, Agronomy, A. Klute (ed.), Am. Soc. of Agronomy, Inc. and Soil Sci. SOC. of Am. Inc. Madison. Wis., 799–823.
Naudet, V. & Revil, A. (2005). A sandbox experiment to investigate bacteria-mediated redox processes on self-potential signals. Geophysical Research Letters, 32, L11405, doi:10.1029/2005GL022735.
Naudet, V., Revil, A., Bottero, J. –Y. & Bégassat, P. (2003). Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater. Geophysical Research Letters, 30(21), 2091, doi:10.1029/2003GL018096.
Naudet, V., Revil, A., Rizzo, E., Bottero, J. Y. & Bégassat, P. (2004). Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations. Hydrology and Earth System Sciences, 8(1), 8–22.
Newman, J. S. (1991). Electrochemical Systems, 2nd edn, Prentice Hall, Englewood Cliffs.
Nitao, J. J. & Bear, J. (1996). Potentials and their role in porous media. Water Resources Research, 32(2), 225–250, doi:10.1029/95WR02715.
Nourbehecht, B. (1963). Irreversible thermodynamic effects in inhomogeneous media and their application in certain geoelectric problems.PhD Thesis, MIT Cambridge.
Ntarlagiannis, D., Atekwana, E. A., Hill, E. A. & Gorby, Y. (2007). Microbial nanowires: is the subsurface “hardwired”?Geophysical Research Letters, 34, L17305, doi:10.1029/2007GL030426.
Nyquist, J. E. & Corry, C. E. (2002). Self-potential: the ugly duckling of environmental geophysics. Leading Edge, 21(5), 446–451.
Ogilvy, A. A., Ayed, M. A. & Bogoslovsky, V. A. (1969). Geophysical studies of water leakage from reservoirs. Geophysical Prospecting, 22, 36–62.
Oltean, C. & Buès, M. A. (2002). Infiltration of salt solute in homogeneous and saturated porous media – an analytical solution evaluated by numerical simulations. Transport in Porous Media, 48, 61–78.
Pain, C. C., Saunders, J. H., Worthington, M. H.et al. (2005). A mixed finite-element method for solving the poroelastic Biot equations with electrokineticcoupling. Geophysical Journal International, 160, 592–608.
PanthuluT. V., Krishnaiah, C. & Shirke, J. M. (2001). Detection of seepage paths in earth dams using self-potential and electrical resistivity methods. Engineering Geology, 59, 281–295.
Pascal-Marquis, R. D., Esslen, M., Kochi, K. & Lehmann, D. (2002). Functionnal imaging with low resolution brain electromagnetic tomography (LORETA): review, new comparaisons, and new validation. Japanese Journal of Clinical Neurophysiology, 30, 81–94.
Parker, R. L. (1973). The rapid calculation of potential anomalies. Geophysical Journal Royal Astronomical Society, 31, 447–455.
Patchett, J. G. (1975). An investigation of shale conductivity, Society of Professional Well Logging Analysis. 16th Logging Symposium, Paper U.
Patella, D. (1997). Self-potential global tomography including topographic effects, Geophysical Prospecting, 45, 843–863.
Paul, K. (1965). Direct interpretation of self-potential anomalies caused by inclined sheets of infinite horizontal extensions. Geophysics, 30, 418–423.
Pengra, D. B., Li, S. X. & Wong, P.-Z. (1999). Determination of rock properties by low-frequency AC electrokinetics. Journal of Geophysical Research, 104(B12), 29 485–29 508.
Perrier, F., Petiau, G., Clerc, G.et al. (1997). A one-year systematic study of electrodes for long period measurements of the electric field in geophysical environments. Journal of Geomagnetism and Geoelectricity, 49, 1677–1696.
Perrier, F., Trique, M., Lorne, B.et al. (1998). Electrical potential variations associated with yearly lake level variations. Geophysical Research Letters, 25, 1955–1959.
Perrone, A., Iannuzzi, A., Lapenna, V.et al. (2004). High-resolution electrical imaging of the Varco d’Izzo earthflow (Southern Italy). Journal of Applied Geophysics, 56/1, 17–29.
