Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-07T18:51:36.210Z Has data issue: false hasContentIssue false

Local structural and functional MRI markers of compulsive behaviors and obsessive–compulsive disorder diagnosis within striatum-based circuits

Published online by Cambridge University Press:  29 August 2023

Chuanyong Xu
Affiliation:
Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
Gangqiang Hou
Affiliation:
Department of Radiology, Shenzhen Kangning Hospital, Shenzhen, China
Tingxin He
Affiliation:
Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
Zhongqiang Ruan
Affiliation:
Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
Xinrong Guo
Affiliation:
Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
Jierong Chen
Affiliation:
Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
Zhen Wei
Affiliation:
Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
Carol A. Seger
Affiliation:
Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China Department of Psychology, Colorado State University, Fort Collins, Colorado, USA
Qi Chen*
Affiliation:
School of Psychology, Shenzhen University, Shenzhen, China
Ziwen Peng*
Affiliation:
Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
*
Corresponding author: Qi Chen; Email: chenqi@szu.edu.cn or Ziwen Peng; Email: pengzw@m.scnu.edu.cn
Corresponding author: Qi Chen; Email: chenqi@szu.edu.cn or Ziwen Peng; Email: pengzw@m.scnu.edu.cn

Abstract

Background

Obsessive–compulsive disorder (OCD) is a classic disorder on the compulsivity spectrum, with diverse comorbidities. In the current study, we sought to understand OCD from a dimensional perspective by identifying multimodal neuroimaging patterns correlated with multiple phenotypic characteristics within the striatum-based circuits known to be affected by OCD.

Methods

Neuroimaging measurements of local functional and structural features and clinical information were collected from 110 subjects, including 51 patients with OCD and 59 healthy control subjects. Linked independent component analysis (LICA) and correlation analysis were applied to identify associations between local neuroimaging patterns across modalities (including gray matter volume, white matter integrity, and spontaneous functional activity) and clinical factors.

Results

LICA identified eight multimodal neuroimaging patterns related to phenotypic variations, including three related to symptoms and diagnosis. One imaging pattern (IC9) that included both the amplitude of low-frequency fluctuation measure of spontaneous functional activity and white matter integrity measures correlated negatively with OCD diagnosis and diagnostic scales. Two imaging patterns (IC10 and IC27) correlated with compulsion symptoms: IC10 included primarily anatomical measures and IC27 included primarily functional measures. In addition, we identified imaging patterns associated with age, gender, and emotional expression across subjects.

Conclusions

We established that data fusion techniques can identify local multimodal neuroimaging patterns associated with OCD phenotypes. The results inform our understanding of the neurobiological underpinnings of compulsive behaviors and OCD diagnosis.

Type
Original Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally as first authors to this project.

These authors contributed equally as correspondence/senior authors to this project.

