Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T18:12:41.288Z Has data issue: false hasContentIssue false

Application of synchrotron radiation and Kawai-type apparatus to various studies in high-pressure mineral physics

Published online by Cambridge University Press:  05 July 2018

T. Irifune*
Affiliation:
Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan

Abstract

A combination of Kawai-type multianvil apparatus and highly brilliant X-rays at the third generation synchrotron radiation facility (SPring-8) in Japan has been successfully applied to various studies in high-pressure mineral sciences such as determinations of phase transition boundaries, PVT relations of high-pressure phases, kinetics of phase transitions, structure and viscosity of melts. These studies are now comfortably made at pressures of ˜25 GPa and at temperatures to 2300°C, using the intense X-ray beam and the large capacity of the high-pressure apparatus at SPring-8. Moreover, efforts have been made to further extend the pressure limit using large sintered diamond anvils. Thus in situ X-ray observations are now possible at pressures to 50 GPa with the Kawai-type apparatus, which may be doubled in the near future when the potential of sintered diamond anvils is fully utilized. On the other hand, some problems, such as those related to pressure and temperature measurement, have been manifested in these studies. These should be overcome for further quantitative studies of the mineralogy of the Earth's deep interior based on these techniques.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, O.L., Isaak, D.G. and Yamamoto, S. (1989) Anharmonicity and the equation of state for gold. Journal of Applied Physics, 65, 15341543.CrossRefGoogle Scholar
Ando, J., Okajima, Y., Funakoshi, K., Inoue, T., Higo, Y. and Irifune, T. (2001) Determination of flow law of olivine at high P and T conditions using CCD-camera. SPring-8 User Experiment Report, 7, 47.Google Scholar
Andrault, D., Fiquet, G., Kunz, M., Visocekas, F. and Hausermann, D. (1997) The orthorhombic structure of iron: An in situ study at high-temperature and high-pressure. Science, 278, 831834.CrossRefGoogle Scholar
Boehler, R. (1993) Temperatures in the Earth's core from melting-point measurements of iron at high static pressures. Nature, 363, 534536.CrossRefGoogle Scholar
Chudinovskikh, L. and Boehler, R. (2001) High-pressure polymorphs of olivine and the 660-km seismic discontinuity. Nature, 411, 574577.CrossRefGoogle ScholarPubMed
Decker, D.L. (1971) High-pressure equation of state for NaCl, KCl, and CsCl. Journal of Applied Physics, 42, 32393244.CrossRefGoogle Scholar
Fiquet, G., Andrault, D., Dewaele, A., Charpin, T., Kunz, M. and Hausermann, D. (1998) P– V–T equation of state of MgSiO3 perovskite. Physics of the Earth and Planetary Interiors, 105, 2131.CrossRefGoogle Scholar
Funakoshi, K., Kanzaki, M., Yasuda, A., Suzuki, A., Terasaki, H. and Yamashita, S. (2001) Viscosity measurement of albite melt under high pressure using an in situ X-ray radiography technique. Pp. 10231026 in: Science and Technology of High Pressure Vol.2, Proceedings of AIRAPT-17 (Manghnani, M.H., Neillis, W.J. and Nicol, M.F., editors). Universities Press, Hyderabad, India.Google Scholar
Funamori, N., Yagi, T., Utsumi, W., Kondo, T. and Uchida, T. (1996 a) Thermoelastic properties of MgSiO3 perovskite determined by in situ X-ray observations up to 30 GPa and 2000 K. Journal of Geophysical Research, 101, 82578269.CrossRefGoogle Scholar