Petiau, G. (2000). Second generation of lead-lead chloride electrodes for geophysical applications. Pure and Applied Geophysics, 157, 357–382.
Plona, T. J. (1980). Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Applied Physics Letters, 36, 259–261.
Poldini, E. (1938). Geophysical exploration by spontaneous polarization methods. Mining Magazine London, 59, 278–282.
Polemio, M. & Sdao, F. (1998). Heavy rainfalls and extensive landslides occurred in Basilicata, southern Italy, in 1976. In Proc. 8th Int. Cong. EEGS, Vancouver, Canada, pp. 1849–1855.
Pride, S. (1994). Governing equations for the coupled electromagnetics and acoustics of Porous Media. Phys. Rev. B, 50(21), 15 678–15 696.
Prigogine, I. (1947). Etude Thermodynamique des Phénomènes Irréversibles. Desoer, Liège.
Quarto, R. & Schiavone, D. (1996). Detection of cavities by the SP method. First Break, 48(1), 76–86.
Quincke, G. (1859). Concerning a new type of electrical current. Annalen der Physics und Chemie (Poggendorff's Annal., Ser. 2) 107, 1–47.
Raboute, A., Revil, A. & Brosse, E. (2003). In situ mineralogy and permeability logs from downhole measurement: application to a case study of chlorite-coated sandstone. Journal of Geophysical Research, 108(B9), doi:10.1029/2002JB002178.
Rañada Shaw, A., Denneman, A. I. M. & Wapenaar, C. P. A. (2000). Porosity and permeability effects on seismo-electric reflection. In Proceedings of the EAGE conference. Paris, France.
Rao, A. D. & Babu, R. H. V. (1984). Quantitative interpretation of self-potential anomalies due to two-dimensional sheet like bodies. Geophysics, 48, 1659–1664.
Reguera, G., McCarthy, K. D., Metha, T.et al. (2005). Extracellular electron transfer via microbial nanowires. Nature, 435, 1098–1101.
Revil, A. (1999). Ionic diffusivity, electrical conductivity, membrane and thermoelectrical potentials in colloids and granular porous media: a unified model. Journal of Colloid and Interface Science, 212, 503–522.
Revil, A. (2007a). Thermodynamics of transport of ions and water in charged and deformable porous media. Journal of Colloid and Interface Science, 307(1), 254–264.
Revil, A. (2007b). Comment on “Permeability prediction from MICP and NMR data using an electrokinetic approach(P. W. J. Glover, I. I. Zadjali, and K. A. Frew, 2006, Geophysics, 71, F49–F60), Geophysics, 72(4), X3–X4, doi:10.1190/1.2743006.
Revil, A. (2012). Spectral induced polarization of shaly sands: influence of the electrical double layer. Water Resources Research, 48, W02517, doi:10.1029/2011WR011260.
Revil, A. & Cathles, L. M. (1999). Permeability of shaly sands. Water Resources Research, 35(3), 651–662.
Revil, A. & Florsch, N. (2010). Determination of permeability from spectral induced polarization data in granular media. Geophysical Journal International, 181, 1480–1498, doi:10.1111/j.1365–246X.2010.04573.x.
Revil, A. & Jardani, A. (2010a). Stochastic inversion of permeability and dispersivities from time lapse self-potential measurements: a controlled sandbox study. Geophysical Research Letters, 37, L11404, doi:10.1029/2010GL043257.
Revil, A. & Jardani, A. (2010b). Seismoelectric response of heavy oil reservoirs. Theory and numerical modelling. Geophysical Journal International, 180, 781–797, doi:10.1111/j.1365–246X.2009.04439.x.
Revil, A. & Leroy, P. (2001). Hydroelectric coupling in a clayey material. Geophysical Research Letters, 28, 8, 1643–1646.
Revil, A. & Leroy, P. (2004). Constitutive equations for ionic transport in porous shales. Journal of Geophysical Research, 109, B03208, doi:10.1029/2003JB002755.
Revil, A. & Linde, N. (2006). Chemico-electromechanical coupling in microporous media. Journal of Colloid and Interface Science, 302, 682–694.