References

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub.Google Scholar
Anticevic, A., Hu, S., Zhang, S., Savic, A., Billingslea, E., Wasylink, S., … Pittenger, C. (2014). Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder. Biological Psychiatry, 75, 595605. doi: 10.1016/j.biopsych.2013.10.021CrossRefGoogle ScholarPubMed
Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry – The methods. NeuroImage, 11(6), 805821. https://doi.org/10.1006/nimg.2000.0582CrossRefGoogle ScholarPubMed
Ball, G., Malpas, C. B., Genc, S., Efron, D., Sciberras, E., Anderson, V., … Silk, T. J. (2018). Multimodal structural neuroimaging markers of brain development and ADHD symptoms. American Journal of Psychiatry, 176(1), 5766. doi: 10.1176/appi.ajp.2018.18010034CrossRefGoogle ScholarPubMed
Beck, A. T. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4(6), 561. doi: 10.1001/archpsyc.1961.01710120031004CrossRefGoogle ScholarPubMed
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.xGoogle Scholar
Boedhoe, P. S. W., Schmaal, L., Abe, Y., Alonso, P., Ameis, S. H., Anticevic, A., … van den Heuvel, O. A. (2018). Cortical abnormalities associated with pediatric and adult obsessive-compulsive disorder: Findings from the ENIGMA obsessive-compulsive disorder working group. American Journal of Psychiatry, 175(5), 453462. doi: 10.1176/appi.ajp.2017.17050485CrossRefGoogle ScholarPubMed
Brennan, B. P., Rauch, S. L., Jensen, J. E., & Pope, H. G. (2013). A critical review of magnetic resonance spectroscopy studies of obsessive-compulsive disorder. Biological Psychiatry, 73(1), 2431. https://doi.org/10.1016/j.biopsych.2012.06.023CrossRefGoogle ScholarPubMed
Bruin, W. B., Abe, Y., Alonso, P., Anticevic, A., Backhausen, L. L., & Balachander, S., … ENIGMA-OCD Working Group. (2023). The functional connectome in obsessive-compulsive disorder: Resting-state mega-analysis and machine learning classification for the ENIGMA-OCD consortium. Molecular Psychiatry. doi: 10.1038/s41380-023-02077-0Google ScholarPubMed
Bu, X., Hu, X., Zhang, L., Li, B., Zhou, M., Lu, L., … Huang, X. (2019). Investigating the predictive value of different resting-state functional MRI parameters in obsessive-compulsive disorder. Translational Psychiatry, 9(1), 17. doi: 10.1038/s41398-018-0362-9CrossRefGoogle ScholarPubMed
Calhoun, V. D., & Sui, J. (2016). Multimodal fusion of brain imaging data: A key to finding the missing link(s) in complex mental illness. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(3), 230244. doi: 10.1016/j.bpsc.2015.12.005Google Scholar
Cardoner, N., Harrison, B. J., Pujol, J., Soriano-Mas, C., Hernández-Ribas, R., López-Solá, M., … Menchón, J. M. (2011). Enhanced brain responsiveness during active emotional face processing in obsessive compulsive disorder. The World Journal of Biological Psychiatry, 12(5), 349363. doi: 10.3109/15622975.2011.559268CrossRefGoogle ScholarPubMed
de Wit, S. J., Alonso, P., Schweren, L., Mataix-Cols, D., Lochner, C., Menchón, J. M., … van den Heuvel, O. A. (2014). Multicenter voxel-based morphometry mega-analysis of structural brain scans in obsessive-compulsive disorder. American Journal of Psychiatry, 171(3), 340349. doi: 10.1176/appi.ajp.2013.13040574CrossRefGoogle ScholarPubMed
Douaud, G., Groves, A. R., Tamnes, C. K., Westlye, L. T., Duff, E. P., Engvig, A., … Johansen-Berg, H. (2014). A common brain network links development, aging, and vulnerability to disease. Proceedings of the National Academy of Sciences, 111(49), 1764817653. doi: 10.1073/pnas.1410378111CrossRefGoogle ScholarPubMed
Eng, G. K., Sim, K., & Chen, S.-H. A. (2015). Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: An integrative review. Neuroscience & Biobehavioral Reviews, 52, 233257. doi: 10.1016/j.neubiorev.2015.03.002CrossRefGoogle ScholarPubMed