Funamori, N., Yagi, T. and Uchida, T. (1996 b) High-pressure and high-temperature in situ x-ray diffraction study of iron to above 30 GPa using MA8-type apparatus. Geophysical Research Letters, 23, 953956.CrossRefGoogle Scholar
Funamori, N., Jeanloz, R., Nguyen, J.H., Kavner, A., Caldwell, W.A., Fujino, K., Miyajima, N., Shinmei, T. and Tomioka, N. (1998) High-pressure transformations in MgAl2O4 . Journal of Geophysical Research, 103, 2081320818.CrossRefGoogle Scholar
Furnish, M.D. and Bassett, W.A. (1983) Investigation of the mechanism of the olivine-spinel transition in fayalite by synchrotron radiation. Journal of Geophysical Research, 88, 1033310341.CrossRefGoogle Scholar
Getting, I.C. and Kennedy, G.C. (1970) Effect of pressure on the emf of chromel-alumel and Platinum-Platinum 10% Rhodium thermocouple. Journal of Applied Physics, 41, 45524562.CrossRefGoogle Scholar
Hirose, K., Fei, Y., Ono, S., Yagi, T. and Funakoshi, K. (2001 a) In situ measurements of the phase transition boundary in Mg3Al2Si3O12: implications for the nature of the seismic discontinuities in the Earth's mantle. Earth and Planetary Science Letters, 184, 567573.CrossRefGoogle Scholar
Hirose, K., Komabayashi, T., Murakami, M. and Funakoshi, K. (2001 b) In situ measurements of the majorite-akimotite-perovskite phase transition boundaries in MgSiO3 . Geophysical Research Letters, 28, 43514354.CrossRefGoogle Scholar
Inoue, T., Ueda, T., Higo, Y., Irifune, T., Sanehira, T., Tanimoto, Y., Sueda, Y., Kawahara, T., Ochi, K., Kurio, A., Fukuyama, A., Ando, J., Funakoshi, K. and Utsumi, W. (2001) SPring-8 User Experiment Report, 7, 55.Google Scholar
Irifune, T. (1994) Absence of an aluminous phase in the upper part of the Earth's lower mantle. Nature, 370, 131133.CrossRefGoogle Scholar
Irifune, T., Susaki, J., Yagi, T. and Sawamoto, H. (1989) Phase transitions in diopside CaMgSi2O6 at pressures to 25 GPa. Geophysical Research Letters, 16, 187190.CrossRefGoogle Scholar
Irifune, T., Kuroda, K., Funamori, N., Uchida, T., Yagi, T., Inoue, T. and Miyajima, N. (1996 a) Amorphization of serpentine at high pressure and high temperature. Science, 272, 14681470.CrossRefGoogle ScholarPubMed
Irifune, T., Koizumi, T. and Ando, J. (1996 b) An experimental study of the garnet – perovskite transition in the system MgSiO3-Mg3Al2Si3O12 . Physics of the Earth and Planetary Interiors, 96, 147157.CrossRefGoogle Scholar
Irifune, T., Nishiyama, N., Kuroda, K., Inoue, T., Isshiki, M., Utsumi, W., Funakoshi, K., Urakawa, S., Uchida, T., Katsura, T. and Ohtaka, O. (1998) The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction. Science, 279, 16981700.CrossRefGoogle ScholarPubMed
Irifune, T., Miyashita, M., Inoue, T., Ando, J., Funakoshi, K. and Utsumi, W. (2000) High-pressure phase transition in CaMgSi2O6 and implication for origin of ultra-deep diamond inclusions. Geophysical Research Letters, 27, 35413544.CrossRefGoogle Scholar
Irifune, T., Ochi, K., Sanehira, T., Sueda, Y., Ioue, T., Higo, Y., Kurio, A., Fukuyama, A., Ando, J., Funakoshi, K. and Utsumi, W. (2001) Determination of the melting temperature of gold at high pressure by X-ray imaging technique. SPring-8 User Experiment Report, 7, 54.Google Scholar
Irifune, T., Naka, N., Sanehira, T., Sueda, Y., Inoue, T., Higo, Y. and Funakoshi, K. (2002) In situ X-ray diffraction study of the phase transitions in MgAl2O4 spinel up to 40 GPa. Physics and Chemistry of Minerals (submitted).Google Scholar
