Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-22T09:10:28.928Z Has data issue: false hasContentIssue false

U–Pb and Re–Os geochronology of the Haolibao porphyry Mo–Cu deposit, NE China: implications for a Late Permian tectonic setting

Published online by Cambridge University Press:  26 April 2013

QING-DONG ZENG*
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
YAN SUN
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
XIAO-XIA DUAN
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
JIAN-MING LIU
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

New geochronological data for the Haolibao porphyry Mo–Cu deposit, NE China, yield Permian crystallization zircon U–Pb ages of 278 ± 5 Ma for granite and 267 ± 10 Ma for the granite porphyry that hosts the Mo–Cu mineralization, and four Re–Os molybdenite ages yield an isochron age of 265 ± 3 Ma. These ages disagree with the previous K–Ar age determinations that suggest a correlation of intrusive rocks of the Haolibao area with the Yanshanian intrusive rocks of Cretaceous age. The mineralizations at the Haolibao area may be related to the tectonic–magmatic activity caused by collisional events between the North China Plate and Mongolian terranes during the Permian. The occurrence of the Haolibao plutonic rocks indicates that the Palaeo-Asian-Mongolian Ocean closed during the Permian along the Xilamulun River suture.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berley, M. E. & Groves, D. I. 1992. Supercontinent cycles and the distribution of metal deposits through time. Geology 20, 291–4.2.3.CO;2>CrossRefGoogle Scholar
Berzina, A. N., Sotnikov, V. I., Economou-Eliopoulos, M. & Eliopoulos, D. G. 2005. Distribution of rhenium in molybdenite from porphyry Cu–Mo and Mo–Cu deposits of Russia (Siberia) and Mongolia. Ore Geology Reviews 26, 91113.CrossRefGoogle Scholar
Bodnar, R. J. 1994. Synthetic fluid inclusions: XII. The system H2O-NaCl. Experimental determination of the halite liquidus and isochores for a 40 wt% NaCl solution. Geochimica et Cosmochimica Acta 58, 1053–63.Google Scholar
Bureau of Geology and Mineral Resources of Neimongol Autonomous Region (BGMR). 1991. Regional Geology of Neimongol Autonomous Region. Beijing: Geological Publishing House, 532 pp. (in Chinese).Google Scholar
Chen, Y. J., Zhai, M. G. & Jiang, S. Y. 2009. Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China continent. Acta Petrologica Sinica 25, 2695–726 (in Chinese with English abstract).Google Scholar
Cline, J. S. & Bodnar, R. J. 1991. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? Journal of Geophysical Research 96 (B5), 8113–26.Google Scholar
Dill, H. G. 2010. The “chessboard” classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium. Earth-Science Reviews 100, 1420.Google Scholar
Dobretsov, N. L., Berzin, N. A. & Buslov, M. 1995. Opening and tectonic evolution of the Paleo-Asian Ocean. International Geolology Review 37, 335–60.Google Scholar
Du, A. D., He, H. L. & Yin, N. W. 1995. A study of the rhenium-osmium geochronometry of molybdenites. Acta Geologica Sinica 8, 171–81.Google Scholar
Du, A., Wang, S. X., Sun, D. Z., Zhao, D. M. & Liu, D. Y. 2001. Precise Re–Os dating of molybdenite using Carius tube, NTIMS and ICPMS. In Mineral Deposits at the Beginning of the 21st century (eds Piestrzynski, A., Speczik, S., Pasava, J., Gize, A., et al.), p. 405407. Proceedings Joint 6th Biennial SGA-SEG Meeting, Krakov, Poland, 26–29 August.Google Scholar
Du, A. D., Wu, S. Q., Sun, D. Z., Wang, S. X., Qu, W. J., Markey, R., Stein, H., Morgan, J. & Malinovoskiy, D. 2004. Preparation and certification of Re-Os dating reference materials: molybdenite HLP and JDC. Geostandard Geoanalytical Research 28 (1), 4152.Google Scholar