Foa, E. B., Huppert, J. D., Leiberg, S., Langner, R., Kichic, R., Hajcak, G., & Salkovskis, P. M. (2002). The Obsessive-Compulsive Inventory: Development and validation of a short version. Psychological Assessment, 14(4), 485496. doi: 10.1037/1040-3590.14.4.485CrossRefGoogle ScholarPubMed
Francx, W., Llera, A., Mennes, M., Zwiers, M. P., Faraone, S. V., Oosterlaan, J., … Beckmann, C. F. (2016). Integrated analysis of gray and white matter alterations in attention-deficit/hyperactivity disorder. NeuroImage: Clinical, 11, 357367. doi: 10.1016/j.nicl.2016.03.005CrossRefGoogle ScholarPubMed
Gard, D. E., Gard, M. G., Kring, A. M., & John, O. P. (2006). Anticipatory and consummatory components of the experience of pleasure: A scale development study. Journal of Research in Personality, 40(6), 10861102. doi: 10.1016/j.jrp.2005.11.001CrossRefGoogle Scholar
Gaser, C., & Dahnke, R. (2022). CAT – A computational anatomy toolbox for the analysis of structural MRI data. BioRxiv.CrossRefGoogle Scholar
Gillan, C. M., Fineberg, N. A., & Robbins, T. W. (2017). A trans-diagnostic perspective on obsessive-compulsive disorder. Psychological Medicine, 47(9), 15281548. doi: 10.1017/S0033291716002786CrossRefGoogle ScholarPubMed
Gillan, C. M., Kalanthroff, E., Evans, M., Weingarden, H. M., Jacoby, R. J., Gershkovich, M., … Simpson, H. B. (2020). Comparison of the association between goal-directed planning and self-reported compulsivity vs obsessive-compulsive disorder diagnosis. JAMA Psychiatry, 77(1), 19. doi: 10.1001/jamapsychiatry.2019.2998CrossRefGoogle ScholarPubMed
Gillan, C. M., & Robbins, T. W. (2014). Goal-directed learning and obsessive–compulsive disorder. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1655), 315318. doi: 10.1098/rstb.2013.0475CrossRefGoogle ScholarPubMed
Gillan, C. M., & Sahakian, B. J. (2015). Which is the driver, the obsessions or the compulsions, in OCD? Neuropsychopharmacology, 40(1), 247248. doi: 10.1038/npp.2014.201CrossRefGoogle ScholarPubMed
Groves, A. R., Beckmann, C. F., Smith, S. M., & Woolrich, M. W. (2011). Linked independent component analysis for multimodal data fusion. NeuroImage, 54(3), 21982217. https://doi.org/10.1016/j.neuroimage.2010.09.073CrossRefGoogle ScholarPubMed
Groves, A. R., Smith, S. M., Fjell, A. M., Tamnes, C. K., Walhovd, K. B., Douaud, G., … Westlye, L. T. (2012). Benefits of multi-modal fusion analysis on a large-scale dataset: Life-span patterns of inter-subject variability in cortical morphometry and white matter microstructure. NeuroImage, 63(1), 365380. https://doi.org/10.1016/j.neuroimage.2012.06.038CrossRefGoogle ScholarPubMed
Hampshire, A., Zadel, A., Sandrone, S., Soreq, E., Fineberg, N., Bullmore, E. T., … Chamberlain, S. R. (2020). Inhibition-related cortical hypoconnectivity as a candidate vulnerability marker for obsessive-compulsive disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(2), 222230. doi: 10.1016/j.bpsc.2019.09.010Google ScholarPubMed
Hettwer, M. D., Larivière, S., Park, B. Y., van den Heuvel, O. A., Schmaal, L., Andreassen, O. A., … Valk, S. L. (2022). Coordinated cortical thickness alterations across six neurodevelopmental and psychiatric disorders. Nature Communications, 13(1), 6851. doi: 10.1038/s41467-022-34367-6CrossRefGoogle ScholarPubMed
Hou, J., Wu, W., Lin, Y., Wang, J., Zhou, D., Guo, J., … Li, H. (2012). Localization of cerebral functional deficits in patients with obsessive–compulsive disorder: A resting-state fMRI study. Journal of Affective Disorders, 138(3), 313321. https://doi.org/10.1016/j.jad.2012.01.022CrossRefGoogle ScholarPubMed
