Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-15T23:15:58.861Z Has data issue: false hasContentIssue false

Quantifying the impact of heat in support seal configuration for aero engines

Published online by Cambridge University Press:  05 June 2023

P. Sun*
Affiliation:
National Key Laboratory of Strength and Structural Integrity, AVIC Aircraft Strength Research Institute, Xi’an, China
C. Liu
Affiliation:
School of Power and Energy, Northwestern Polytechnical University, Xi’an, China
*
Corresponding author: P. Sun; Email: sunpeng2016@hotmail.com

Abstract

Leakage, deformations, power loss, heat generation in the support seal system and other issues are typical when support seals are developed. The design of the support seal system has progressively evolved over recent decades as part of an ongoing effort to provide effective cooling for the aero engine secondary air system. In particular, oil heat management in the oil chamber has strict requirements, which limit the heat generation of the support seal system. The potential of supporting seal research with an oil system is investigated in this work. The combination of the CFD/FEA method and quantifying the heat generation entering the oil chamber allows for improvements not just to the individual buffer air seal unit, but the oil seal together. The analysis relies on the combination of quantifying heat generation entering the oil chamber to provide a mutual influence of neighbouring labyrinth seals. The mutual influence requires further analysis, considering the thermal deformation of the rotor/stator to provide further accurate geometry parameters in preliminary seal designs. The experimental test was conducted to verify the preliminary CFD-FEA loosely coupled analysis result, which reveals that in a turbine support seal system, the radius of the buffer air seal has a significant influence on the leakage flow rate and power loss of the oil seal, which should take into account the integral influence of the pressure difference of the oil seal caused by the radius change of the buffer air seal and the running clearance of the oil seal.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ludwig, L. and Johnson, R. Sealing technology for aircraft gas turbine engines, 10th Propulsion Conference, October 1974, 74, pp 256–282.CrossRefGoogle Scholar
Povinelli, V.P. Current seal designs and future requirements for turbine engine seals and bearings, J. Aircraf, 1975, 12, pp 266273.CrossRefGoogle Scholar
Proctor, M.P. and Delgado, I.R. Leakage and power loss test results for competing turbine engine seals, Turbo Expo 2004, 2004, 4, pp 441451.CrossRefGoogle Scholar
Chupp, R.E., Hendricks, R.C., Lattime, S.B. and Steinetz, B.M. Sealing in turbomachinery, J. Propuls. Power, May 2006, 22, (2), pp 313349.CrossRefGoogle Scholar
Chew, J.W. and Hills, N.J. Computational fluid dynamics for turbomachinery internal air systems, Philos. Trans. Royal Soc. A, May 2007, 365, (1859), pp 25872611.CrossRefGoogle ScholarPubMed
Aslan-zada, F.E., Mammadov, V.A. and Dohnal, F. Brush Seals and Labyrinth Seals in gas turbine applications, Proc. Inst. Mech. Eng. A: J. Power Energy, November 2012, 227, (2), pp 216230.CrossRefGoogle Scholar
von Plehwe, F.C., Krug, M.B., Höfler, C. and Bauer, H.J. Experimental and numerical investigations on oil leakage across labyrinth seals in aero engine bearing chambers, ASME Turbo Expo 2016, June 2016, 1, pp 441451.Google Scholar
Flouros, M., Cottier, F., Hirschmann, M. and Salpingidou, C. Numerical investigation on windback seals used in aero engines, Aerospace, November 2018, 5, (1), pp 1227.CrossRefGoogle Scholar
Li, G., Zhang, Q., Lei, Z., Huang, E., Wu, H. and Xu, G. Leakage performance of labyrinth seal for oil sealing of aero-engine, Propuls. Power Res., March 2019, 8, (1), pp 1322.CrossRefGoogle Scholar
Li, G., Zhang, Q., Lei, Z., Huang, E., Wu, H. and Xu, G. Leakage performance of floating ring seal in cold/hot state for aero-engine, Chinese J. Aeronaut., March 2019, 32, (9), pp 20852094.CrossRefGoogle Scholar
Ilieva, G. and Pirovsky, C. Labyrinth seals with application to turbomachinery, Proc. Inst. Mech. Eng. A: J. Power Energy, May 2019, 50, (5), pp 479491.Google Scholar
Petrov, N.I., and Lavrentyev, Yu.L. Comparison of heat generation estimation methods for angular contact ball bearings, VESTNIK SSAU, July 2018, 17, (2), pp 154163.Google Scholar
Petrov, N.I. Principal Conclusions from Contact-Hydrodynamic Theory of Lubrication, Associated Technical Services Publishers, 1951.Google Scholar
Bich, M.M., Weynberg, E.V. and Surnov, D.N. Lubrication of Aircraft Gas Turbine Engines, Mashinostroenie Press, Moscow, 1979.Google Scholar