Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-05T06:36:58.846Z Has data issue: false hasContentIssue false

Schwertmannite to jarosite conversion in the water column of an acidic mine pit lake

Published online by Cambridge University Press:  05 July 2018

J. Sánchez-España*
Affiliation:
Unidad de Mineralogía e Hidrogeoquímica Ambiental (UMHA), Instituto Geológico y Minero de España (IGME), Ríos Rosas 23, 28003 Madrid, Spain
I. Yusta
Affiliation:
Unidad de Mineralogía e Hidrogeoquímica Ambiental (UMHA), Departamento de Mineralogía y Petrología, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
G. A. López
Affiliation:
Applied Physics II, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
*

Abstract

Ferric precipitates in the water column at the San Telmo acidic mine pit lake in the Iberian Pyrite Belt, southwest Spain, have been studied by scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, X-ray fluorescence, inductively coupled plasma mass spectrometry and other complementary techniques. These Fe(III) precipitates were recovered from sediment traps which were left at different depths (25, 35, 40 and 100 m) in the lake for several months. Seasonal variations in the water chemistry were recorded to link the mineralogical findings to vertical and temporal changes in aqueous composition. The results indicate that schwertmannite is the first Fe(III) mineral to crystallize after the oxidation of Fe(II), in agreement with previous studies. Schwertmannite is kinetically favoured in comparison to other Fe(III) minerals, and it buffers the pH at 2.6–3.0. It is metastable, and alters to a (H3O+)- and (K+)-bearing jarosite (containing 58 mol.% H3O+ and 42 mol.% K+ on average) at lower pH (e.g. at pH 2.2–2.5 in the summer season), either in the water column (during settling) and/or in the benthic sediments, in a time period of weeks to months. The extent of hydronium substitution at the alkali site in the jarosite reflects the higher activity of free aqueous protons in solution (10–2.2 to 10–3.0) in comparison to the activities of K+ (10–4.5) and Na+ (10–3.2). Microscopic examination of mixed schwertmannite–jarosite precipitates found in the water column suggest that some textural and compositional features of metastable schwertmannite (e.g. the internal 'pincushion' arrangement and incorporation of trace amounts of Mg, Al, As and Pb) are conserved in the jarosite during the early stages of the mineralogical transformation, but many of these relics are lost in the later stages of crystal growth. Despite the hydronium-rich nature of the jarosite solid solution, this material is also an important sink for K+, which decreases in concentration with decreasing pH unlike most of the other major cations in the water column (notably Na+, Mg2+, Ca2+, Al3+, Fe3+, Cu2+, Zn2+). In addition to the release of Fe3+ to the aqueous solution, the conversion of schwertmannite to (H3O+, K+)-bearing jarosite consumes protons and thus may represent an additional pH control at San Telmo and other acidic mine pit lakes of the area.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acero, P., Ayora, C., Torrentó , C. and Nieto, J.M. (2006) The behaviour of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochimica et Cosmochimica Acta, 70, 41304139.CrossRefGoogle Scholar
Allison, J.D., Brown, D.S. and Novo-Gradac, J. (1999)MINTEQA2/PRODEAFA2: A geochemical assessment model for environmental systems: User manual supplement for version 4.0. United States Environmental Protection Agency, National Exposure Research Laboratory, Athens, Georgia, USA, 42 pp.Google Scholar
Alpers, C.N., Nordstrom, D.K. and Ball, J.W. (1989) Solubility of jarosite solid solutions precipitated from acid mine waters, Iron Mountain, California, USA. Sciences Géologiques, Bulletin, 42, 281298.CrossRefGoogle Scholar
Alpers, C.N., Rye, R.R., Nordstrom, D.K., White, L.D. and King, B-S. (1992) Chemical, crystallographic and stable isotopic properties of alunite and jarosite from acid-hypersaline Australian lakes. Chemical Geology, 96, 203226.CrossRefGoogle Scholar
Alvaro, A. (2010) Mineralogía y geoquímica de sulfatos secundarios en ambientes de drenaje ácido de mina. Implicación ambiental en el área minera del yacimiento de San Miguel (Faja Pirítica Ibérica). Unpublished PhD thesis, Universidad del País Vasco (UPV-EHU), Spain, 254 pp.Google Scholar