Groves, D. I. & Bierlein, F. P. 2007. Geodynamic settings of mineral deposit systems. Journal of the Geological Society 164, 1930.Google Scholar
Groves, D. I., Bierlein, F. P., Meinert, L. D. & Hitzman, M. W. 2010. Iron oxide copper-gold (IOCG) deposits through earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Economic Geology 105, 641–54.CrossRefGoogle Scholar
Groves, D. I., Condie, K. C., Goldfarb, R. J., Hronsky, J. M. A. & Vielreicher, R. M. 2005. Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits. Economic Geology 100, 203–44.CrossRefGoogle Scholar
Guo, F., Fan, W. M., Wang, Y. J. & Lin, G. 2001. Petrogenesis of the late Mesozoic bimodal volcanic rocks in the southern Da Hingan Mts, China. Acta Petrologica Sinica 17 (1), 161–8 (in Chinese with English abstract).Google Scholar
Jia, P. P., Wei, J. H., Gong, Q. W. & Zhao, W. L. 2011. Analysis of geological background and ore–searching prospect for the copper–molybdenum deposits in the Da Hingan Ling area. Geology and Exploration 47 (2), 151–62 (in Chinese with English abstract).Google Scholar
Jian, P., Liu, D. Y., Kroner, A., Windley, B. F., Shi, Y. R., Zhang, W., Zhang, F. Q., Miao, L. C., Zhang, L. Q. & Tomurhuu, D. 2010. Evolution of a Permian intraoceanic arc–trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos 118, 169–90.Google Scholar
Kendrick, M. A., Burgess, R., Pattrick, R. A. D. & Turner, G. 2001. Halogen and Ar–Ar age determinations of inclusions within quartz veins from porphyry copper deposits using complementary noble gas extraction techniques. Chemical Geology 117, 351–70.CrossRefGoogle Scholar
Kerrich, R., Goldfarb, R. J. & Richards, J. 2005. Metallogenic provinces in an evolving geodynamic framework. Economic Geology 100, 1097–136.Google Scholar
Liu, J. M., Ye, J., Li, Y. B., Chen, X. L. & Zhang, R. B. 2001. A preliminary on exhalative mineralization in Permian basins, the southern segment of the Da Hinggan Mountains, China – Case studies of the Huanggangliang and Dajing deposits. Resource Geology 51, 345–58.Google Scholar
Liu, J. M., Zhang, R. & Zhang, Q. Z. 2004. The regional metallogeny of Da Hinggan Ling, China. Earth Science and Frontiers (China University of Geosciences, Beijing) 11 (1), 269–77 (in Chinese with English abstract).Google Scholar
Liu, Y. S., Hu, Z. G., Gao, S., Gunther, D., Xu, J., Gao, C. C. & Chen, H. H. 2008. In situ analysis of major and elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology 257 (1–2), 3443.CrossRefGoogle Scholar
Lu, Z. C., Hao, L. B., Duan, G. Z., Li, D. C. & Pan, J. 2002. Lithogeochemical characteristics and tectonic implications of two series of volcanic rocks from Early Permian Dashizhai Formation in the south section of Da Hinggan Mountains. Geochimica 31 (4), 338–46 (in Chinese with English abstract).Google Scholar
Ludwig, K. R. 2003. Users manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Bereley Geochronology Center Special Publication 4, 170.Google Scholar
Meyer, C. 1988. Ore deposits as guides to geologic history of Earth. Annual Review of Earth and Planetary Sciences 16, 147–71.Google Scholar
Reynolds, P., Ravenhurst, C., Zentilli, M. & Lindsay, D. 1998. High-precision 40Ar/39Ar dating of two consecutive hydrothermal events in the Chuquicamata porphyry copper system, Chile. Chemical Geology 148, 4560.CrossRefGoogle Scholar
Rui, Z. Y., Shi, L. D. & Fang, R. L. 1994. Geology and Nonferrous Metallic Deposits in the Northern Margin of the North China Landmass and Adjacent Areas. Beijing: Geological Publishing House, 576 pp. (in Chinese).Google Scholar