Revil, A. & Mahardika, H. (2013). Coupled hydromechanical and electromagnetic disturbances in unsaturated clayey materials. Water Resources Research, 49, doi:10.1002/wrcr.20092.
Revil, A. & Pezard, P. A. (1998). Streaming potential anomaly along faults in geothermal areas. Geophysical Research Letters, 25(16), 3197–3200.
Revil, A., Darot, M. & Pezard, P. A. (1996). Influence of the electrical diffuse layer and microgeometry on the ionic diffusion coefficient in porous media. Geophysical Research Letters, 23(15), 1989–1992.
Revil, A., Cathles, L. M., Losh, S. & Nunn, J. A. (1998). Electrical conductivity in shaly sands with geophysical applications. Journal of Geophysical Research, 103(B10), 23925–23936.
Revil, A., Pezard, P. A. & Glover, P. W. J. (1999a). Streaming potential in porous media. 1. Theory of the zeta-potential. Journal of Geophysical Research, 104(B9), 20021–20031.
Revil, A., Schwaeger, H., Cathles, L. M. & Manhardt, P. (1999b). Streaming potential in porous media. 2. Theory and application to geothermal systems. Journal of Geophysical Research, 104(B9), 20 033–20 048.
Revil, A., Ehouarne, L. & Thyreault, E. (2001). Tomography of self-potential anomalies of electrochemical nature. Geophysical Research Letters, 28(23), 4363–4366.
Revil, A., Naudet, V., Nouzaret, J. & Pessel, M. (2003). Principles of electrography applied to self-potential electrokineticsources and hydrogeological applications. Water Resources Research, 39(5), 1114, doi:10.1029/2001WR000916.
Revil, A., Leroy, P. & Titov, K. (2005). Characterization of transport properties of argillaceous sediments. Application to the Callovo-Oxfordian Argillite. Journal of Geophysical Research, 110, B06202, doi:10.1029/2004JB003442.
Revil, A., Linde, N., Cerepi, A.et al. (2007). Electrokinetic coupling in unsaturated porous media. Journal of Colloid and Interface Science, 313(1), doi. 315–327, 10.1016/j.jcis.2007.03.037.
Revil, A., Mendonça, C. A., Atekwana, E.et al. (2010). Understanding biogeobatteries: where geophysics meets microbiology. Journal of Geophysical Research, 115, G00G02, doi:10.1029/2009JG001065.
Revil, A., Woodruff, W. F. and Lu, N. (2011a). Constitutive equations for coupled flows in clay materials. Water Resources Research, 47, W05548, doi:10.1029/2010WR010002.
Revil, A., Jardani, A., Hoopes, J.et al. (2011b). Non intrusive estimate of the flow rate of thermal water along tectonic faults in geothermal fields using the self potential method. FastTIMES, 16, 4.
Revil, A., Koch, K. & Holliger, K. (2012a). Relating grain size distribution to permeability and spectral induced polarization relaxation times in sands. Water Resources Research, 48, W05602, doi:10.1029/2011WR011561.
Revil, A., Karaoulis, M., Johnson, T. & Kemna, A. (2012b). Review: some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeology Journal, 20(4), 617–658, doi:10.1007/s10040–011-0819-x.
Richards, L. A. (1931). Capillary conduction of liquids through porous media. Physics, 1, 318–333.
Richards, K., Revil, A., Jardani, A.et al. (2010). Pattern of shallow ground water flow at Mount Princeton Hot Springs, Colorado, using geoelectrical methods. Journal of Volcanology and Geothermal Research, 198, 217–232.
Risgaard-PetersenN., Revil, A., Meister, P. & Nielsen. L. P. (2012). Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment. Geochimica et Cosmochimica Acta, 92, 1–13.
Rizzo, E., Suski, B., Revil, A., Straface, S. & Troisi, S. (2004). Self-potential signals associated with pumping-tests experiments. Journal of Geophysical Research, 109, B10203, doi:10.1029/2004JB003049.
Roden, J. A. & Gedney, S. D. (2000). Convolution PML, (CPML): An efficient FDTD implement of CFS-PML for arbitary media. Microwave & Optic, Technological Letters, 27, 334–339.
