Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-31T14:15:26.905Z Has data issue: false hasContentIssue false

Fluocerite and its alteration products from the Afu Hills, Nigeria

Published online by Cambridge University Press:  05 July 2018

M. T. Styles
Affiliation:
Institute of Geological Sciences, Exhibition Road, London SW7 2DE
B. R. Young
Affiliation:
Institute of Geological Sciences, Exhibition Road, London SW7 2DE

Abstract

Eluvial pebbles from the Afu Hills, Nigeria, are largely composed of fluocerite, Ce0.50La0.28Nd0.11 Pr0.04Th0.03Ca0.02F3, with minor monazite. The fluocerite shows two types of alteration, to bastnäsite, and to bastnäsite-(La) with cerianite. Electron microprobe analyses are given for fluocerite, monazite, bastnäsite and bastnäsite-(La). The refined cell parameters of the fluocerite are a = 7.130±0.001, c = 7.2985 ± 0.001 Å. Strongest lines are 3.204 Å (100), 3.65 (45), 2.059 (45), 2.010 (45) and 3.565 (40). Space group P 63/mcm, Z = 6, Dcalc. = 6.12 g cm−3, ω = 1.613, ε = 1.609 both ±0.002, uniaxial negative. For bastnäsite a = 7.131 ± 0.002, c = 9.786±0.004 Å, for cerianite a = 5.460 ± 0.005 Å.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkhangel'skaya, V.V. (1970) Dokl. Akad. Nauk SSSR, (Earth Sci. Sect.) 195, 142–5.Google Scholar
Chistyakova, M.B., and Kazakova, M.E. (1969) Trudy Mineral. muzeya Akad. Nauk SSSR, 19, 236–38 (in Russian).Google Scholar
Drake, M.J., and Weill, D.F. (1972) Chem. Geol. 10, 179–81.CrossRefGoogle Scholar
Feldman, L.G., Surkov, B.K., and Stolyareva, T.I. (1973) Trudy Mineral. muzeya Akad. Nauk SSSR, 22, 143–58 (in Russian).Google Scholar
Fleischer, M. (1978) Can. Mineral. 16, 361–3.Google Scholar
Glass, J.J., Evans, H.T. Jr., Carron, M.K., and Hilde brand, F. A. (1958) Am. Mineral. 43, 460–75.Google Scholar
Gurov, E.P., and Gurova, E.P. (1974) Mineral. Sbornik Uvov Univ. 28, no. 4, 41–3 (in Russian).Google Scholar
Heinrich, E.W., and Gross, E.B. (1960) Am. Mineral. 45, 455–9.Google Scholar
Horne, J.E. T., and Harrison, R.K. (1961) Geol. Surv. G.B., Atomic Energy Division, Min. Rep. No. 1083 (unpubl.).Google Scholar
Masuda, A., Nakamura, N., and Tanaka, T. (1973) Geochim. Cosmochim. Acta. 37, 239–48.CrossRefGoogle Scholar
Palache, C., Berman, H., and Frondel, C. (1951) Dana's System of Mineralogy, 2. John Wiley and Sons, New York.Google Scholar
Popova, V.I., and Bazhenova, L.F. (1976) Mineraly. Pargenezis. Mineral., Gorn. Prod. 1976, 135–8 (in Russian).Google Scholar
Semenov, E.I., and Barinskii, R.L. (1958) Geokhimiya 1958, 314–38 (in Russian).Google Scholar
Vetoshkina, A.M., Gordienko, V.V., Elina, N.A., and Polezhaeva, L.I. (1980) Mineral. Zh. 2, no. 4, 51–8 (in Russian).Google Scholar