Hu, X., Zhang, L., Bu, X., Li, H., Gao, Y., Lu, L., … Gong, Q. (2020). White matter disruption in obsessive-compulsive disorder revealed by meta-analysis of tract-based spatial statistics. Depression and Anxiety, 37(7), 620631. doi: 10.1002/da.23008CrossRefGoogle ScholarPubMed
Insel, T. R. (2014). The NIMH research domain criteria (RDoC) project: Precision medicine for psychiatry. American Journal of Psychiatry, 171(4), 395397. doi: 10.1176/appi.ajp.2014.14020138CrossRefGoogle ScholarPubMed
Jacobs, G. R., Voineskos, A. N., Hawco, C., Stefanik, L., Forde, N. J., Dickie, E. W., … Ameis, S. H. (2021). Integration of brain and behavior measures for identification of data-driven groups cutting across children with ASD, ADHD, or OCD. Neuropsychopharmacology, 46(3), 643653. doi: 10.1038/s41386-020-00902-6CrossRefGoogle ScholarPubMed
Kashyap, R., Eng, G. K., Bhattacharjee, S., Gupta, B., Ho, R., Ho, C. S. H., … Chen, S. H. A. (2021). Individual-fMRI-approaches reveal cerebellum and visual communities to be functionally connected in obsessive compulsive disorder. Scientific Reports, 11(1), 1354. doi: 10.1038/s41598-020-80346-6CrossRefGoogle ScholarPubMed
Kaur, N. Dr, Garg, P. D. Dr, & Arora, R. Dr (2018). Psychiatric comorbidity in patients of OCD: How severe is anxiety and depression? International Journal of Innovative Research in Medical Science, 3(10), 22352242. doi: 10.23958/ijirms/vol03-i10/450CrossRefGoogle Scholar
Koch, K., Reeß, T. J., Rus, O. G., Zimmer, C., & Zaudig, M. (2014). Diffusion tensor imaging (DTI) studies in patients with obsessive-compulsive disorder (OCD): A review. Journal of Psychiatric Research, 54, 2635. doi: 10.1016/j.jpsychires.2014.03.006CrossRefGoogle ScholarPubMed
Kring, A. M., Smith, D. A., & Neale, J. M. (1994). Individual differences in dispositional expressiveness: Development and validation of the Emotional Expressivity sScale. Journal of Personality and Social Psychology, 66, 934949. US: American Psychological Association. doi: 10.1037/0022-3514.66.5.934CrossRefGoogle Scholar
Li, F., Huang, X., Tang, W., Yang, Y., Li, B., Kemp, G. J., … Gong, Q. (2014). Multivariate pattern analysis of DTI reveals differential white matter in individuals with obsessive-compulsive disorder. Human Brain Mapping, 35(6), 26432651. https://doi.org/10.1002/hbm.22357CrossRefGoogle ScholarPubMed
Llera, A., Wolfers, T., Mulders, P., & Beckmann, C. F. (2019). Inter-individual differences in human brain structure and morphology link to variation in demographics and behavior. ELife, 8, e44443. doi: 10.7554/eLife.44443CrossRefGoogle ScholarPubMed
Lochner, C., Fouché, J.-P., du Plessis, S., Spottiswoode, B., Seedat, S., Fineberg, N., … Stein, D. (2012). Evidence for fractional anisotropy and mean diffusivity white matter abnormalities in the internal capsule and cingulum in patients with obsessive–compulsive disorder. Journal of Psychiatry & Neuroscience, 37(3), 193199. doi: 10.1503/jpn.110059CrossRefGoogle ScholarPubMed
Marquand, A. F., Haak, K. V., & Beckmann, C. F. (2017). Functional corticostriatal connection topographies predict goal-directed behaviour in humans. Nature Human Behaviour, 1(8), 0146. doi: 10.1038/s41562-017-0146CrossRefGoogle ScholarPubMed
Menzies, L., Achard, S., Chamberlain, S. R., Fineberg, N., Chen, C.-H., del Campo, N., … Bullmore, E. (2007). Neurocognitive endophenotypes of obsessive-compulsive disorder. Brain, 130(12), 32233236. doi: 10.1093/brain/awm205CrossRefGoogle ScholarPubMed
Mišić, B., & Sporns, O. (2016). From regions to connections and networks: New bridges between brain and behavior. Current Opinion in Neurobiology, 40, 17. doi: 10.1016/j.conb.2016.05.003CrossRefGoogle ScholarPubMed