Rosanne, M., Mammar, N., Koudina, N.et al. (2003). Transport properties of compact clays. II. Diffusion. Journal of Colloid and Interface Science, 260, 195–203.
Rousseau-Gueutin, P., Gonçalvès, J., Cruchaudet, M., de Marsily, G. and Violette, S. (2010). Hydraulic and chemical pulse tests in a shut-in chamber imbedded in an argillaceous formation: numerical and experimental approaches. Water Resources Research, 46, W08516.
Rozycki, A. (2009). Evaluation of the streaming potential effect of piping phenomena using a finite cylinder model. Engineering Geology, 104, 98–108.
Rozycki, A., Fonticiella, J. M. R. & Cuadra, A. (2006). Detection and evaluation of horizontal fractures in Earth dams using self-potential method. Engineering Geology, 82(3), 145–153.
Rubino, J. G. & Holliger, K. (2012). Seismic attenuation and velocity dispersion in heterogeneous partially saturated porous rocks. Geophysical Journal International, 188(3), 1088–1102, doi:10.1111/j.1365–246X.2011.05291.x.
Rust, W. M. (1938). A historical review of electrical prospecting methods. Geophysics, 3(1), 1–6.
Salvatia, R. & Sasowskyb, I. (2002). Development of collapse sinkholes in areas of groundwater discharge. Journal of Hydrology, 264, 1–11.
Samson, E., Marchand, J. & Snyder, K. A. (2003). Calculation of ionic diffusion coefficients on the basis of migration test results. Material and Structures, 36, 156–165.
Sato, M. & Mooney, H. M. (1960). The electrochemical mechanism of sulfide self-potentials. Geophysics, 25, 226–249.
Sava, P. & Revil, A. (2012). Virtual electrode current injection using seismic focusing and seismoelectric conversion. Geophysical Journal International, 191(3), 1205–1209, doi:10.1111/j.1365.246X.2012.05700.x,2012.
Schenk, O., Bollhoefer, M. & Roemer, R. (2008). On large-scale diagonalization techniques for the Anderson model of localization. SIAM Review, 50, 91–112.
Schlumberger, C. (1920). Etude sur la prospection électrique du sous-sol [Study on underground electrical prospecting]. Gauthier-Villars et Cie, Paris.
Schlumberger, C., Schlumberger, M. & Leonardon, E. G. (1932). Electrical coring: a method of determining bottom-hole data by electrical measurements. American Institute of Mining and Metallurgical Engineers, Technical Publication, 462.
SchlumbergerC., SchlumbergerM. & Leonardon, E. G. (1933). A new contribution to subsurface studies by means of electrical measurements in drill holes. American Institute of Mining and Metallurgical Engineers, Technical Publication, 503 (also in 1934, Trans., 110, 159–182), AIME, Englewood, CO.
Schmutz, M., Guerin, R., Andrieux, P.et al. (2009). Determination of the 3D structure of an earthflow by geophysical methods The case of Super Sauze, in the French southern Alps, Journal of Applied Geophysics, 68(4), 500–507, doi:10.1016/j.jappgeo.2008.12.004.
Schwartz, L. M., Sen, P. N. & Johnson, D. L. (1989). Novel geomatrical effects in electrolytic conduction in porous media. Physics A, 157(1), 493–496, doi:10.1016/0378-4371(89)90348-8.
Semenov, A. S. (1980). Elektrorazvedka metodom estestvennogo elektricheskogopolia (Electrical prospecting with the natural electric field method, 2nd edn, in Russian). Nedra, Leningrad, 341–364.
Shainberg, I., Alperovitch, N. & Keren, R. (1988). Effect of magnesium on the hydraulic conductivity of Na-smectite-sand mixtures. Clays and Clay Minerals, 36, 432–438.
ShefferM. (2007). Forward modeling and inversion of streaming potential for the interpretation of hydraulic conditions from self-potential data. PhD thesis, The University of British Columbia.
ShefferM. R. & Howie, J. A. (2001). Imaging subsurface seepage conditions through the modeling of streaming potential. In: Proceedings of 54th Canadian Geotechnical Conference, Calgary, pp. 1094–1101.
