Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T20:46:54.478Z Has data issue: false hasContentIssue false

Advances in Coating Design for High-Performance Gas Turbines

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Surface engineering is now a key materials technology in the design of future advanced gas-turbine engines. This article focuses on coating systems for hot-gas-path components, which can vary from low-cost aluminide diffusion coatings to the more exotic, and therefore expensive, thermal-barrier coatings. Available coating systems and their relative benefits are reviewed in terms of performance against manufacturing complexity and cost. Future trends in the design of environmental- and thermal-protection coatings are discussed, including the addition of multiple reactive elements, modified aluminide coatings, diffusion-barrier concepts, the design of “smart” corrosion-resistant coatings, and the development of structurally modified, low-thermal-conductivity thermal-barrier coatings.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rickerby, D.S. and Low, H.C., in Proc. 4th European Propulsion Forum (Royal Aeronautical Society, London, 1993) paper No. 12.Google Scholar
2.Coatings for High Temperature Structural Materials, National Materials Advisory Board Report (National Academy Press, Washington, DC, 1996).Google Scholar
3.Lehnert, G. and Meinhardt, H., Surf. Treat. 1 (1972) p. 72.Google Scholar
4.Stringer, J. and Viswanathan, R., in Proc. of ASM 1993 Materials Congress, Materials Week '93 (ASM International, Materials Park, OH, 1993) p. 1.Google Scholar
5.Rickerby, D.S., in Proc. Turbine Forum (Nice, France, 2002).Google Scholar
6.Nicholls, J.R. and Rickerby, D.S., in Proc. 3rd Int. Conf. on Recent Advances in Materials, Minerals and the Environment (RAMM 2003), Penang, Malaya (2003).Google Scholar
7.Driver, D., Hall, D.W., and Meetham, G.W., in The Development of the Gas Turbine Engine (Applied Science Publishers, London, 1981).Google Scholar
8.Goward, G.W. and Boone, D.H., Oxid. Met. 3 (1971) p. 475.Google Scholar
9.Goward, G.W. and Cannon, L.W., “Pack Cementation Coatings for Superalloys, History, Theory and Practice,” ASME paper 87-GT-50 (American Society of Mechanical Engineers, New York, 1988).CrossRefGoogle Scholar
10.Goward, G.W., Surf. Coat. Technol. 108–109 (1998) p. 73.Google Scholar
11.Nicholls, J.R., JOM 52 (2000) p. 28.CrossRefGoogle Scholar
12.Talboom, F.T., Elam, R.C., and Wilson, L.W., Evaluation of Advanced Superalloy Protection Systems, Report CR7813 (National Aeronautics and Space Administration, Houston, TX, 1970).Google Scholar
13.Gupta, D.K. and Duvall, D.S., “Coatings for Single Crystal Superalloys” (The Minerals, Metals and Materials Society, Warrendale, PA, 1984).Google Scholar
14.Liebert, C.H. et al., Durability of Zirconia Thermal Barrier Coatings on Air Cooled Turbine Blades in Cyclic Jet Engine Operation, Report TMX-3410 (National Aeronautics and Space Administration, Washington, DC, 1976).Google Scholar
15.Miller, R.A., Surf. Coat. Technol. 30 (1987) p. 1.CrossRefGoogle Scholar
16.Soechting, F.O., in Workshop on Thermal Barrier Coatings, Report CP-3312 (National Aeronautics and Space Administration Lewis Research Center, Cleveland, OH, 1995) p. 3.Google Scholar
