We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Extracorporeal cardiopulmonary resuscitation (ECPR), while resource-intensive, may improve outcomes in selected patients with refractory out-of-hospital cardiac arrest (OHCA). We sought to identify patients who fulfilled a set of ECPR criteria in order to estimate: (1) the proportion of patients with refractory cardiac arrest who may have benefited from ECPR; and (2) the outcomes achieved with conventional resuscitation.
Methods
We performed a secondary analysis from a 52-month prospective registry of consecutive adult non-traumatic OHCA cases from a single urban Canadian health region serving one million patients. We developed a hypothetical ECPR-eligible cohort including adult patients <60 years of age with a witnessed OHCA, and either bystander CPR or EMS arrival within five minutes. The primary outcome was the proportion of ECPR-eligible patients who had refractory cardiac arrest, defined as termination of resuscitation pre-hospital or in the ED. The secondary outcome was the proportion of EPCR-eligible patients who survived to hospital discharge.
Results
Of 1,644 EMS-treated OHCA, 168 (10.2%) fulfilled our ECPR criteria. Overall, 54/1644 (3.3%; 95% CI 2.4%-4.1%) who were ECPR-eligible had refractory cardiac arrest. Of ECPR-eligible patients, 114/168 (68%, 95% CI 61%-75%) survived to hospital admission, and 70/168 (42%; 95% CI 34-49%) survived to hospital discharge.
Conclusion
In our region, approximately 10% of EMS-treated cases of OHCA fulfilled our ECPR criteria, and approximately one-third of these (an average of 12 patients per year) were refractory to conventional resuscitation. The integration of an ECPR program into an existing high-performing system of care may have a small but clinically important effect on patient outcomes.
Current guidelines emphasize that emergency department (ED) patients at low risk for potential ischemic chest pain cannot be discharged without extensive investigations or hospitalization to minimize the risk of missing acute coronary syndrome (ACS). We sought to derive and validate a prediction rule that permitted 20 to 30% of ED patients without ACS safely to be discharged within 2 hours without
further provocative cardiac testing.
Methods:
This prospective cohort study enrolled 1,669 chest pain patients in two blocks in 2000–2003 (development cohort) and 2006 (validation cohort). The primary outcome was 30-day ACS diagnosis. A recursive partitioning model incorporated reliable and predictive cardiac risk factors, pain characteristics, electrocardiographic findings, and cardiac biomarker results.
Results:
In the derivation cohort, 165 of 763 patients (21.6%) had a 30-day ACS diagnosis. The derived prediction rule was 100.0% sensitive and 18.6% specific. In the validation cohort, 119 of 906 patients (13.1%) had ACS, and the prediction rule was 99.2% sensitive (95% CI 95.4–100.0) and 23.4% specific (95% CI 20.6–26.5). Patients have a very low ACS risk if arrival and 2-hour troponin levels are normal, the initial electrocardiogram is nonischemic, there is no history of ACS or nitrate use, age is < 50 years, and defined pain characteristics are met. The validation of the rule was limited by the lack of consistency in data capture, incomplete follow-up, and lack of evaluation of the accuracy, comfort, and clinical sensibility of this clinical decision rule.
Conclusion:
The Vancouver Chest Pain Rule may identify a cohort of ED chest pain patients who can be safely
discharged within 2 hours without provocative cardiac testing. Further validation across other centres with consistent application and comprehensive and uniform follow-up of all eligible and enrolled patients, in addition to measuring and reporting the accuracy of and comfort level with applying the rule and the clinical sensibility, should be completed prior to adoption and implementation.
Injection drug users (IDUs) often undergo procedural sedation and analgesia (PSA) as part of emergency department (ED) treatment. We compared adverse events (AEs) using a variety of sedation regimens.
Methods:
This was a retrospective analysis of a PSA safety audit in two urban EDs. Consecutive self-reported IDUs were identified, and structured data describing comorbidities, vital signs, sedation regimens (propofol [P], propofol-fentanyl [PF], fentanyl-midazolam [FM], ketofol [1:1 ketamine:propofol, KF], and ketamine-propofol [KP]) and AEs were collected. The primary outcome was the proportion of patients in each sedation group having an AE; the secondary outcome was the proportion of patients having a cardiovascular or respiratory AE.
Results:
Data were collected on 276 IDUs (78 P, 82 PF, 65 FM, 25 KF, and 26 KP), and 18 patients had AEs (6.5%, 95% CI 4.0–10.3). The AE rates were 0.0%, 8.5%, 9.2%, 12.0%, and 7.6%, respectively, with propofol having a significantly lower rate (Pearson coefficient 14.9, p = 0.007). The cardiovascular/respiratory AE rates were significantly different as well, with P, KP, and KF having the lowest rates (Pearson coefficient 13.3, p = 0.01).
Conclusions:
For IDU PSA, the overall AE rate was 6.5%, and propofol appeared to have a significantly lower rate.
Injection drug users (IDUs) often undergo procedural sedation and analgesia (PSA) in the emergency department (ED). We compared adverse events (AEs) for IDUs to those for non-IDUs receiving PSA for incision and drainage of cutaneous abscesses.
Methods:
This was a retrospective analysis of a PSA safety audit. IDU status was prospectively documented among consecutive patients undergoing PSA at two urban EDs. Structured data describing comorbidities, vital signs, sedation regimens, and adverse events were collected. Primary outcome was the proportion of patients in each group experiencing an AE, whereas the secondary outcomes included recovery times.
Results:
Of 525 consecutive patients receiving PSA for incision and drainage of an abscess, 244 were deemed IDUs and 281 non-IDUs. IDUs received higher doses of sedatives and analgesics, and 14 experienced AEs (5.7%), whereas 10 non-IDUs had AEs (3.6%), for a risk difference of 2.1% (95% CI -1.8, 6.5). Median recovery times were 18 minutes (interquartile range [IQR] 10-36) for IDUs and 12 minutes (IQR 7-19) for non-IDUs, for a difference of 6 minutes (95% CI 2-9 minutes). Median sedation times were also longer in IDUs, for a difference of 6 minutes (95% CI 5-10 minutes). Of 20 IDU patients and 1 non-IDU patient admitted to hospital, none had experienced an AE related to PSA.
Conclusions:
For ED patients requiring PSA for incision and drainage, IDUs had an AE rate similar to that of non-IDUs but longer sedation and recovery times. In experienced hands, PSA may be as safe in IDUs as in patients who do not use injection drugs.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.