Niu, Q. H., Cheng, J. L., Song, X. Q., Yang, L., Chu, C. Y., Liu, H., … Li, Y. H. (2017). [Correlation between the clinical symptoms and the activation pattern of brain neurons in patients with obsessive-compulsive disorder]. Zhonghua Yi Xue Za Zhi, 97(17), 12901294. doi: 10.3760/cma.j.issn.0376-2491.2017.17.003Google ScholarPubMed
Obsessive Compulsive Cognitions Working Group (2005). Psychometric validation of the obsessive belief questionnaire and interpretation of intrusions inventory – Part 2: Factor analyses and testing of a brief version. Behaviour Research and Therapy, 43(11), 15271542. doi: 10.1016/j.brat.2004.07.010CrossRefGoogle Scholar
Park, H., Kim, M., Kwak, Y. B., Cho, K. I. K., Lee, J., Moon, S.-Y., … Kwon, J. S. (2022). Aberrant cortico-striatal white matter connectivity and associated subregional microstructure of the striatum in obsessive-compulsive disorder. Molecular Psychiatry, 27(8), 34603467. doi: 10.1038/s41380-022-01588-6CrossRefGoogle ScholarPubMed
Peng, Z., Yang, W., Miao, G., Jing, J., & Chan, R. C. (2011). The Chinese version of the Obsessive-Compulsive Inventory-Revised scale: Replication and extension to non-clinical and clinical individuals with OCD symptoms. BMC Psychiatry, 11(1), 129. doi: 10.1186/1471-244X-11-129CrossRefGoogle ScholarPubMed
Picó-Pérez, M., Moreira, P. S., de Melo Ferreira, V., Radua, J., Mataix-Cols, D., Sousa, N., … Morgado, P. (2020). Modality-specific overlaps in brain structure and function in obsessive-compulsive disorder: Multimodal meta-analysis of case-control MRI studies. Neuroscience & Biobehavioral Reviews, 112, 8394. https://doi.org/10.1016/j.neubiorev.2020.01.033CrossRefGoogle ScholarPubMed
Piras, F., Piras, F., Chiapponi, C., Girardi, P., Caltagirone, C., & Spalletta, G. (2015). Widespread structural brain changes in OCD: A systematic review of voxel-based morphometry studies. Cortex, 62, 89108. doi: 10.1016/j.cortex.2013.01.016CrossRefGoogle ScholarPubMed
Robbins, T. W., Gillan, C. M., Smith, D. G., de Wit, S., & Ersche, K. D. (2012). Neurocognitive endophenotypes of impulsivity and compulsivity: Towards dimensional psychiatry. Trends in Cognitive Sciences, 16(1), 8191. doi: 10.1016/j.tics.2011.11.009CrossRefGoogle ScholarPubMed
Robbins, T. W., Vaghi, M. M., & Banca, P. (2019). Obsessive-compulsive disorder: Puzzles and prospects. Neuron, 102(1), 2747. doi: 10.1016/j.neuron.2019.01.046CrossRefGoogle ScholarPubMed
Ruscio, A. M., Stein, D. J., Chiu, W. T., & Kessler, R. C. (2010). The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Molecular Psychiatry, 15(1), 5363. doi: 10.1038/mp.2008.94CrossRefGoogle ScholarPubMed
Saxena, S., Brody, A. L., Schwartz, J. M., & Baxter, L. R. (1998). Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. British Journal of Psychiatry, 173(S35), 2637. doi: 10.1192/S0007125000297870CrossRefGoogle Scholar
Sha, Z., Edmiston, E. K., Versace, A., Fournier, J. C., Graur, S., Greenberg, T., … Phillips, M. L. (2020). Functional disruption of cerebello-thalamo-cortical networks in obsessive-compulsive disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(4), 438447. doi: 10.1016/j.bpsc.2019.12.002Google ScholarPubMed
Sharma, E., Sharma, L. P., Balachander, S., Lin, B., Manohar, H., Khanna, P., … Stewart, S. E. (2021). Comorbidities in obsessive-compulsive disorder across the lifespan: A systematic review and meta-analysis. Frontiers in Psychiatry, 12, 703701. doi: 10.3389/fpsyt.2021.703701CrossRefGoogle ScholarPubMed
Sheehan, D. V, Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59(Suppl 2), 2233;quiz 34-57.Google ScholarPubMed