17.Kofstad, P., High Temperature Corrosion (Elsevier Applied Science, London, 1988).Google Scholar
18.Birks, N. and Meier, G.H., Introduction to the High Temperature Oxidation of Metals (Edward Arnold, London, 1983).Google Scholar
19.Kubaschewski, O. and Hopkins, B.E., Oxidation of Metals and Alloys (Butterworths, London, 1967).Google Scholar
20.Hauffe, K., Oxidation of Metals (Plenum Publishers, New York, 1966).Google Scholar
21.Rapp, R.A. and Goto, K.S., in The Hot Corrosion of Metals by Molten Salts, edited by Braunstein, J. et al. (The Electrochemical Society, Pennington, NJ, 1981) p. 81.Google Scholar
22.Grobstein, T. and Doychak, J., eds., Oxidation of High Temperature Intermetallics (The Minerals, Metals and Materials Society, Warrendale, PA, 1988).Google Scholar
23.Evans, U.R., The Corrosion and Oxidation of Metals (Matthew Arnold, London, 1960).Google Scholar
24.Giggins, C.S. and Pettit, F.S., Hot Corrosion Degradation of Metals and Alloys: A Unified Theory, PWA Report FR-11545 (1979).Google Scholar
25.Levin, S.R. and Caves, R.M., J. Electrochem. Soc. 120 (1973) p. C232.Google Scholar
26.Pint, B.A., Mater. Sci. Forum 251–254 (1997) p. 397.Google Scholar
27.Czech, N., Schmitz, F., and Stamm, W., Surf. Coat. Technol. 68–69 (1994) p. 17.Google Scholar
28.Nicholls, J.R., Simms, N.J., Chan, W.Y., and Evans, H.E., Surf. Coat. Technol. 149 (2002) p. 236.CrossRefGoogle Scholar
29.Peichl, L. and Bettridge, D.F., in Proc. Conf. on Materials for Advanced Power Engineering 1994, Part 1 (1994) p. 717.Google Scholar
30.Bacos, M.P., Girard, B., Josso, P., and Rio, C., in Materials for Advanced Power Engineering 2002, Part 1, edited by Lecomte-Beckers, J., Carton, M., Schubert, F., and Ennis, P.J. (Forschungszentrum Jülich, Jülich, Germany, 2002) p. 429.Google Scholar
31.Grisaffe, S.J., in Thermal Barrier Coatings, Report TMX-78848 (National Aeronautics and Space Administration, Washington, DC, 1978).Google Scholar
32.Meier, S.M. and Gupta, D.K., J. Eng. Gas Turbine Power 116 (1994) p. 250.CrossRefGoogle Scholar
33.Bose, S. and Demasi-Marcin, J., in Workshop on Thermal Barrier Coatings, Report CP-3312 (National Aeronautics and Space Administration Lewis Research Center, Cleveland, OH, 1995) p. 63.Google Scholar
34.Thermal Barrier Coatings, AGARD Report 823 (1998).Google Scholar
35.Sully, A.H. and Brandes, E.A., Chromium, 2nd ed., Chapter 7 (Butterworths, London, 1967).Google Scholar
36.Felix, P. and Erdos, E., Werkstoffe u. Korros. 23 (1972) p. 626.Google Scholar
37.Fitzer, F. and Schlichting, J., in Proc. Conf. on High Temperature Corrosion, NACE-6 (NACE International—The Corrosion Society, Houston, TX, 1984) p. 604.Google Scholar
38.Davis, F.N. and Grinell, C.E., ASME Publication 82-GT-244 (American Society of Mechanical Engineers, New York, 1982).Google Scholar
39.Van Roode, M. and Hsu, L., Surf. Coat. Technol. 37 (1989) p. 461.Google Scholar
40.Berry, D., Meelu, M.C., McMondie, B.G., and Kircherin, T.A., ASME Publication 95-GT-359 (American Society of Mechanical Engineers, New York, 1995).Google Scholar
41.Stringer, J. and Viswanathan, R., in Advanced Materials and Coatings for Combustion Turbines, edited by Swaninathan, V.P. and Cheruvu, N.S. (ASM International, Materials Park, OH, 1994) p. 6.Google Scholar
