Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T00:46:03.391Z Has data issue: false hasContentIssue false

Hydrothermal Methods as a New Way of Actinide Phosphate Preparation

Published online by Cambridge University Press:  19 October 2011

Nicolas Clavier
Affiliation:
clavier@ipno.in2p3.fr, Institut de Chimie Séparative de Marcoule, CNRS UMR 5257, Bagnols / Cèze, 30207, France
Nicolas Dacheux
Affiliation:
dacheux@ipno.in2p3.fr, Groupe de Radiochimie, IPNO - Bât. 100, Univ. Paris-Sud, Orsay, 91406, France
Gilles Wallez
Affiliation:
gw@ccr.jussieu.fr, Univ. Pierre et Marie Curie-Paris 6, Chimie de la matière condensée, CNRS UMR 7574, 4 Place Jussieu, Paris, 75005, France
Michel Quarton
Affiliation:
mq@ccr.jussieu.fr, Univ. Pierre et Marie Curie-Paris 6, Chimie de la matière condensée, CNRS UMR 7574, 4 Place Jussieu, Paris, 75005, France
Get access

Abstract

Precipitation processes driven in hydrothermal conditions were applied to the preparation of phosphate-based ceramics. Three systems composed by a crystallized precursor linked with a high temperature compound were particularly examined: M(OH)PO4 / M2O(PO4)2 (M = Th, U), MPO40.5 H2O / MPO4 (M = La - Dy) and Th2-x/2Anx/2(PO4)2(HPO4) H2O / β-Th4-xAnx(PO4)4P2O7 (M = U, Np, Pu). A significant improvement of several physico-chemical properties of the powders, especially in the sintering capability and the homogeneity of the final solids was evidenced when starting from the precursors. Furthermore, these phases were also found to control the solubility of lanthanides and actinides during leaching experiments when reaching the saturation conditions in the solution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dacheux, N., Clavier, N., Robisson, A.C., Terra, O., Audubert, F., Lartigue, J.E., Guy, C., C.R. Chimie 7, 1141 (2004).Google Scholar
2. Brandel, V., Dacheux, N., Genet, M., Podor, R., J. Solid State Chem. 159, 139 (2001).Google Scholar
3. Clavier, N., Dacheux, N., Wallez, G., Quarton, M., J. Nucl. Mater. 352, 209 (2006).Google Scholar
4. Dacheux, N., Clavier, N., Wallez, G., Quarton, M., Solid State Sci., submitted.Google Scholar
5. Rousselle, J., PhD. Thesis, IPNO-T-04-03, Université Paris-Sud, 2004.Google Scholar
6. Boatner, L.A., Sales, B.C., in Radioactive waste forms for the future, edited by W., Lutze and R.C., Ewing (Elsevier Science Publishers, 1988) p. 495564.Google Scholar
7. Jonasson, R.G., Vance, E.R., Thermochim. Acta 108, 65 (1986).Google Scholar
8. Poitrasson, F., Oelkers, E., Schott, J., Montel, J.M., Geochim. Cosmochim. Acta 68, 2207 (2004).Google Scholar
9. Wallez, G., Clavier, N., Dacheux, N., Quarton, M., J. Solid State Chem. 179, 3007 (2006).Google Scholar
10. Clavier, N., Du Fou de Kerdaniel, E., Dacheux, N., Coustumer, P. Le, Drot, R., Ravaux, J., Simoni, E., J. Nucl. Mater. 349, 304 (2006).Google Scholar