We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Collagen-covered prostheses can be used as a non-circumferential segmental tracheal replacement. However, the applicability of these implants in young subjects has not yet been reported.
Methods:
In this experimental, longitudinal study, dogs aged 29–32 days underwent limited segmental tracheal replacement with a polyester prosthesis or were allocated to a control, untreated group. The dogs were evaluated clinically, endoscopically and tomographically for up to one year.
Results:
Although there was evidence of tracheal growth in the experimental group, tomographic measurements were significantly smaller in this group than in the control group throughout the observation period. At the end of the study, there was no evidence of implant rejection, stenosis or collapse. Normal respiratory epithelium had grown across the implanted membrane in the experimental group.
Conclusion:
The homologous collagen mersylene membrane allowed for limited structural tracheal growth and was functionally integrated into the segmented tracheal wall in growing dogs.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.