Asta, M.P., Cama, J., Martínez, M. and Giménez, J. (2009) Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. Journal of Hazardous Materials, 171, 965972.CrossRefGoogle ScholarPubMed
Asta, M.P., Nordstrom, D.K. and McCleskey, R.B. (2011) Simultaneous oxidation of arsenic and antimony at low and circumneutral pH, with and without microbial catalysis. Applied Geochemistry, 27, 281291.CrossRefGoogle Scholar
Basciano, L.C. and Peterson, R.C. (2007) Jarositehydronium jarosite solid solution series with full iron site occupancy: mineralogy and crystal chemistry. American Mineralogist, 92, 14641473.CrossRefGoogle Scholar
Basciano, L.C. and Peterson, R.C. (2008) Crystal chemistry of the natrojarosite-jarosite and natrojarosite -hydronium jarosite solid solution series: a synthetic study with full iron site occupancy. American Mineralogist, 93, 853862.CrossRefGoogle Scholar
Bigham, J.M. and Nordstrom, D.K. (2000) Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters. Pp. 351403.in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (C.N. Alpers, J.L. Jambor and D.K. Nordstrom, editors). Reviews in Mineralogy & Geochemistry, 40. Mineralogical Society of America, Washington DC and the Geochemical Society, St Louis, Missouri, USA.Google Scholar
Bigham, J.M., Schwertmann, U., Carlson, L. and Murad, E. (1990) A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochimica et Cosmochimica Acta, 54, 27432758.CrossRefGoogle Scholar
Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L. and Wolf, M. (1996a) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica et Cosmochimica Acta, 60, 21112121.CrossRefGoogle Scholar
Bigham, J.M., Schwertmann, U. and Pfab, G. (1996b) Influence of pH on mineral speciation in a bioreactor simul a t ing acid mine drainage. Applied Geochemistry, 11, 845849.CrossRefGoogle Scholar
Brophy, G.P. and Sheridan, M.F. (1965) Sulfate studies IV: The jarosite-natrojarosite-hydronium jarosite solid solution series. American Mineralogist, 50, 15951607.Google Scholar
Blodau, C. (2006) A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. Science of the Total Environment, 369, 307332.CrossRefGoogle ScholarPubMed
Brunauer, S., Emmett, P.H. and Teller, E. (1938) Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309319.CrossRefGoogle Scholar
Carlson, L., Bigham, J.M., Schwertmann, U., Kyek, A. and Wagner, F. (2002) Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues. Environmental Science & Technology, 36, 17121719.CrossRefGoogle ScholarPubMed
Chapman, B.M., Jones, D.R. and Jung R.F. (1983) Processes controlling metal ion attenuation in acid mine drainage s t r eams. Geochimica e t Cosmochimica Acta, 47, 19571973.CrossRefGoogle Scholar
Desborough, G.A., Smith, K.S., Lowers, H.A., Swayze, G.A., Hammarstrom, J.M., Diehl, S.F., Leinz, R.W. and Driscoll, R.L. (2010) Mineralogical and chemical characteristics of some natural jarosites. Geochimica et Cosmochimica Acta, 74, 10411056.CrossRefGoogle Scholar
Diez, M., López-Pamo, E. and Sánchez-España, J. (2009) Photoreduction of Fe(III) in the acidic mine pit lake of San Telmo (Iberian Pyrite Belt): field and experimental work. Aquatic Geochemistry, 15, 391419.CrossRefGoogle Scholar
Dold, B. (2003) Dissolution kinetics of schwertmannite and ferrihydrite in oxidized mine samples and their detection by differential X-ray diffraction (DXRD). Applied Geochemistry, 18, 15311540.CrossRefGoogle Scholar
Dutrizac, J.E. (1983) Factors affecting alkali jarosite precipitation. Metallurgical Transactions, 14B, 531539.CrossRefGoogle Scholar
Dutrizac, J.E. and Jambor, J.L. (2000) Jarosites and Their Application in Hydrometallurgy. Pp. 405452. in : Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (C.N. Alpers, J.L. Jambor and D.K. Nordstrom, editors). Reviews in Mineralogy & Geochemistry, 40. Mineralogical Society of America, Washington DC and the Geochemical Society, St Louis, Missouri, USA.Google Scholar
Egal, M., Casiot, C., Morin, G., Parmentier, M., Bruneel, O., Lebrun, S. and Elbaz-Poullichet, F. (2009) Kinetic control on the formation of tooleite, schwertmannite and jarosite by Acidithiobacillus ferrooxidans strains in an As(III)-rich acid mine water. Chemical Geology, 265, 432441.CrossRefGoogle Scholar