Seedorf, E., Dilles, J. H., Proffett, J. M., Einaudi, M. T., Zurcher, L., Stavast, W. J. A., Johnson, D. A. & Barton, M. D. 2005. Porphyry deposits: Characteristics and origin of hypogene features. Economic Geology 100, 251–98.Google Scholar
Selby, D. & Creaser, R. A. 2001. Re–Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada. Economic Geology 96, 197204.Google Scholar
Shao, J. A., Zhang, F. Q. & Mu, B. L. 1998. Tectono-thermal evolution of middle-south section of the Da Hinggan Mountains. Science in China (Series D) 41, 570–9 (in Chinese).Google Scholar
She, H.Q., Li, H. H., Li, J. W., Zhao, S. B., Tan, G., Zhang, D. Q., Jin, J., Dong, Y. J. & Feng, C. Y. 2009. The metallogenetical characteristics and prospecting direction of the copper-lead-zinc polymetal deposits in the northern-central Daxing'anling Mountain, Inner Monglia. Acta Geologica Sinica 83 (10), 1456–72 (in Chinese with English abstract).Google Scholar
Shen, W. Y. 2008. Geological characteristics and prospecting direction of Haolibao copper-molybdenum deposit in Arhoqin, Inner Mongolia. Geology and Resources 17 (4), 273–7 (in Chinese with English abstract).Google Scholar
Sheng, J. F. & Fu, X. Z. 1999. Metallogenic Setting and Geological Characteristics of Copper Polymetallic Deposits in Middle Part of Da Hinggan Mountains. Beijing, Seismological Press, 216 pp. (in Chinese).Google Scholar
Shirey, S. B. & Walker, R. J. 1995. Carius tube digestion for low-blank rhenium-osmium analysis. Analytical Chemistry 67, 2136–41.CrossRefGoogle Scholar
Sillitoe, R. H. 2000. Gold-rich porphyry deposits: Descriptive and genetic models and their role in exploration and discovery: In Gold in 2000 (eds Hagemann, S. G. & Brown, P. E.). Review Economic Geology 13, 315–45.Google Scholar
Smoliar, M. I., Walker, R. J. & Morgan, J. W. 1996. Re–Os ages of groupIIA, IIIA, IVA, and IVB iron meteorites. Science 271, 1099–102.Google Scholar
Wang, C. M. 2008. Exhalative sedimentary mineralization and metallogenic prediction in the middle–southern segment of the Da Hinggan Mountains. PhD thesis, China University of Geosciences (Beijing), 152 pp. (in Chinese with English abstract).Google Scholar
Wang, C. M., Zhang, S. T., Deng, J. & Liu, J. M. 2007. The exhalative genesis of the stratabound skarn in the Huanggangliang Sn-Fe polymetallic deposit of Inner Mongolia. Acta Petrologica et Mineralogica 26 (5), 409–17 (in Chinese with English abstract).Google Scholar
Wang, D. W. 1979. Detailed Survey Report of the Haolibao Cu-Mo deposit, Alukerqinqi, Liaoning Province. Chifeng: The Second Geological Team, Bureau of the Liaoning Geology and Mineral Resources, 60 pp. (in Chinese).Google Scholar
Wang, J. B., Wang, Y. W. & Wang, L. J. 2000. Copper metallogenic setting and prospecting potential in the middle-southern part of Da Hinggan Mountains. Geology and Prospecting 36 (5), 14 (in Chinese with English abstract).Google Scholar
Wang, L. J., Hidehiko, S., Wang, J. B. & Wang, Y. W. 2001. Ore-forming fluid and metallization of Huanggangliang skarn Fe-Sn deposit, Inner Mongolia. Science in China (Series D) 44, 735–46.Google Scholar
Wang, L. J., Wang, Y. W., Wang, J. B. & Zhu, H. P. 2003. Ore-forming fluid and mineralization of Caijiaying and Dajing polymetal deposits. Science in China (Series D) 33, 941–50 (in Chinese).Google Scholar
Wang, Q. & Chen, S. Q. 1986. Zhaowudameng Mineral Records. Chifeng: The Second Regional Geological Survey Team, Inner Mongolia, 549 pp. (in Chinese).Google Scholar
Wang, Y. W., Qu, L. L., Wang, J. B., Jiang, N. & Mao, Q. 2002. Ore minerals in Dajing tinpolymetallic deposit, Inner Mongolia and their temporal and spatial evolution. Mineral Deposits 21, 23–5 (in Chinese with English abstract).Google Scholar
