Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T04:56:49.362Z Has data issue: false hasContentIssue false

TEMPERATE FOREST INSECT OUTBREAKS, TROPICAL DEFORESTATION AND MIGRATORY BIRDS

Published online by Cambridge University Press:  31 May 2012

C.S. Holling*
Affiliation:
Resource Ecology, University of British Columbia, 2204 Main Mall, Vancouver, British Columbia,Canada V6T 1W5
Get access

Abstract

Ecosystems that are managed for resource production are under continual structural change. Changes imposed by local management aggregate to produce regional patterns and new regionwide responses. Anthropogenic influences on hemispheric and global processes add another level of change. The result is a bewildering variety of real or anticipated changes unique to experience. For example, in the spruce/fir and budworm interaction of eastern North America, a syndrome of causes affects the vulnerability of renewable resources, and the triggers of change can never be predicted. Yet, it is possible to identify key features that affect resilience of ecosystems and robustness of regulation and to reject other possibilities. This approach provides a way to assign priorities for research and for contingency planning to adapt to change.

Résumé

Les écosystèmes aménagés en fonction de la production de ressources sont l'objet de constants changements structuraux. L'aménagement local impose des changements régionaux caractéristiques, tout en suscitant de nouvelles réponses régionales. L'influence humaine sur les méchanismes oeuvrant à l'échelle planétaire ajoute une nouvelle dimension à ces changements. Le tout résulte en une étonnante diversité de changements réels ou potentiels. L'utilisation du système sapin/épinette et tordeuse des bourgeons dans l'est de l'Amérique du Nord démontre qu'une approche causale influence la vulnérabilité des ressources renouvelables, et que les méchanismes déclencheurs de changements ne peuvent être prédits. Il est cependant possible d'identifier les facteurs-clés qui affectent la résilience et la robustesse des méchanismes régissant les écosystèmes et de rejeter différentes alternatives. Cette approche peut être utilisée pour déterminer les priorités de recherche et élaborer des plans de contingence, de façon à évaluer les capacités d'adaptation au changement des écosystèmes.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carleson, C.E., Campbell, R.W., Theroux, L.J., and Egan, T.H.. 1984. Ants and birds reduce western spruce budworm feeding injury to small Douglas Fir and Western Larch in Montana. For. Ecol. Manage. 9: 185192.Google Scholar
Clark, W.C. 1986. Sustainable development of the biosphere: themes for a research program, pp. 548, chapter 1 in Clark, W.C., and Munn, R.E. (Eds.), Sustainable Development of the Biosphere. Cambridge Univ. Press, Cambridge, U.K.Google Scholar
Clark, W.C., Jones, D.D., and Holling, C.S.. 1979. Lessons for ecological policy design: a case study of eco-system management. Ecol. Model. 7: 153.Google Scholar
Dowden, P.B., Jaynes, H.A., and Carolin, V.M.. 1953. The role of birds in a spruce budworm outbreak in Maine. J. econ. Ent. 46: 307312.Google Scholar
Fujii, K., Holling, C.S., and Mace, P.M.. 1986. A simple model of attack by predators and parasites. Ecol Res. 1: 141156.Google Scholar
Gage, S.H. 1968. Consumption by adult birds of the spruce budworm at different larval densities. For. Res. Lab., Maritime Region Internal Rep., M-36. 5 pp.Google Scholar
Greenbank, D.O., Schaefer, G.W., and Rainey, R.C.. 1980. Spruce budworm moth flight and dispersal: new understanding from canopy observations, radar and aircraft. Mem. ent. Soc. Can. 110: 149.Google Scholar