Fernández-Remolar, D.C., Morris, R.V., Gruener, J.E., Amils, R. and Knoll, A.H. (2005) The Rio Tinto Basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 149167.CrossRefGoogle Scholar
Fukushi, K., Sasaki, M., Sato, T., Yanase, N., Amano, H. and Ikeda, H. (2003) A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Applied Geochemistry, 18, 12671278.CrossRefGoogle Scholar
Fukushi, K., Sato, T., Yanase, N., Minato, J. and Yamada, H. (2004) Arsenic sorption on schwertmannite. American Mineralogist, 89, 17281734.CrossRefGoogle Scholar
Gammons, C.H. and Duaime, T.E. (2006) Long term changes in the limnology and geochemistry of the Berkeley pit lake, Butte, Montana. Mine Water and the Environment, 25, 7685.CrossRefGoogle Scholar
Goetz, A., Ziegler, A., Gaebel, J., Wiacek, C., Schlömann, M. and Schmahl, W.W. (2010) Structural variations in biogenic and synthetic schwertmannite. Macla, 13, 118.Google Scholar
Hedrich, S., Lünsdorf, H., Kleeberg, R., Heide, G., Seifert, J. and Schlömann, M. (2011) Schwermannite formation adjacent to bacterial cells in a mine water treatment plant and in pure cultures of Ferrovum myxofaciens. Environmental Science & Technology, 45, 76857692.CrossRefGoogle Scholar
Jamieson, H.E., Robinson, C., Alpers, C.N., Nordstrom, D.K., Poustovetov, A. and Lowers, H.A. (2005) The composition of coexisting jarosite-group minerals and water from the Richmond mine, Iron Mountain, California. The Canadian Mineralogist, 43, 12251242.CrossRefGoogle Scholar
Johnston, S.G., Keene, A.F., Burton, E.D., Bush, R.T. and Sullivan, L.A. (2011) Iron and arsenic cycling in intertidal surface sediments during wetland remedia- tion. Environmental Science & Technology, 45, 21792185.CrossRefGoogle Scholar
Jönsson, J., Persson, P., Sjöberg, S. and Lövgren, L. (2005) Schwertmannite precipitated from acid mine drainage: phase transformation, sulfate release and surface properties. Applied Geochemistry, 20, 179191.CrossRefGoogle Scholar
Kashkay, C.M., Borovskaya, Y.B. and Babazade, M.M. (1975) Determination of Gºf298 of synthetic jarosite and its sulphate analogues. Geochemistry International, 12, 115121.Google Scholar
Kawano, M. and Tomita, K. (2001) Geochemical modeling of bacterially induced mineralization of schwertmannite and jarosite in sulfuric acid spring water. American Mineralogist, 86, 11561165.CrossRefGoogle Scholar
Kim, J.J. and Kim, S.J. (2003) Environmental, mineralogical, and genetic characterization of ochreous and white precipitates from acid mine drainages in Taebaeg, Korea. Environmental Science & Technology, 37, 21202126.CrossRefGoogle ScholarPubMed
Knorr, K-H and Blodau, C. (2007) Controls on schwertmannite transformation rates and products. Applied Geochemistry, 22, 20062015.CrossRefGoogle Scholar
Kumpulainen, S., Carlson, L. and Räisänen, M.L. (2007) Seasonal variations of ochreous precipitates in mine effluents in Finland. Applied Geochemistry, 22, 760777.CrossRefGoogle Scholar
Lovley, D.R. and Phillips, E.J.P. (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Applied and Environmental Microbiology, 51, 683689.CrossRefGoogle ScholarPubMed
Meyers, P.A. (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114, 289302.CrossRefGoogle Scholar
Nordstrom, D.K. and Alpers, C.N. (1999) Geochemistry of acid mine waters. Pp. 133156.in: The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues (G.S. Plumlee and M.J. Logsdon, editors). Reviews in Economic Geology, 6A. Society of Economic Geologists, Littleton, Colorado, USA.Google Scholar
Parkhurst, D.L. and Appelo, C.A.J. (1999) User’s Guide to PHREEQC (Version 2) - A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Water Resources Investigation Report, 994259. US Geological Survey, Denver, Colorado, USA.Google Scholar
Peretyazhko, T., Zachara, J.M., Boily, J.F., Xia, Y., Gassman, P.L., Arey, B.W. and Burgos, W.D. (2009) Mineralogical transformations controlling acid mine drainage chemistry. Chemical Geology, 262, 169178.CrossRefGoogle Scholar
Regenspurg, S., Brand, A. and Peiffer, S. (2004) Formation and stability of schwertmannite in acidic mining lakes. Geochimica et Cosmochimica Acta, 68, 11851197.CrossRefGoogle Scholar
Regenspurg, S. and Peiffer, S. (2005) Arsenate and chromate incorporation in schwertmannite. Applied Geochemistry, 20, 12261239.CrossRefGoogle Scholar