Sheffer, M. R. & Howie, J. A. (2003). A numerical modelling procedure for the study of the streaming potential phenomenon in embankment dams. In Symposium on the Application of Geophysics to Engineering and Environmental Problems, San Antonio, Texas, USA, pp. 475–487.
Sheffer, M. R. & Oldenburg, D. W. (2007). Three-dimensional modelling of streaming potential. Geophysical Journal International, 109(3), 839–848.
Sharma, P. S. (1997). Environmental and Engineering Geophysics. Cambridge University Press.
Sill, W. & Killpack, T. (1982). SPXCPL: Two-dimensional modeling program of self-potential effects from cross-coupled fluid and heat flow, user's guide and documentation for version 1.0, NASA STI/Recon Tech. Rep., 83, 13,400.
Sill, W. R. (1983). Self-potential modeling from primary flows. Geophysics, 48. 76–86.
Sinitsyn, V. A., Aja, S. U., Kulik, D. A. & Wood, S. A. (2000). Acid-base surface chemistry and sorption of some lanthanides on K+-saturated Marblehead illite. I. Results of an experimental investigation. Geochimica and Cosmochimica Acta, 64, 185–194.
Skold, M., Revil, A. & Vaudelet, P. (2012). The pH dependence of spectral induced polarization of silica sands: experiment and modeling. Geophysical Research Letters, 38, L12304, doi:10.1029/2011GL047748.
Slater, L., Ntarlagiannis, D., Yee, N.et al. (2008). Electrodic voltages in the presence of dissolved sulfide: implications for monitoring natural microbial activity. Geophysics, 73(2), F65–F70.
Slob, E., Snieder, R. & Revil, A. (2010). Retrieving electrical resistivity data from self-potential measurements by cross-correlation. Geophysical Research Letters, 37, L04308, doi:10.1029/2009GL042247.
Spies, B. R. (1996). Electrical and electromagnetic borehole measurements: a review. Surveys in Geophysics, 17(4), 517–556, doi:1007/BF01901643.
Spinelli, L. (1999). Analyse Spatiale de l’Activité Electrique Cérébrale: Nouveaux Développements, PhD Thesis (in French), Université Joseph Fourier-Grenoble I.
Stern, O. (1924). Zur Theorie der elektrolytischen Doppelschicht (The theory of the electrolytic double shift). Zeitschrift Fur Elektrochemie Und Angewandte Physikalische Chemie, 30, 508–516.
Stoll, J., Bigalke, J. & Grabner, E. W. (1995). Electrochemical modeling of self-potential anomalies. Surveys in Geophysics, 16(1), 107–120.
Straface, S., Falico, C., Troisi, S., Rizzo, E. & Revil, A. (2007). Estimating of the transmissivities of a real aquifer using self-potential signals associated with a pumping test. Ground Water, 45(4), 420–428.
Su, Q., Feng, Q. & Shang, Z. (2000). Electrical impedance variation with water saturation in rock. Geophysics, 65, 68–75.
Sumner, M. E. & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. In: Page, D. L. (ed.) Methods of Soil Analysis Part 3:Chemical Methods, Soil Science Society of America, Madison, WI.
Suski, B., Revil, A., Titov, K.et al. (2006). Monitoring of an infiltration experiment using the self-potential method. Water Resources Research, 42, W08418, doi:10.1029/2005WR004840.
Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia.
Tarantola, A. & Valette, B. (1982). Inverse problem = quest for information. Journal of Geophysics- Zeitschrift Fur Geophysik, 50, 3, 159–170.
Teja, A. S. & Rice, P. (1981). Generalized corresponding states method for viscosities of liquid mixtures. Industrial & Engineering Chemistry Fundamentals, 20, 77–81.
Teorell, T. (1935). An attempt to formulate a quantitative theory of membrane permeability. Proc. Soc. Exp. Biol. Med., 33, 282.
Thompson, A. H. & Gist, G. A. (1993). Geophysical applications of electrokineticconversion. The Leading Edge, 12, 1169–1173.