Ito, E. and Takahashi, E. (1989) Post-spinel transition in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. Journal of Geophysical Research, 94, 1063710646.CrossRefGoogle Scholar
Ito, E., Kubo, A., Katsura, T., Akaogi, M. and Fujita, T. (1998) High-pressure phase transition of pyrope (Mg3Al2Si3O12) in a sintered diamond cubic anvil assembly. Geophysical Research Letters, 25, 821824.CrossRefGoogle Scholar
Ito, E., Kubo, A., Shinmei, T., Katsura, T., Yamada, H., Nishikawa, O. and Song, M. (2001) Exploration of beta-Fe using sintered diamond anvils. SPring-8 User Experiment Report, 7, 50.Google Scholar
Jeanloz, R. and Thompson, A.B. (1983) Phase transitions and mantle discontinuities. Reviews of Geophysical and Space Physics, 21, 5174.CrossRefGoogle Scholar
Kanzaki, M., Kurita, K., Fujii, T., Kato, T., Shimomura, O. and Akimoto, S. (1987) A new technique to measure the viscosity and density of silicate melts at high pressure. Pp. 195200 in: High-Pressure Research in Mineral Physics (Manghnani, M.H. and Akimoto, S., editors). Terra Publishing Company/American Geophysical Union, Tokyo/Washington, D.C.Google Scholar
Kato, T., Ohtani, E., Morishima, H., Yamazaki, D., Suzuki, A., Suto, M. and Kubo, T. (1995) In situ Xray observation of high-pressure phase transitions of MgSiO3 and thermal expansion of MgSiO3 perovskite at 25 GPa by double-stage multianvil system. Journal of Geophysical Research, 100, 2047520481.CrossRefGoogle Scholar
Katsura, T. and Ito, E. (1989) The system Mg2SiO4-Fe2SiO4 at high pressures and high temperatures: Precise determination of stabilities of olivine, modified spinel and spinel. Journal of Geophysical Research, 94, 1566315670.CrossRefGoogle Scholar
Katsura, T., Yamada, H., Shinmei, T., Kubo, A., Ono, S., Kanzaki, M., Yoneda, A., Walter, M.J., Ito, E., Urakawa, S., Funakoshi, K. and Utsumi, W. (2002) Post-spinel transition in Mg2SiO4 determined by high P-T in situ X-ray diffractometry. Physics of the Earth and Planetary Interiors (submitted).CrossRefGoogle Scholar
Kawai, N. and Endo, S. (1970) The generation of ultrahigh pressure by a split sphere apparatus. Review of Scientific Instruments, 41, 11781181.CrossRefGoogle Scholar
Kim, Y., Ming, L.C. and Manghnanni, M.H. (1994) High-pressure phase transitions in a natural crystalline diopside and synthetic CaMgSi2O6 glass. Physics of the Earth and Planetary Interiors, 83, 6779.CrossRefGoogle Scholar
Kondo, T., Sawamoto, H., Yoneda, A., Kato, M., Matsumoto, A. and Yagi, T. (1993) Ultrahigh-pressure and high-temperature generation by use of the MA8 system with sintered-diamond anvils. High Temperature–High Pressure, 25, 105112.Google Scholar
Kubo, T., Ohtani, E., Kato, T., Morishima, H., Yamazaki, D., Suzuki, A., Mibe, K., Kikegawa, T. and Shimomura, O. (1998) An in situ X ray diffraction study of the α – β transition kinetics of Mg2SiO4 . Geophysical Research Letters, 25, 695698.CrossRefGoogle Scholar
Kubo, T., Ohtani, E., Kato, T., Urakawa, S., Suzuki, A., Kanbe, Y., Funakoshi, K., Utsumi, W. and Fujino, K. (2000) Formation of metastable assemblages and mechanisms of the grain-size reduction in the postspinel transition of Mg2SiO4 . Geophysical Research Letters, 27, 807810.CrossRefGoogle Scholar
