Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-08T22:39:00.318Z Has data issue: false hasContentIssue false

A NOTE: RADIOCARBON DATA COMPARISON OF SMALL GASEOUS SAMPLES MEASURED BY TWO MICADAS AT ETH ZURICH AND OCEAN UNIVERSITY OF CHINA

Published online by Cambridge University Press:  23 December 2022

M Chu
Affiliation:
Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
R Bao*
Affiliation:
Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China Department of Earth Sciences, Geological Institute, ETH Zurich, Zurich, Switzerland
*
*Corresponding author. Email: baorui@ouc.edu.cn

Abstract

A MIni CArbon DAting System (MICADAS) has been recently installed at the Ocean University of China (OUC) mainly for determining the radiocarbon (14C) ages for marine sedimentary organic carbon. In this study, we compared the data from a series of CO2 samples measured independently by the MICADAS at OUC and ETH Zurich to assess whether the data from the OUC MICADAS meet our requirement for carbon cycle research. The measured samples covered a range of 14C ages from 1229 to 12,287 yr, and size from 5 to 162 µg C. The data from the two instruments showed a good linear relationship with only small 14C age offsets, meeting our research demands such as carbon source apportionment. Lastly, we propose that for MICADAS clients, such a cross-lab comparison of the size- and age-dependency of MICADAS using age-known samples is important for 14C data integration.

Type
Case Study
Copyright
© The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aerts-Bijma, AT, Paul, D, Dee, MW, Palstra, SWL, Meijer, HAJ. 2021. An independent assessment of uncertainty for radiocarbon analysis with the new generation high-yield accelerator mass spectrometers. Radiocarbon 63(1):122.CrossRefGoogle Scholar
Bao, R, McNichol, AP, McIntyre, CP, Xu, L, Eglinton, TI. 2018a. Dimensions of radiocarbon variability within sedimentary organic matter. Radiocarbon 60(3):775790.CrossRefGoogle Scholar
Bao, R, Strasser, M, McNichol, AP, Haghipour, N, McIntyre, C, Wefer, G, Eglinton, TI. 2018b. Tectonically-triggered sediment and carbon export to the Hadal zone. Nature Communications 9(1): 18.CrossRefGoogle Scholar
Bard, E, Tuna, T, Fagault, Y, Bonvalot, L, Wacker, L, Fahrni, S, Synal, HA. 2015. AixMICADAS, the accelerator mass spectrometer dedicated to 14C recently installed in Aix-en-Provence, France, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 361:8086.CrossRefGoogle Scholar
Cersoy, S, Zazzo, A, Rofes, J, Tresset, A, Zirah, S, Gauthier, C, Kaltnecker, E, Thil, F, Tisnerat-Laborde, N. 2017. Radiocarbon dating minute amounts of bone (3–60 mg) with ECHoMICADAS. Scientific Report 7:18.Google ScholarPubMed
Eglinton, TI, Galy, V, Hemingway, JD, Feng, X, Bao, H, Blattmann, TM, Dickens, AF, Gies, H, Giosan, L, Haghipour, N, Hou, P, Lupker, M, McIntyre, CP, Montluçon, DB, Peucker-Ehrenbrink, B, Ponton, C, Schefuß, E, Schwab, MS, Vos, BM, Wacker, L, Wu, Y, Zhao, M. 2021. Climate control on terrestrial biospheric carbon turnover. Proceedings of the National Academy of Sciences 118: e2011585118.Google ScholarPubMed
Fahrni, SM, Wacker, L, Synal, HA, Szidat, S. 2013. Improving a gas ion source for 14C AMS. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 294:320327.CrossRefGoogle Scholar
Gottschalk, J, Szidat, S, Michel, E, Mazaud, A, Salazar, G, Battaglia, M, Lippold, J, Jaccard, S. 2018. Radiocarbon measurements of small-size foraminiferal samples with the mini carbon dating system (MICADAS) at the University of Bern: Implications for paleoclimate reconstructions. Radiocarbon 60: 469491.CrossRefGoogle Scholar
Haghipour, N, Ausin, B, Usman, MO, Ishikawa, N, Wacker, L, Welte, C, Ueda, K, Eglinton, TI. 2019. Compound-specific radiocarbon analysis by elemental analyzer–accelerator mass spectrometry: precision and limitations. Analytical Chemistry 91: 20422049.CrossRefGoogle ScholarPubMed
Lindauer, S, Friedrich, R, van Gyseghem, R, Schöne, BR, Hinderer, M. 2019. Highly-resolved radiocarbon measurements on shells from Kalba, UAE, using carbonate handling system and gas ion source with MICADAS. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 455:146153.CrossRefGoogle Scholar
Mollenhauer, G, Montluçon, D, Eglinton, TI. 2005. Radiocarbon dating of alkenones from marine sediments: II. Assessment of carbon process blanks. Radiocarbon 47(3):413424.CrossRefGoogle Scholar
Molnár, M, Mészáros, M, Janovics, R, Major, I, Hubay, K, Buró, B, Varga, T, Kertész, T, Gergely, V, Vas, Á, Orsovszki, G, Molnár, A, Veres, M, Seiler, M, Wacker, L, Jull, AJT. 2021. Gas ion source performance of the EnvironMICADAS at HEKAL Laboratory, Debrecen, Hungary. Radiocarbon 63(2):499511.CrossRefGoogle Scholar
Quarta, G, Molnár, M, Hajdas, I, Calcagnile, L, Major, I, Jull, AJT. 2021. 14C intercomparison exercise on bones and ivory samples: Implications for forensics. Radiocarbon 63(2): 533544.CrossRefGoogle Scholar
Ruff, M, Fahrni, S, Gäggeler, HW, Hajdas, I, Suter, M, Synal, HA, Szidat, S, Wacker, L. 2010a. On-line radiocarbon measurements of small samples using elemental analyzer and MICADAS gas iron source. Radiocarbon 52(4):16451656.CrossRefGoogle Scholar
Ruff, M, Szidat, S, Gäggeler, HW, Suter, M, Synal, HA, Wacker, L. 2010b. Gaseous radiocarbon measurements of small samples. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268:790794.CrossRefGoogle Scholar
Salehpour, M, Håkansson, K, Possnert, G, Wacker, L, Synal, HA. 2016. Performance report for the low energy compact radiocarbon accelerator mass spectrometer at Uppsala University. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 371:360364.CrossRefGoogle Scholar
Schulze-König, T, Dueker, SR, Giacomo, J, Suter, M, Vogel, JS, Synal, HA. 2010. BioMICADAS: Compact next generation AMS system for pharmaceutical science. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268:891894.CrossRefGoogle Scholar
Synal, HA, Stocker, M, Suter, M. 2007. MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259:713.CrossRefGoogle Scholar
Tuna, T, Fagault, Y, Bonvalot, L, Capano, M, Bard, E. 2018. Development of small CO2 gas measurements with AixMICADAS. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 437:9397.CrossRefGoogle Scholar
Wacker, L, Fülöp, RH, Hajdas, I, Molnár, M, Rethemeyer, J. 2013. A novel approach to process carbonate samples for radiocarbon measurements with helium carrier gas, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 294:214217.CrossRefGoogle Scholar