Thompson, A. H., Hombostel, S., BurnsJ.et al. (2007). Field tests of electroseismic hydrocarbon detection. Geophysics, 72, 1, N1–N9.
Thorstenson, D. C. (1984). The concept of electron activity and its relation to redox potentials in aqueous geochemical systems, U.S. Geological Survey Open-File Report, 84–072.
Tikhonov, A. N. & Arsenin, V. Y. (1977). Solutions of Ill-Posed Problems. John Wiley & Sons, Washington.
Timm, F. & Möller, P. (2001). The relation between electrical and redox potential: evidence from laboratory and field measurements. Journal of Geochemical Exploration, 72(2), 115–128.
Titov, K., Revil, A., Konasovsky, P., Straface, S. & Troisi, S. (2005). Numerical modeling of self-potential signals associated with a pumping test experiment. Geophysical Journal International, 162, 641–650.
Tosha, T., Matsushima, N. & Ishido, T. (2003). Zeta potential measured for an intact granite sample at temperatures to 200 °C. Geophysical Research Letters, 30(6), doi:10.1029/2002GL016608.
Trique, M., Perrier, F., Froidefond, T., Avouac, J. P. & Hautot, S. (2002). Fluid flow near reservoir lakes inferred from the spatial and temporal analysis of the electric potential. Journal of Geophysical Research, 107(B10), 2239, doi:10.1029/2001JB000482.
Trolard, F., Bourrie, G., Abdelmoula, M., Refait, P. & Feder, F. (2007). Fougerite, a new mineral of the pyroaurite-Iowaite group: description and crystal structure. Clays and Clay Minerals, 55, 324–335.
Truesdell, C. (1969). Rational Thermodynamics. McGraw-Hill, New York, XII. 208 S 1969.
Trujillo-Barreto, N. J., Aubert-Vásquez, E. & Valdès-Sosa, P. A. (2004). Bayesian model averaging in EEG-MEG imaging. NeuroImage, 21, 1300–1319.
van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal., 44, 892–898.
van Schoor, M. (2002). Detection of sinkholes using 2D electrical resistivity imaging. Journal of Applied Geophysics, 50, 393–399.
Vaudelet, P., Revil, A., Schmutz, M., Franceschi, M. & Bégassat, P. (2011a). Induced polarization signature of the presence of copper in saturated sands. Water Resources Research, 47, W02526, doi:10.1029/2010WR009310.
Vaudelet, P, Revil, A., Schmutz, M., Franceschi, M. & Bégassat, P. (2011b). Changes in induced polarization associated with the sorption of sodium, lead, and zinc on silica sands. Journal of Colloid and Interface Science. 360, 739–752.
Vinegar, H. J. & Waxman, M. H. (1984). Induced polarization of shaly sands. Geophysics, 49, 1267–1287.
von Smoluchowski, M. (1903). Contribution à la théorie de l'endosmose électrique et de quelques phenomènes corrélatifs. Bull. Int. Acad. Sci., Cracovie, 8, 182–200.
Wahba, G. & Wang, Y. (1995). Behavior near zero of the distribution of the GCV smoothing parameter estimates. Statistics and Probability Letters, 25, 105–111.
Wan, C. F. & Fell, R. (2008). Assessing the potential of internal instability and suffusion in embankmentdams and their foundations. Journal of Geotechnical and Geoenvironmental Engineering, 134(3), 401–408.
Wanfang, Z., Beck, B. F. & Stephenson, J. B. (1999). Investigation of groundwater flow in karst areas using component separation of natural potential measurements. Environmental Geology, 37(1–2), 19–25.
Wang, M. & Revil, A. (2010). Electrochemical charge of silica surface at high ionic strength in narrow channels. Journal of Colloid and Interface Science, 343, 381–386.
Watanabe, T. & Katagishi, Y. (2006). Deviation of linear relation between streaming potential and pore fluid pressure difference in granular material at relatively high Reynolds numbers. Earth Planets Space, 58(8), 1045–1051.
Waxman, M. H. & SmitsL. J. M. (1968). Electrical conductivities in oil bearing shaly sands. Society of Petroleum Engineers Journal, 8, 107–122.