42.Mevrel, R., Duret, C., and Pichoir, R., Mater. Sci. Technol. 2 (1986) p. 201.CrossRefGoogle Scholar
43.Nicholls, J.R. and Hancock, P., Ind. Corros. 5 (4) (1987) p. 8.Google Scholar
44.Bianco, R. and Rapp, R.A., J. Electrochem. Soc. 140 (4) (1993) p. 1181.CrossRefGoogle Scholar
45.Duret, C., Davin, A., Marrijnissen, G., and Pichoir, R., in Proc. Conf. on High Temperature Alloys for Gas Turbines, edited by Brunetaud, R. et al. (D. Reidel, Dordrecht, 1982) p. 53.Google Scholar
46.Goward, G.W., in Conf. Proc. on High Temperature Corrosion, NACE-6, edited by Rapp, R.A. (NACE International—The Corrosion Society, Houston, TX, 1983) p. 553.Google Scholar
47.Pint, B.A., Oxid. Met. 48 (1997) p. 303.CrossRefGoogle Scholar
48.Zhang, Y., Haynes, J., Lee, W.Y., Wright, I.G., Pint, B.A., Cooley, K.M., and Laiw, P.K., Metall. Mater. Trans. A 32A (2001) p. 1727.CrossRefGoogle Scholar
49.deWit, J.H.W. and Van Manen, P.A., Mater. Sci. Forum 154 (1994) p. 109.CrossRefGoogle Scholar
50.Dickey, E.C., Pint, B.A., Alexander, K.B., and Wright, I.G., in High Temperature Surface Engineering, edited by Nicholls, J.R. and Rickerby, D.S. (IOM Communications, London, 2000) p. 115.Google Scholar
51.Fisher, G., Datta, P.K., Burnell-Gray, J.S., Chan, W.Y., and Wing, R., in High Temperature Surface Engineering, edited by Nicholls, J.R. and Rickerby, D.S. (IOM Communications, London, 2000) p. 1.Google Scholar
52.Pint, B.A., Wright, I.G., Lee, W.Y., Zhang, Y., Prüssner, K., and Alexander, K.B., Mater. Sci. Eng., A A245 (1998) p. 201.Google Scholar
53.Meier, G.H. and Pettit, F.S., Surf. Coat. Technol. 39/40 (1989) p. 1.CrossRefGoogle Scholar
54.Tawancy, H.M., Abbas, N.M., and Rhys, T.N. Jones, Surf. Coat. Technol. 54/55 (1992) p. 1.Google Scholar
55.Tawancy, H.M., Sridhar, N., Abbas, N.M., and Rickerby, D.S., Scripta Metall. Mater. 33 (1995) p. 1431.Google Scholar
56.Angenete, J. and Stiller, K., Mater. High Temp. 17 (2000) p. 179.CrossRefGoogle Scholar
57.Angenete, J. and Stiller, K., Surf. Coat. Technol. 150 (2002) p. 107.CrossRefGoogle Scholar
58.Tolpygo, V.K., Clarke, D.R., and Murphy, K., Metall. Mater. Trans A 32A (2001) p. 1467.Google Scholar
59.Tolpygo, V.K. and Clarke, D.R., Mater. High Temp. 17 (2000) p. 59.Google Scholar
60.Tolpygo, V.K., Clarke, D.R., and Murphy, K.S., Surf. Coat. Technol. 146–147 (2001) p. 124.Google Scholar
61.Felten, E.J., Oxid. Met. 10 (1976) p. 23.Google Scholar
62.Felten, E.J. and Pettit, F.S., Oxid. Met. 10 (1976) p. 189.CrossRefGoogle Scholar
63.Fountain, J.G., Golightly, F.A., Stott, F.S., and Wood, G.C., Oxid. Met. 10 (1976) p. 341.Google Scholar
64.Allam, I.M., Akuezlte, H.C., and Whittle, D.P., Oxid. Met. 14 (1980) p. 517.CrossRefGoogle Scholar
65.Vogel, D., Newman, L., Deb, P., and Boone, D.H., Mater. Sci. Eng. 88 (1987) p. 227.CrossRefGoogle Scholar
66.Streiff, R. and Boone, D., J. Mater. Eng. 10 (1988) p. 15.Google Scholar
67.Malik, M., Morbioli, R., and Huber, P., in Proc. Conf. on High Temperature Alloys for Gas Turbines, edited by Brunetaud, R. et al. (D. Reidel, Dordrecht, 1982) p. 87.Google Scholar