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Vonquadt, A., Roddick, J. C. & Speigel, W. 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace-element and REE analyses. Geostands Newsletter 19, 123.Google Scholar
Windley, B. F., Kroner, A., Guo, J., Qu, G., Li, Y. & Zhang, C. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution. The Journal of Geology 110, 719–37.CrossRefGoogle Scholar
Wu, F. Y., Sun, D. Y., Ge, W. C., Zhang, Y. B., Grant, M. L., Wilde, S. A. & Jahn, B. M. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences 41, 130.Google Scholar
Wu, F. Y., Zhao, G. C., Sun, D. Y., Wilde, S. A. & Yang, J. H. 2007. The Hulan Group: its role in the evolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences 30, 542556.Google Scholar
Xiao, C. D. & Yang, Z. D. 1997. Two major ore belts north to Chifeng of Inner Mongolia: their geology and mineralization. Geological Exploration for Nonferrous Metals 6 (4), 197201 (in Chinese with English abstract).Google Scholar
Xiao, W. J., Kroner, A. & Windley, B. F. 2009. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Sciences 98, 1185–8.Google Scholar
Xiao, W. J., Windley, B. F., Hao, J. & Zhai, M. G. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt. Tectonics 22 (6), 1069–88.CrossRefGoogle Scholar
Xu, G. Z., Bian, Q. T. & Wang, Y. F. 1998. Tectonic evolution and metallization of the Erguna orogenic belt. Scientia Geologica Sinica 33 (1), 8492 (in Chinese with English abstract).Google Scholar
Ye, J., Liu, J. M., Zhang, A. L. & Zhang, R. B. 2002. Petrological evidence for exhalative mineralization: case studies of Huanggang and Dajing deposits in the southern segment of the Da Hinggan Mountains, China. Acta Petrologica Sinica 18 (4), 585–92 (in Chinese with English abstract).Google Scholar
Yuan, H. L., Gao, S., Liu, X. M., Li, H. M., Gunther, D. & Wu, F. Y. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geoanalytical and Geostandard Newsletters 28 (3), 353–70.Google Scholar
Zeng, Q. D., Liu, J. M., Chu, S. X., Wang, Y. B., Sun, Y., Duan, X. X. & Zhou, L. L. 2012 a. Mesozoic molybdenum deposits in the East Xingmeng orogenic belt, northeast China: characteristics and tectonic setting. International Geology Review 54 (16), 1843–69.Google Scholar
Zeng, Q. D., Liu, J. M., Jia, C. S., Wan, Z. M., Yu, C. M., Ye, J. & Liu, H. T. 2007. Sedimentary exhalative origin of the Baiyinnuoer zinc-lead deposit, Chifeng, Inner Mongolia: geological and sulfur isotope evidence. Journal of Jilin University (Earth Science Edition) 37 (4), 659–67 (in Chinese with English abstract).Google Scholar
Zeng, Q. D., Liu, J. M. & Liu, H. T. 2012 b. Geology and geochemistry of the Bianbianshan Au-Ag-Cu-Pb-Zn Deposit, Southern Da Hinggan Mountains, Northeastern China. Acta Geologica Sinica (English Edition) 86 (3), 630–9.Google Scholar
Zeng, Q. D., Liu, J. M., Yu, C. M., Ye, J. & Liu, H. T. 2011. Metal deposits in the Da Hinggan Mountains, NE China: styles, characteristics, and exploration potential. International Geology Review 53 (7), 846–78.Google Scholar
Zhang, Z. F. 1994. Boundary of geosyncline and platform redivided according to deep geophysical data and old plate of structural framework. Geology of Inner Mongolia (1), 115 (in Chinese).Google Scholar
Zhao, Y. M., Bi, C. S., Zou, X. Q., Sun, Y. L. & Du, A. D. 1997. The Re-Os isotope age of molybdenite from Duobaoshan and Tongshan porphyry copper (molybdenum) deposits. Acta Geoscientia Sinica 18 (1), 61–7 (in Chinese with English abstract).Google Scholar
Zhao, Y. M. & Zhang, D. Q. 1997. Metallogeny and Prospective Evolution of Copper-polymetallic Deposits in the Da Hinggan Mountains and its Adjacent Regions. Beijing: Seismological Press, 318 pp. (in Chinese).Google Scholar