Roden, E.E. and Zachara, J.M. (1996) Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface area and potential for cell growth. Environmental Science & Technology, 30, 16181628.CrossRefGoogle Scholar
Sánchez-España, J. (2000) Geochemistry and mineralogy of massive sulfide deposits in the northernmost sector of Iberian Pyrite Belt (San Telmo-San Miguel- Pen˜a del Hierro), Huelva, SW Spain. Unpublished PhD thesis, University of the Basque Country (UPVEHU), Spain, 307 pp. plus appendix.Google Scholar
Sánchez-España, F.J., López-Pamo, E., Santofimia, E., Aduvire, O., Reyes, J. and Barettino, D. (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Applied Geochemistry, 20, 13201356.CrossRefGoogle Scholar
Sánchez-España, J., Santofimia, E., González-Toril, E., San Martín-riz, P., López-Pamo, E., Amils, R. (2007) Physicochemical and microbiological stratification of a meromictic, acidic mine pit lake (San Telmo, Iberian Pyrite Belt). Pp. 447451.in: Water in Mining Environments (R. Cidu and F. Frau, editors). International Mine Water Association.Google Scholar
Sánchez-España, J., López-Pamo, E., Santofimia, E. and Diez-Ercilla, M. (2008) The acidic mine pit lakes of the Iberian Pyrite Belt: An approach to their physical limnology and hydrogeochemistry. Applied Geochemistry, 23, 12601287.CrossRefGoogle Scholar
Sánchez-España, J., Yusta, I. and Diez-Ercilla, M. (2010) SEM-EDS study of a mine pit lake turbidity layer: biogeochemical and environmental aspects. Macla, 13, 193194.Google Scholar
Sánchez-Espan˜a, J., Yusta, I. and Diez-Ercilla, M. (2011) Schwertmannite and hydrobasaluminite: a re-evaluation of their solubility and control on the iron and aluminum concentration in acidic pit lakes. Applied Geochemistry, 26, 17521774.CrossRefGoogle Scholar
Schwertmann, U. and Carlson, L. (2005) The pHdependent transformation of schwertmannite to goethite at 25ºC. Clay Minerals, 40, 6366.CrossRefGoogle Scholar
Sidenko, N.V. and Sherriff, B.L. (2005) The attenuation of Ni, Zn and Cu, by secondary Fe phases of different crystallinity from surface and ground water of two sulfide mine tailings in Manitoba, Canada. Applied Geochemistry, 20, 11801194.CrossRefGoogle Scholar
Stoffregen, R.E., Alpers, C.N. and Jambor, J.L. (2000) Alunite-Jarosite Crystallography, Thermodynamics, and Geochronology. Pp. 453479.in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (C.N. Alpers, J.L. Jambor and D.K. Nordstrom, editors). Reviews in Mineralogy & Geochemistry, 40. Mineralogical Society of America, Washington DC and the Geochemical Society, St Louis, Missouri, USA.Google Scholar
Totsche, O., Pö thig, R., Uhlmann, W., Bü ttcher, H. and Steinberg, E.W. (2003) Buffering mechanisms in acidic pit lakes - a model-based analysis. Aquatic Geochemistry, 9, 343359.CrossRefGoogle Scholar
Twidwell, L.G., Gammons, C.H., Young, C.A. and Berg, R.B. (2006) Summary of deepwater sediment/ pore water characterization for metal-laden Berkeley pit lake in Butte, Montana. Mine Water and the Environment, 25, 8692.CrossRefGoogle Scholar
Velasco, F., Alvaro, A., Suarez, S., Herrero, J.M. and Yusta, I. (2005) Mapping Fe-bearing hydrated sulphate minerals with short wave infrared (SWIR) spectral analysis at San Miguel mine environment, Iberian Pyrite Belt (SW Spain). Journal of Geochemical Exploration, 87, 4572.CrossRefGoogle Scholar
Wang, H., Bigham, J.M. and Tuovinen, O.H. (2006) Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic ironoxidizing microorganisms. Materials Science and Engineering, 26, 588592.CrossRefGoogle Scholar
Waychunas, G.A., Kim, C.S. and Banfield, J.F. (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. Journal of Nanoparticle Research, 7, 409433.CrossRefGoogle Scholar
Webster, J.G., Swedlund, P.J. and Webster, K.S. (1998) Trace metal adsorption onto an acid mine drainage iron(III) oxy-hydroxy sulfate. Environmental Science & Technology, 32, 13611368.CrossRefGoogle Scholar
Yu, J., Heo, B., Choi, I. and Chang, H. (1999) Apparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage. Geochimica et Cosmochimica Acta, 63, 34073416.CrossRefGoogle Scholar
Yusta, I., Sánchez-España, J., Diez-Ercilla, M. and Falagán, C. (2011) Sampling devices for monitoring dissolution and precipitation reactions in acidic mine pit lakes: sediment traps vs. precipitation traps. Macla, 15, 201202.Google Scholar