68.Nicholls, J.R., Stephenson, D.J., Hancock, P., Wood, M.I., and Restall, J.E., in Proc. Workshop on Gas Turbine Materials in a Marine Environment (1984) paper 7.Google Scholar
69.Nicholls, J.R. and Saunders, S.R.J., in High Temperature Materials for Power Engineering, edited by Bachelet, E. et al. (Kluwer Academic Publishers, Dordrecht, 1990) p. 865.Google Scholar
70.Mom, A.J.A., NLR Report MP 81003U (Amsterdam, 1981).Google Scholar
71.Novak, R.C., cited in Coatings for High Temperature Structural Materials, National Materials Advisory Board Report (National Academy Press, Washington, DC, 1996).Google Scholar
72.Luthra, K.L. and LeBlanc, O.H., Mater. Sci. Eng. 88 (1987) p. 329.Google Scholar
73.McMordie, B.G. and Weatherill, A., in Proc. Turbine Forum (Nice, France, 2002).Google Scholar
74.Meelu, M.C., McMordie, B.G., Loretto, M.H., and Jones, A., Processing and Properties of Materials (1992) p. 1250.Google Scholar
75.Prater, J.T., Patten, J.W., Hayes, D.D., and Moss, R.W., in Proc. 2nd Conf. on Advanced Materials for Alternative Fuel-Capable Heat Engines, Report No. 2639SR, 7/29–7/43, edited by Fairbanks, J.W. and Stringer, J. (Electric Power Research Institute, Palo Alto, CA, 1981).Google Scholar
76.Goebel, J.A., Giggins, C.S., Krasij, M., and Stringer, J., in Proc. 2nd Conf. on Advanced Materials for Alternative Fuel-Capable Heat Engines, Report No. 2639SR, 7/1, edited by Fairbanks, J.W. and Stringer, J. (Electric Power Research Institute, Palo Alto, CA, 1981).Google Scholar
77.Forster, J., Cameron, B.P., and Carews, J.A., Trans. Inst. Metal Finish 63 (1985) p. 115.Google Scholar
78.Bornstein, N.S. and Smeggil, J., in Corrosion of Metals Processed by Directed Energy Beams (The Metals, Minerals and Materials Society, Warrendale, PA, 1982) p. 147.Google Scholar
79.Coupland, D.R., Hall, C.W., and Mc, I.R.Gill, Platinum Met. Rev. 26 (4) (1982) p. 146.Google Scholar
80.Wolff, I.M., Iorio, L.E., Rumpt, T., Scheers, P.V.T., and Potgieter, J.H., Mater. Sci. Eng., A A241 (1998) p. 264.CrossRefGoogle Scholar
81.Juarez, F., Monceau, D., Tetard, D., Pieraggi, B., and Vahlas, C., Surf. Coat. Technol. 163 (2003) p. 44.CrossRefGoogle Scholar
82.Czech, N. and Stamm, W., in High Temperature Surface Engineering, edited by Nicholls, J.R. and Rickerby, D.S. (IOM Communications, London, 2000) p. 61.Google Scholar
83.Taylor, T.A., Overs, M.P., Gill, B.J., and Tucker, R.C., J. Vac. Sci. Technol., A 3 (1985) p. 2526.Google Scholar
84.Herman, H., Powder Sci. Technol. 9 (1991) p. 187.Google Scholar
85.Kaufol, R.W., Rotolico, A.J., Nerz, J., and Kushner, B.A., in Thermal Spray Research and Applications, edited by Bernecki, T.F. (ASM International, Materials Park, OH, 1990) p. 561.Google Scholar
86.Russo, L. and Dorfman, M., in Proc. Int. Thermal Spray Conf., edited by Ohmori, A. (High Temperature Society of Japan) p. 1179.Google Scholar
87.Lugscheider, E., Herbst, C., and Zhao, L., in High Temperature Surface Engineering, edited by Nicholls, J.R. and Rickerby, D.S. (IOM Communications, London, 2000) p. 67.Google Scholar
88.Kedward, E.C., Metallurgia 79 (1969) p. 225.Google Scholar
89.Honey, F.J., Kedward, E.C., and Wride, V., J. Vac. Sci. Technol., A 4 (1986) p. 2593.CrossRefGoogle Scholar
90.Restall, J.E. and Hayman, C., in Proc. Workshop on Coatings for Heat Engines, edited by Clarke, R.L. et al. (U.S. Department of Energy, Washington, DC, 1984) p. 347.Google Scholar