Wedekind, J. E., Osten, M. A., Kitt, E. & Herridge, B. (2005). Combining surface and downhole geophysical methods to identify karst conditions in North-central Iowa. Geotechnical Special Publication, 144, 616–625.
Weller, A., Breede, K., Slater, L. & Nordsiek, S. (2011). Effect of changing water salinity on complex conductivity spectra of sandstones. Geophysics, 76(5), 315–327.
Westermann-Clark, G. B. & Christoforou, C. C. (1986). The exclusion-diffusion potential in charged porous membranes. Journal of Electroanalitical Chemistry, 198(2), 213–231.
Wilt, M. J. & Butler, D. K. (1990). Geotechnical applications of the self-potential (SP) method; Report 4: Numerical modelling of SP anomalies: documentation of program SPPC and applications. Technical Report REMR-GT-6. US Army Corps of Engineers, Waterways Experiment Station.
Wilt, M. J. & Corwin, R. F. (1989). Numerical modeling of self-potential anomalies due to leaky dams: Model and field examples. In Detection of Subsurface Flow Phenomena. Lecture Notes in Earth Sciences, G. P. Merkler (ed.), 27, 73–89. Springer-Verlag.
Wilt, M. J. & Goldstein, N. E. (1981). Results of two years of resistivity monitoring at Cerro Prieto. In Third Symposium on the Cerro Prieto Geothermal field, Baja California, Mexico, March 24–26, 1981, Proceedings/Actas CONF-810399–27, pp. 372–376.
Wood, A. W. (1955). A Textbook of Sound. MacMillan Publishing Company.
Woodruff, W. F. & Revil, A. (2011). CEC-normalized clay-water sorption isotherm. Water Resources Research, 47, W11502, doi:10.1029/2011WR010919.
Woodruff, W. F., Revil, A., Jardani, A., Nummedal, D. & Cumella, S. (2010). Stochastic inverse modeling of self-potential data in boreholes. Geophysical Journal International, 183, 748–764, doi:10.1111/j.1365-246X.2010.04770.x.
Wurmstich, B., Morgan, F. D., Merkler, G.-P. & Lytton, R. (1991). Finite element modelling of streaming potential due to see page: study of a dam. Soc. Explor. Geophysicists Technical Program Expanded Abstracts, 10, 542–544.
Zablocki, C. J. (1976). Mapping thermal anomalies on an active volcano by the self-potential method, Kilauea, Hawaii. In Proc. 2nd U. N. Symp. on the Development and Use of Geothermal Resources, 2, 1299–1309.
Zhang, G.-B. & Aubert, M. (2003). Quantitative intepretation of self-potential anomalies in hydrogeological exploration of volcanic areas: a new approach. Near Surface Geophysics, 1, 69–75.
Zhou, W., Beck, B.F. & Adams, A. L. (2002). Effective electrode array in mapping karst hazards in electrical resistivity tomography. Environmental Geology, 42(8), 922–928.
ZhuZ. & Toksöz, N. (2012). Experimental measurements of streaming potential and seismoelectric conversion in Berea sandstone. Geophysical Prospecting (in press).
Zimmermann, E., Kemna, A., Berwix, J.et al. (2008). A high-accuracy impedance spectrometer for measuring sediments with low polarizability. Measurement Science and Technology, 19, doi:10.1088/0957–0233/19/10/105603.
Zukoski, C. F. & Saville, D. A. (1986a). The interpretation of electrokinetic measurements using a dynamic model of the Stern layer. I. The dynamic model. Journal of Colloid and Interface Science, 114(1), 32–44.
Zukoski, C. F. & Saville, D. A. (1986b). The interpretation of electrokinetic measurements using a dynamic model of the Stern Layer. II. Comparisons between theory and experiments. Journal of Colloid and Interface Science, 114(1), 45–53.
Zundel, J. P. & Siffert, B. (1985). Mécanisme de rétention de l'octylbenzene sulfonate de sodium sur les minéraux argileux. In: Solid-Liquid Interactions in Porous Media, pp. 447–462, Technip, Paris.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.