Kuroda, K., Irifune, T., Inoue, T., Nishiyama, N., Miyashita, M., Funakoshi, K. and Utsumi, W. (2000) Determination of the phase boundary between ilmenite and perovskite in MgSiO3 by in situ X-ray diffraction and quench experiments. Physics and Chemistry of Minerals, 27, 523532.CrossRefGoogle Scholar
Kushiro, I. (1976) Changes in viscosity and structure of melt of NaAlSi2O6 composition at high pressure. Journal of Geophysical Research, 81, 63476350.CrossRefGoogle Scholar
Li, B., Chen, G., Gwanmesia, D. and Liebermann, R.C. (1996) Sound velocity measurements at mantle transition zone conditions of pressure and temperature using ultrasonic interferometry in a multianvil apparatus. Pp. 4161 in: Properties of Earth and Planetary Materials at High Pressure and Temperature (Manghnani, M.H. and Yagi, T., editors). American Geophysical Union, Washington, D.C.Google Scholar
Liu, L.G. (1978) A new high-pressure phase of spinel. Earth and Planetary Science Letters, 41, 398404.CrossRefGoogle Scholar
Liu, L.G. (1987) New silicate perovskites. Geophysical Research Letters, 14, 10791082.CrossRefGoogle Scholar
Mao, H.K. and Bell, P.M. (1971) Behavior of thermocouples in the single-stage piston-cylinder apparatus. Carnegie Institution of Washington Yearbook, 69, 207216.Google Scholar
Mao, H.K., Yagi, T. and Bell, P.M. (1978) Mineralogy of the Earth's deep mantle: quenching experiments of mineral compositions at high pressure and temperature. Carnegie Institution of Washington Yearbook, 76, 502504.Google Scholar
Mao, H.K., Chen, L.C., Hemley, R.J., Jephcoat, A.P. and Wu, Y. (1989) Stability and equation of state of CaSiO3-perov skite to 134 GPa. Journal of Geophysical Research, 94, 1788917894.CrossRefGoogle Scholar
Mao, H.K., Hemley, R.J., Fei, Y., Shu, J.F., Chen, L.C., Jephcoat, A.P. and Wu, Y. (1991) Effect of pressure, temperature, and composition on lattice parameters and density of (Fe,Mg)SiO3 perovskites to 30 GPa. Journal of Geophysical Research, 96, 80698079.CrossRefGoogle Scholar
Matsui, M., Parker, S.C. and Leslie, M. (2000) The MD simulation of the equation of MgO: a pressure calibration standard at high temperature and high pressure. American Mineralogist, 85, 312316.CrossRefGoogle Scholar
Matsui, M., Nishiyama, N. and Cohen, R.E. (2002) Comparison between the Au and MgO pressure calibration standards at high temperature. Geophysical Research Letters (submitted).CrossRefGoogle Scholar
Meade, C., Mao, H.K. and Hu, J. (1995) High-temperature phase transition and dissociation of (Mg,Fe)SiO3 perovskite at lower mantle pressures. Science, 268, 17431745.CrossRefGoogle ScholarPubMed
Mitra, N.R., Decker, D.L. and Vanfleet, H.B. (1967) Melting curves of copper, gold, and platinum to 70 kbar. Physical Review, 161, 613617.CrossRefGoogle Scholar
Morishima, H., Kato, T., Suto, M., Ohtani, E., Urakawa, S., Utsumi, W., Shimomura, O. and Kikegawa, T. (1994) The phase boundary between α- and β-Mg2SiO4 determined by in situ X-ray observation. Science, 265, 12021203.CrossRefGoogle ScholarPubMed
Nishiyama, N., Irifune, T., Inoue, T., Ando, J. and Funakoshi, K. (2002) Spinel-postspinel phase transition in a pyrolite composition observed by in situ X-ray diffraction. Physics of the Earth and Planetary Interiors (submitted).Google Scholar
Nittle, E. and Jeanloz, R. (1989) Melting curve of (Mg,Fe)SiO3 perovskite to 96 GPa: Evidence for a structural transition in lower mantle melt. Geophysical Research Letters, 16, 421424.CrossRefGoogle Scholar