91.Chan, K.S., Cheruvu, N.S., and Leverant, G.R., Mater. Sci. Forum 369–372 (2001) p. 623.Google Scholar
92.Warnes, B.M., Surf. Coat. Technol. 163–164 (2003) p. 106.CrossRefGoogle Scholar
93.Swadzba, L., Saunders, S.R.J., Hetmanczyk, M., and Mendala, B., in Materials for Advanced Power Engineering (Forschungszentrum Jülich, Jülich, Germany, 2002).Google Scholar
94.Nicholls, J.R. and Wing, R., in Materials for Advanced Power Engineering 2002, Part 1, edited by Lecomte-Beckers, J., Carton, M., Schubert, F., and Ennis, P.J. (Forschungszentrum Jülich, Jülich, Germany, 2002) p. 57.Google Scholar
95.Steiger, M.J., Yanar, N.M., Topping, M.G., Pettit, F.S., and Meier, G.H., Z. Metallkd. 90 (1999) p. 1069.Google Scholar
96.Yanar, N.M., Kim, G.M., Pettit, F.S., and Meier, G.H., in Proc. Turbine Forum (Nice, France, 2002).Google Scholar
97.Rickerby, D.S. and Wing, R.G., U.S. Patent No. 5,942,337 (August 24, 1999).Google Scholar
98.Rickerby, D.S., Bell, S.R., and Wing, R.G., U.S. Patent No. 5,981,091 (November 9, 1999).Google Scholar
99.Saunders, S.R.J. and Nicholls, J.R., Thin Solid Films 119 (1984) p. 247.Google Scholar
100.Bezencon, C., Konter, M., Wagniere, J.-D., and Kurz, W., in Proc. Lasers in Manufacturing (German Scientific Laser Society, Munich, 2001) p. 580.Google Scholar
101.Bezencon, C., Wagniere, J.-D., Hobel, M., Schnell, A., Konter, M., and Kurz, W., in Materials for Advanced Power Engineering 2002, Part 1, edited by Lecomte-Beckers, J., Carton, M., Schubert, F., and Ennis, P.J. (Forschungszentrum Jülich, Jülich, Germany, 2002) p. 503.Google Scholar
102.Muller, G. and Strauss, D., in Proc. Turbine Forum (Nice, France, 2002).Google Scholar
103.Nicholls, J.R., Simms, N.J., Neseyif, S., Evans, H.E., Ponton, C., and Taylor, M.J., Proc. 99–38 (The Electrochemical Society, Pennington, NJ, 2002) p. 305.Google Scholar
104.Nicholls, J.R., Simms, N.J., Taylor, M., and Evans, H.E., in Proc. Turbine Forum (Nice, France, 2002).Google Scholar
105.Evans, A.G., Mumm, D.R., Hutchinson, J.W., Meier, G.H., and Pettit, F.S., Prog. Mater. Sci. 46 (2001) p. 505.Google Scholar
106.Adesanya, O.A., Bouhanek, K., Stott, F.H., Skeldon, P., Lees, D.G., and Wood, G.C., Mater. Sci. Forum 369–372 (2001) p. 639.Google Scholar
107.Bouhanek, K., Adesanya, O.A., Stott, F.H., Skeldon, P., Lees, D.G., and Wood, G.C., Mater. Sci. Forum 369–372 (2001) p. 615.CrossRefGoogle Scholar
108.Young, S.G. and Zellars, G.R., Thin Solid Films 53 (2) (1978) p. 241.CrossRefGoogle Scholar
109.Nicholls, J.R., Lawson, K.J., Chester, G., Yasiri, L.H., and Hancock, P., in European Research on Materials Substitution, edited by Mitchell, I.V. and Nosbuch, H. (Elsevier, London, 1988) p. 295.Google Scholar
110.Nicholls, J.R., Lawson, K.J., Al-Yasiri, L.H., and Hancock, P., Corr. Sci. 35 (1993) p. 1209.Google Scholar
111.Strangman, T.E., Thin Solid Films 127 (1–2) (1985) p. 93.Google Scholar
112.Morrell, P. and Rickerby, D.S., Corr. Sci. 40 (1998) p. 20.Google Scholar
113.Nicholls, J.R., Jaslier, Y., and Rickerby, D.S., Mater. High Temp. 15 (1998) p. 15.Google Scholar
114.Nicholls, J.R., Jaslier, Y., and Rickerby, D.S., Mater. Sci. Forum 251 (1997) p. 935.Google Scholar