Shephard, E., Stern, E. R., van den Heuvel, O. A., Costa, D. L. C., Batistuzzo, M. C., Godoy, P. B. G., … Miguel, E. C. (2021). Toward a neurocircuit-based taxonomy to guide treatment of obsessive–compulsive disorder. Molecular Psychiatry, 26(9), 45834604. doi: 10.1038/s41380-020-01007-8CrossRefGoogle Scholar
Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., … Behrens, T. E. J. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4), 14871505. doi: 10.1016/j.neuroimage.2006.02.024CrossRefGoogle ScholarPubMed
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., … Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, S208S219. doi: 10.1016/j.neuroimage.2004.07.051CrossRefGoogle ScholarPubMed
Soares, J., Marques, P., Alves, V., & Sousa, N. (2013). A hitchhiker's guide to diffusion tensor imaging. Frontiers in Neuroscience, 7, 31. doi: 10.3389/fnins.2013.00031CrossRefGoogle ScholarPubMed
Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R., & Jacobs, G. A. (1983). State-Trait Anxiety Inventory for adults (Form Y). Mind Garden, Inc. doi: 10.1037/t06496-000CrossRefGoogle Scholar
Stein, D. J., Costa, D. L. C., Lochner, C., Miguel, E. C., Reddy, Y. C. J., Shavitt, R. G., … Simpson, H. B. (2019). Obsessive–compulsive disorder. Nature Reviews Disease Primers, 5(1), 52. doi: 10.1038/s41572-019-0102-3CrossRefGoogle ScholarPubMed
Vaghi, M. M., Moutoussis, M., Váša, F., Kievit, R. A., Hauser, T. U., Vértes, P. E., … Vanes, L. (2020). Compulsivity is linked to reduced adolescent development of goal-directed control and frontostriatal functional connectivity. Proceedings of the National Academy of Sciences, 117(41), 2591125922. doi: 10.1073/pnas.1922273117CrossRefGoogle ScholarPubMed
Vaghi, M. M., Vértes, P. E., Kitzbichler, M. G., Apergis-Schoute, A. M., van der Flier, F. E., Fineberg, N. A., … Robbins, T. W. (2017). Specific frontostriatal circuits for impaired cognitive flexibility and goal-directed planning in obsessive-compulsive disorder: Evidence from resting-state functional connectivity. Biological Psychiatry, 81(8), 708717. doi: 10.1016/j.biopsych.2016.08.009CrossRefGoogle ScholarPubMed
van den Heuvel, O. A., van Wingen, G., Soriano-Mas, C., Alonso, P., Chamberlain, S. R., Nakamae, T., … Veltman, D. J. (2016). Brain circuitry of compulsivity. European Neuropsychopharmacology, 26(5), 810827. doi: 10.1016/j.euroneuro.2015.12.005CrossRefGoogle ScholarPubMed
Voon, V., Derbyshire, K., Rück, C., Irvine, M. A., Worbe, Y., Enander, J., … Bullmore, E. T. (2015). Disorders of compulsivity: A common bias towards learning habits. Molecular Psychiatry, 20(3), 345352. doi: 10.1038/mp.2014.44CrossRefGoogle ScholarPubMed
Wang, J., Wei, Z., Wang, H., Jiang, Z., & Peng, Z. (2015). Psychometric properties of the Chinese version of the Obsessive Beliefs Questionnaire-44 (OBQ-44). BMC Psychiatry, 15(1), 188. doi: 10.1186/s12888-015-0579-6CrossRefGoogle ScholarPubMed
Woo, C.-W., Chang, L. J., Lindquist, M. A., & Wager, T. D. (2017). Building better biomarkers: Brain models in translational neuroimaging. Nature Neuroscience, 20, 365377.CrossRefGoogle ScholarPubMed
Wu, X., Yang, Q., Xu, C., Huo, H., Seger, C. A., Peng, Z., … Chen, Q. (2022a). Connectome-based predictive modeling of compulsion in obsessive–compulsive disorder. Cerebral Cortex, 145, 1412–1425. doi: 10.1093/cercor/bhac145Google Scholar
Wu, X., Yu, G., Zhang, K., Feng, J., Zhang, J., Sahakian, B. J., & Robbins, T. W. (2022b). Symptom-based profiling and multimodal neuroimaging of a large preteenage population identifies distinct obsessive-compulsive disorder–like subtypes with neurocognitive differences. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 7(11), 10781089. https://doi.org/10.1016/j.bpsc.2021.06.011Google ScholarPubMed