Oguri, K., Funamori, N., Uchida, T., Yagi, T., Miyajima, N. and Fujino, K. (1998) High-pressure and high-temperature in situ X-ray diffraction study of natural garnet (Mg0.72Fe0.17Ca0.11)3Al2Si3O12 up to 32 GPa and 2000 K using MA8-type apparatus. Review of High Pressure Science and Technology, 7, 5961.CrossRefGoogle Scholar
Ohtani, E., Kumazawa, M., Kato, T. and Irifune, T. (1982) Melting of various silicates at elevated pressures. Pp. 259270 in: High-Pressure Research in Geophysics (Akimoto, S. and Manghnani, M.H., editors). Center for Academic Publishing, Tokyo.CrossRefGoogle Scholar
Ohtani, E., Kagawa, N., Shimomura, O., Togaya, M., Suito, K., Onodera, A., Sawamoto, H., Yoneda, A., Tanaka, S., Utsumi, W., Ito, E., Matsumuro, A. and Kikegawa, T. (1989) High-pressure generation by a multiple anvil system with sintered diamond anvils. Review of Scientific Instruments, 60, 922925.CrossRefGoogle Scholar
Ono, S., Katsura, T., Ito, E., Kanzaki, M., Yoneda, A., Walter, M.J., Urakawa, S., Utsumi, W. and Funakoshi, K. (2001) In situ observation of ilmenite-perovskite phase transition in MgSiO3 using synchrotron radiation. Geophysical Research Letters, 28, 835838.CrossRefGoogle Scholar
Saxena, S.K., Dubrovinsky, L.S., Haggkvist, P., Cerenius, Y., Shen, G. and Mao, H.K. (1995) Synchrotron X-ray study of iron at high pressure and temperature. Science, 269, 17031704.CrossRefGoogle ScholarPubMed
Saxena, S.K., Dubrovinsky, L.S. and Haggkvist, P. (1996 a) X-ray evidence for the new phase b-iron at high temprature. Geophysical Research Letters, 23, 24412444.CrossRefGoogle Scholar
Saxena, S.K., Dubrovinsky, L.S., Lazor, P., Cerenius, Y., Haggkvist, P., Hanfland, M. and Hu, J. (1996 b) Stability of perovskite (MgSiO3) in the Earth's mantle. Science, 274, 13571359.CrossRefGoogle ScholarPubMed
Serghiou, G., Zerr, A. and Boehler, R. (1998) (Mg,Fe)SiO3-perovskite stability under lower mantle conditions. Science, 280, 20932095.CrossRefGoogle ScholarPubMed
Shen, G., Lazor, P. and Saxena, S.K. (1993) Melting of wustite and iron up to pressures of 600 kbar. Physics and Chemistry of Minerals, 20, 9196.CrossRefGoogle Scholar
Shen, G., Mao, H.K., Hemley, R.J., Duffy, T.S. and Rivers, M.L. (1998) Melting and crystal structure of iron at high pressures and temperatures. Geophysical Research Letters, 25, 373376.CrossRefGoogle Scholar
Shim, S.H., Duffy, T.S. and Shen, G. (2000) The equation of state of CaSiO3 perovskite to 108 GPa at 300K. Physics of the Earth and Planetary Interiors, 120, 327338.CrossRefGoogle Scholar
Shim, S.H., Duffy, T.S. and Shen, G. (2001 a) Evidence that the postspinel transition in Mg2SiO4 is responsible for the 660-km seismic discontinuity. Nature, 411, 571574.CrossRefGoogle Scholar
Shim, S.H., Duffy, T.S. and Shen, G. (2001 b) Stability and structure of MgSiO3 perovskite to 2000-kilometer depth in Earth's mantle. Science, 293, 24372440.CrossRefGoogle Scholar
Shimomura, O., Yamaoka, S., Yagi, T., Wakatsuki, M., Tsuji, K., Fukunaga, O., Kawamura, H., Aoki, K. and Akimoto, S. (1984) Pp. 1720 in: Multi-anvil type X-ray apparatus for synchrotron radiation. Material Research Society Symposium Proceedings vol. 22. Elsevier Science Publishing, New York.Google Scholar
Shimomura, O., Utsumi, W., Taniguchi, T., Kikegawa, T. and Nagashima, T. (1992) A new high pressure and high temperature apparatus with sintered diamond anvils for synchrotron radiation use. Pp. 311 in: High-Pressure Research: Application to Earth and Planetary Sciences (Syono, Y. and Manghnani, M.H., editors). Terra Publishing Company/American Geophysical Union, Tokyo/Washington, D.C.Google Scholar
