We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Deficits in emotional intelligence (EI) were detected in patients with bipolar disorder (BD), but little is known about whether these deficits are already present in patients after presenting a first episode mania (FEM). We sought (i) to compare EI in patients after a FEM, chronic BD and healthy controls (HC); (ii) to examine the effect exerted on EI by socio-demographic, clinical and neurocognitive variables in FEM patients.
Methods
The Emotional Intelligence Quotient (EIQ) was calculated with the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Performance on MSCEIT was compared among the three groups using generalized linear models. In patients after a FEM, the influence of socio-demographic, clinical and neurocognitive variables on the EIQ was examined using a linear regression model.
Results
In total, 184 subjects were included (FEM n = 48, euthymic chronic BD type I n = 75, HC n = 61). BD patients performed significantly worse than HC on the EIQ [mean difference (MD) = 10.09, standard error (s.e.) = 3.14, p = 0.004] and on the understanding emotions branch (MD = 7.46, s.e. = 2.53, p = 0.010). FEM patients did not differ from HC and BD on other measures of MSCEIT. In patients after a FEM, EIQ was positively associated with female sex (β = −0.293, p = 0.034) and verbal memory performance (β = 0.374, p = 0.008). FEM patients performed worse than HC but better than BD on few neurocognitive domains.
Conclusions
Patients after a FEM showed preserved EI, while patients in later stages of BD presented lower EIQ, suggesting that impairments in EI might result from the burden of disease and neurocognitive decline, associated with the chronicity of the illness.
Patients with major depressive disorder (MDD) or bipolar disorder (BD) exhibit difficulties with emotional cognition even during remission. There is evidence for aberrant emotional cognition in unaffected relatives of patients with these mood disorders, but studies are conflicting. We aimed to investigate whether emotional cognition in unaffected first-degree relatives of patients with mood disorders is characterised by heterogeneity using a data-driven approach.
Methods
Data from 94 unaffected relatives (33 of MDD patients; 61 of BD patients) and 203 healthy controls were pooled from two cohort studies. Emotional cognition was assessed with the Social Scenarios Test, Facial Expression Recognition Test and Faces Dot-Probe Test. Hierarchical cluster analysis was conducted using emotional cognition data from the 94 unaffected relatives. The resulting emotional cognition clusters and controls were compared for emotional and non-emotional cognition, demographic characteristics and functioning.
Results
Two distinct clusters of unaffected relatives were identified: a relatively ‘emotionally preserved’ cluster (55%; 40% relatives of MDD probands) and an ‘emotionally blunted’ cluster (45%; 29% relatives of MDD probands). ‘Emotionally blunted’ relatives presented with poorer neurocognitive performance (global cognition p = 0.010), heightened subsyndromal mania symptoms (p = 0.004), lower years of education (p = 0.004) and difficulties with interpersonal functioning (p = 0.005) than controls, whereas ‘emotionally preserved’ relatives were comparable to controls on these measures.
Conclusions
Our findings show discrete emotional cognition profiles that occur across healthy first-degree relatives of patients with MDD and BD. These emotional cognition clusters may provide insight into emotional cognitive markers of genetically distinct subgroups of individuals at familial risk of mood disorders.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.