Xia, J., Fan, J., Du, H., Liu, W., Li, S., Zhu, J., … Zhu, X. (2019). Abnormal spontaneous neural activity in the medial prefrontal cortex and right superior temporal gyrus correlates with anhedonia severity in obsessive-compulsive disorder. Journal of Affective Disorders, 259, 4755. doi: 10.1016/j.jad.2019.08.019CrossRefGoogle ScholarPubMed
Xu, C., Hou, G., He, T., Ruan, Z., Chen, J., Wei, Z., … Peng, Z. (2022). Imbalance in functional and structural connectivity underlying goal-directed and habitual learning systems in obsessive-compulsive disorder. Cerebral Cortex, 32(17), 36903705. doi: 10.1093/cercor/bhab441CrossRefGoogle ScholarPubMed
Yan, C.-G., Wang, X.-D., Zuo, X.-N., & Zang, Y.-F. (2016). DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339351. doi: 10.1007/s12021-016-9299-4CrossRefGoogle ScholarPubMed
Yang, X., Luo, J., Zhong, Z., Yang, X., Yao, S., Wang, P., … Li, Z. (2019). Abnormal regional homogeneity in patients with obsessive-compulsive disorder and their unaffected siblings: A resting-state fMRI study. Frontiers in Psychiatry, 10, 452. doi: 10.3389/fpsyt.2019.00452CrossRefGoogle ScholarPubMed
Yang, X.-Y., Sun, J., Luo, J., Zhong, Z.-X., Li, P., Yao, S.-M., … Li, Z.-J. (2015). Regional homogeneity of spontaneous brain activity in adult patients with obsessive–compulsive disorder before and after cognitive behavioural therapy. Journal of Affective Disorders, 188, 243251. doi: 10.1016/j.jad.2015.07.048CrossRefGoogle ScholarPubMed
Zang, Y., He, Y., Zhu, C., Cao, Q., Sui, M., Liang, M., … Wang, Y. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain & Development, 29(2), 8391. doi: 10.1016/j.braindev.2006.07.002Google ScholarPubMed
Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. NeuroImage, 22(1), 394400. doi: 10.1016/j.neuroimage.2003.12.030CrossRefGoogle ScholarPubMed
Zhang, H., Wang, B., Li, K., Wang, X., Li, X., Zhu, J., … Zhang, H. (2019a). Altered functional connectivity between the cerebellum and the cortico-striato-thalamo-cortical circuit in obsessive-compulsive disorder. Frontiers in Psychiatry, 10, 522. doi: 10.3389/fpsyt.2019.00522CrossRefGoogle ScholarPubMed
Zhang, L., Hu, X., Li, H., Lu, L., Li, B., Hu, X., … Huang, X. (2019b). Characteristic alteration of subcortical nuclei shape in medication-free patients with obsessive-compulsive disorder. NeuroImage: Clinical, 24, 102040. https://doi.org/10.1016/j.nicl.2019.102040CrossRefGoogle ScholarPubMed
Zhang, Z., Fan, Q., Zhu, Y., Tan, L., Chen, Y., Gao, R., … Xiao, Z. (2017). Intrinsic functional connectivity alteration of dorsal and rostral anterior cingulate cortex in obsessive-compulsive disorder: A resting fMRI study. Neuroscience Letters, 654, 8692. doi: 10.1016/j.neulet.2017.06.026CrossRefGoogle ScholarPubMed
Zhou, C., Xu, J., Ping, L., Zhang, F., Chen, W., Shen, Z., … Cheng, Y. (2018). Cortical thickness and white matter integrity abnormalities in obsessive–compulsive disorder: A combined multimodal surface-based morphometry and tract-based spatial statistics study. Depression and Anxiety, 35(8), 742751. https://doi.org/10.1002/da.22758CrossRefGoogle ScholarPubMed
Zhu, C., Fu, Z., Chen, L., Yu, F., Zhang, J., Zhang, Y., … Wang, K. (2022). Multi-modality connectome-based predictive modeling of individualized compulsions in obsessive-compulsive disorder. Journal of Affective Disorders, 311, 595603. https://doi.org/10.1016/j.jad.2022.05.120CrossRefGoogle ScholarPubMed
Zou, Q., Zhu, C., Yang, Y., Zuo, X., Long, X., Cao, Q., … Zang, Y. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. Journal of Neuroscience Methods, 172(1), 137141. doi: 10.1016/j.jneumeth.2008.04.012CrossRefGoogle ScholarPubMed
Supplementary material: File

Xu et al. supplementary material

Xu et al. supplementary material
Download Xu et al. supplementary material(File)
File 14.8 MB