115.Brandom, J.R., Taylor, R., and Morrell, P., Surf. Coat Technol. 50 (1992) p. 141.Google Scholar
116.Brandt, R., High Temp.-High Press. 11 (1979) p. 13.Google Scholar
117.Li, P., Chen, I.W., and Penner-Hahn, J.E., J. Am. Ceram. Soc. 77 (1994) p. 118.Google Scholar
118.Li, P., Chen, I.W., and Penner-Hahn, J.E., J. Am. Ceram. Soc. 77 (1994) p. 1281.Google Scholar
119.Li, P., Chen, I.W., and Penner-Hahn, J.E., J. Am. Ceram. Soc. 77 (1994) p. 1289.Google Scholar
120.Shilling, E.A.G. and Clarke, D.R., Acta Mater. 47 (1999) p. 1297.Google Scholar
121.Wright, P.K. and Evans, A.G., Curr. Opin. Solid State Mater. Sci. 4 (1999) p. 255.Google Scholar
122.Mumm, D.R. and Evans, A.G., Acta Mater. 48 (2000) p. 1815.Google Scholar
123.Chang, G.C., Phuchaeron, W., and Miller, R.A., Surf. Coat. Technol. 32 (1987) p. 307.Google Scholar
124.Meier, S.M., Nissley, D.M., and Sheffler, K.D., Thermal Barrier Coating Life Prediction Model Development, Phase II, Report CR-18911 (National Aeronautics and Space Administration, Washington, DC, 1991).Google Scholar
125.Pint, B.A., Garratt-Reed, A.J., and Hobbs, L.W., Mater. High Temp. 13 (1995) p. 3.Google Scholar
126.Smialek, J.L., Metall. Trans. A 22A (1991) p. 739.Google Scholar
127.Evans, H.E., Strawbridge, A., Carolan, R.A., and Ponton, C.B., Mater. Sci. Eng., A A225 (1997) p. 1.CrossRefGoogle Scholar
128.Atkinson, A., Selcuk, A., and Webb, S.J., Oxid. Met. 54 (2000) p. 371.Google Scholar
129.Brindley, W.J., in Workshop on Thermal Barrier Coatings, Report CP-3312 (National Aeronautics and Space Administration Lewis Research Center, Cleveland, OH, 1995) p. 189.Google Scholar
130.Freborg, A.M., Ferguson, B.L., Brindley, W.J., and Petrus, G.J., in Thermal Barrier Coatings, AGARD Report 823 (1998) p. 17–1.Google Scholar
131.Nicholls, J.R., Lawson, K.J., Rickerby, D.S., and Morrell, P., in Thermal Barrier Coatings, AGARD Report 823 (1998) p. 6–1.Google Scholar
132.Lelait, L., cited in Alperine, S., Derrien, M., Jaslier, Y., and Mevrel, R., in Thermal Barrier Coatings, AGARD Report 823 (1998).Google Scholar
133.Nicholls, J.R., Lawson, K.J., Johnstone, A., and Rickerby, D.S., Mater. Sci. Forum 369 (2001) p. 595.Google Scholar
134.Nicholls, J.R., Lawson, K.J., Johnstone, A., and Rickerby, D.S., Surf. Coat. Technol. 151–152 (2002) p. 383.Google Scholar
135.Tamarin, Y.A., Kachanov, E.B., and Zherzdev, S.V., Mater. Sci. Forum 251 (1997) p. 949.Google Scholar
136.Jayaram, V., DeGraef, M., and Levi, C.G., Acta Metall. Mater. 42 (1994) p. 1829.Google Scholar
137.Suresh, G., Seenivasen, G., Krishnaiah, M.V., and Srirama Murti, P., J. Alloys Compd. 249 (1997) p. 259.Google Scholar
138.Suresh, G., Seenivasen, G., Krishnaiah, M.V., and Srirama Murti, P., J. Alloys Compd. 269 (1998) p. 9.Google Scholar
139.Vassen, R., Cao, X., Tietz, F., Bau, D., and Stover, D., J. Am. Ceram. Soc. 83 (2000) p. 2023.Google Scholar
140.Leckie, R.M., Grandhi, A.S., and Levi, C.G., presented at the International Conference on Metallurgical Coatings and Thin Films, San Diego, 2003, to be published in Surf. Coat. Technol.Google Scholar
141.Fiest, J.P., Heyes, A.L., and Nicholls, J.R., in Proc. Inst. Mech. Eng. G-J. Aerospace Eng. 215 (2001) p. 6333.Google Scholar