Tamai, H. and Yagi, T. (1989) High-pressure and high-temperature phase relations in CaSiO3 and CaMgSi2O6 and elasticity of perovskite-type CaSiO3 . Physics of the Earth and Planetary Interiors, 54, 370377.CrossRefGoogle Scholar
Tarrida, M. and Richet, P. (1989) Equation of state of CaSiO3 perovskite to 96 GPa. Geophysical Research Letters, 16, 13511354.CrossRefGoogle Scholar
Terasaki, H., Kato, T., Urakawa, S., Funakoshi, K., Suzuki, A., Okada, T., Maeda, M., Sato, J., Kubo, T. and Kasai, S. (2001) The effect of temperature, pressure, and sulfur content on viscosity of the Fe-FeS melt. Earth and Planetary Science Letters, 190, 93101.CrossRefGoogle Scholar
Utsumi, W., Funamori, N., Yagi, T., Ito, E., Kikegawa, T. and Shimomura, O. (1995) Thermal expansivity of MgSiO3 perovskite under high pressures up to 20 GPa. Geophysical Research Letters, 22, 10051008.CrossRefGoogle Scholar
Utsumi, W., Funakoshi, K., Urakawa, S., Yamakata, M., Tsuji, K., Konishi, H. and Simomura, O. (1998) SPring-8 beamline for high pressure science with multi-anvil apparatus. Review of High Pressure Science and Technology, 7, 14841486.CrossRefGoogle Scholar
Wang, Y.,Weidner, D.J. and Guyot, F. (1996 a) Thermal equation of state of CaSiO3 perovskite. Journal of Geophysical Research, 101, 661672.CrossRefGoogle Scholar
Wang, Y., Weidner, D.J. and Meng, Y. (1996 b) Advances in equation-of-state measurements in SAM-85. Pp. 365372 in: Properties of Earth and Planetary Materials at High Pressure and Temperature (Manghnani, M.H. and Yagi, T., editors). American Geophysical Union, Washington, D.C.Google Scholar
Weidner, D.J., Vaughan, M.T., Ko, J., Wang, Y., Liu, X., Yeganeh-Haeri, A., Pacalo, R.E. and Zhao, Y. (1992) Characterization of stress, pressure, temperature in SAM-85, a DIA type high pressure apparatus. Pp. 1317 in: High-Pressure Research: Application to Earth and Planetary Sciences (Syono, Y. and Manghnani, M.H., editors). Terra Publishing Company/American Geophysical Union, Tokyo/Washington, D.C.Google Scholar
Weidner, D.J., Wang, Y. and Vaughan, M.T. (1994) Yield strength at high pressure and temperature. Geophysical Research Letters, 21, 753756.CrossRefGoogle Scholar
Williams, Q., Nittle, E. and Jeanloz, R. (1991) The high pressure melting curve of iron: A technical discussion. Journal of Geophysical Research, 96, 21712184.CrossRefGoogle Scholar
Yagi, T., Kusanagi, S., Tsuchida, Y. and Fukai, Y. (1989) Isothermal compression and stability of perovskite-type CaSiO3 . Proceedings of Japan Academy Series B, 65, 129132.CrossRefGoogle Scholar
Yoo, C.S., Akella, J., Campbell, A.J., Mao, H.K. and Hemley, R.J. (1995) Phase diagram of iron by in situ X-ray diffraction: implications for Earth's core. Science, 270, 14731475.CrossRefGoogle Scholar
Yutani, M., Yagi, T. and Irifune, T. (1997) Compressibility of calcium ferrite-type MgAl2O4 . Physics and Chemistry of Minerals, 24, 340344.CrossRefGoogle Scholar
Zerr, A. and Boehler, R. (1993) Melting of (Mg,Fe)SiO3-perovskite to 625 kilobars: Indication of a high melting temperature in the lower mantle. Science, 262, 553555.CrossRefGoogle ScholarPubMed
Zhang, J., Li, B., Utsumi, W. and Liebermann, R.C. (1996) In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Physics and Chemistry of Minerals, 23, 110.CrossRefGoogle Scholar