Griffiths, K.J., and Holling, C.S.. 1969. A competition submodel for parasites and predators. Can. Ent. 101: 785818.Google Scholar
Hall, George A. 1984. Population decline of neotropical migrants in an Appalachian forest. Am. Birds 38: 1418.Google Scholar
Holling, C.S. 1963. An experimental component analysis of population processes. Mem. ent. Soc. Can. 32: 2232.Google Scholar
Holling, C.S. 1986. The resilience of terrestrial ecosystems; local surprise and global change, pp. 292317, chapter 10 in Clark, W.C., and Munn, R.E. (Eds.), Sustainable Development of the Biosphere. Cambridge Univ. Press, Cambridge, U.K.Google Scholar
Holling, C.S., and Buckingham, S.. 1976. A behavioral model of predator–prey functional responses. Behav Sci. 3: 183195.Google Scholar
Jennings, D.T., and Crawford, H.S.. 1985. Predators of the spruce budworm. USDA Forest Service, Agriculture Handbook 644. 77 pp.Google Scholar
Jones, D.D. 1979. The budworm side model, pp. 91156in Norton, G.A., and Holling, C.S. (Eds.), Proceedings of a Conference on Pest Management, CP-77-6, International Institute for Applied Systems Analysis.Google Scholar
Lovejoy, T.E. 1983. Tropical deforestation and North American birds. Bird. Conserv. 1: 126128.Google Scholar
Lovejoy, T.E., Bierregaard, R.O. Jr., Rylands, A.B., Malcolm, J.R., Wuintela, C.E., Harper, L.H., Brown, K.S. Jr., Powell, A.H., Powell, G.V.N., Schubert, H.O.R., and Hays, W.B.. 1986. Edge and other effects of isolation on Amazon forest fragments, in Soulé, Michael E. (Ed.), Conservation Biology. Sinauer Associates, Inc., Sunderland, Massachusetts.Google Scholar
Ludwig, D., Jones, D.D., and Holling, C.S.. 1978. Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Ecol. 33: 315332.Google Scholar
McNamee, P.J., McLeod, J.M., and Holling, C.S.. 1981. The structure and behavior of defoliating insect/forest systems. Res. Popul. Ecol. (Kyoto) 23: 280298.Google Scholar
Mitchell, R.T. 1952. Consumption of spruce budworm by birds in a Maine spruce fir forest. J. For. 50: 387389.Google Scholar
Mook, L.J. 1963. Birds and the spruce budworm. pp. 268271in Morris, E.F. (Ed.), The Dynamics of Epidemic Spruce Budworm Populations. Mem. ent. Soc. Can. 31.Google Scholar
Mook, L.J., and Marshall, H.G.W.. 1965. Digestion of spruce budworm larvae and pupae in the olive-backed thrush, Hylocichla ustulata swainsoni (Tschundi). Can. Ent. 97: 11441149.Google Scholar
Morris, R.F. (Ed.). 1963. The dynamics of epidemic spruce budworm populations. Mem. ent. Soc. Can. 31. 332 pp.Google Scholar
Morris, R.F., Cheshire, W.F., Miller, C.A., and Mott, D.G.. 1958. The numerical response of avian and mammalian predators during a gradation of the spruce budworm. Ecology 39(3): 487494.Google Scholar
Wellington, W.G. 1954. Weather and climate in forest entomology. Recent Studies in Biometeorology. Meteorol. Monogr. 2: 1118.Google Scholar
Wellington, W.G. 1980. Dispersal and population change, pp. 1124in Berryman, A.A., and Safranyik, L. (Eds.), Dispersal of Forest Insects: Evaluation, Theory and Management Implications. Washington State Univ., Cooperative Extension Service, Pullman.Google Scholar
Wellington, W.G. 1983. Biometeorology of dispersal. Bull. ent. Soc. Am. 29: 2429.Google Scholar
Wellington, W.G., Fettes, J.J., Turner, K.B., and Belyea, R.M.. 1950. Physical and biological indicators of the development of outbreaks of the spruce budworm. Can. J. Res. Sect. D Zool. Sci. 28: 308331.Google Scholar
Wellington, W.G., and Trimble, R.M.. 1984. Weather. Chapter 13 in Huffaker, C.B., and Rabb, R.L. (Eds.), Ecological Entomology. John Wiley, New York.Google Scholar
Wilcove, David S., and Terborgh, John W.. 1984. Patterns of population decline in birds. Am. Birds 38: 1013.Google Scholar