We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
We present the most sensitive and detailed view of the neutral hydrogen (
${\rm H\small I}$
) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal
${\rm H\small I}$
in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1 K (
$1.6\,\mathrm{mJy\ beam}^{-1}$
)
$\mathrm{per}\ 0.98\,\mathrm{km\ s}^{-1}$
spectral channel with an angular resolution of
$30^{\prime\prime}$
(
${\sim}10\,\mathrm{pc}$
). We discuss the calibration scheme and the custom imaging pipeline that utilises a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire
${\sim}25\,\mathrm{deg}^2$
field-of-view. We provide an overview of the data products and characterise several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high-velocity cloud with previous ASKAP+Parkes
${\rm H\small I}$
test observations.
Studies suggest that alcohol consumption and alcohol use disorders have distinct genetic backgrounds.
We examined whether polygenic risk scores (PRS) for consumption and problem subscales of the Alcohol Use Disorders Identification Test (AUDIT-C, AUDIT-P) in the UK Biobank (UKB; N = 121 630) correlate with alcohol outcomes in four independent samples: an ascertained cohort, the Collaborative Study on the Genetics of Alcoholism (COGA; N = 6850), and population-based cohorts: Avon Longitudinal Study of Parents and Children (ALSPAC; N = 5911), Generation Scotland (GS; N = 17 461), and an independent subset of UKB (N = 245 947). Regression models and survival analyses tested whether the PRS were associated with the alcohol-related outcomes.
In COGA, AUDIT-P PRS was associated with alcohol dependence, AUD symptom count, maximum drinks (R2 = 0.47–0.68%, p = 2.0 × 10−8–1.0 × 10−10), and increased likelihood of onset of alcohol dependence (hazard ratio = 1.15, p = 4.7 × 10−8); AUDIT-C PRS was not an independent predictor of any phenotype. In ALSPAC, the AUDIT-C PRS was associated with alcohol dependence (R2 = 0.96%, p = 4.8 × 10−6). In GS, AUDIT-C PRS was a better predictor of weekly alcohol use (R2 = 0.27%, p = 5.5 × 10−11), while AUDIT-P PRS was more associated with problem drinking (R2 = 0.40%, p = 9.0 × 10−7). Lastly, AUDIT-P PRS was associated with ICD-based alcohol-related disorders in the UKB subset (R2 = 0.18%, p < 2.0 × 10−16).
AUDIT-P PRS was associated with a range of alcohol-related phenotypes across population-based and ascertained cohorts, while AUDIT-C PRS showed less utility in the ascertained cohort. We show that AUDIT-P is genetically correlated with both use and misuse and demonstrate the influence of ascertainment schemes on PRS analyses.
Antarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to ‘scan the horizon’ to identify the highest priority scientific questions that researchers should aspire to answer in the next two decades and beyond. Wide consultation was a fundamental principle for the development of a collective, international view of the most important future directions in Antarctic science. From the many possibilities, the horizon scan identified 80 key scientific questions through structured debate, discussion, revision and voting. Questions were clustered into seven topics: i) Antarctic atmosphere and global connections, ii) Southern Ocean and sea ice in a warming world, iii) ice sheet and sea level, iv) the dynamic Earth, v) life on the precipice, vi) near-Earth space and beyond, and vii) human presence in Antarctica. Answering the questions identified by the horizon scan will require innovative experimental designs, novel applications of technology, invention of next-generation field and laboratory approaches, and expanded observing systems and networks. Unbiased, non-contaminating procedures will be required to retrieve the requisite air, biota, sediment, rock, ice and water samples. Sustained year-round access to Antarctica and the Southern Ocean will be essential to increase winter-time measurements. Improved models are needed that represent Antarctica and the Southern Ocean in the Earth System, and provide predictions at spatial and temporal resolutions useful for decision making. A co-ordinated portfolio of cross-disciplinary science, based on new models of international collaboration, will be essential as no scientist, programme or nation can realize these aspirations alone.
There are few reports in the medical literature describing removal of a coin from the upper esophageal tract of a child by an emergency physician. However, given the nature of their training and practice, emergency physicians are well suited to perform this common procedure. We describe our experience with this procedure.
This was a retrospective review of a continuous quality improvement data set from a university-based tertiary care pediatric emergency department between Nov. 1, 2003, and Mar. 31, 2004.
Thirteen children, with a median age of 20 months, underwent rapid sequence intubation and had coins successfully removed from their upper esophageal tract by emergency physicians. In 10 cases, the coin was visible at laryngoscopy and removed with Magill forceps. In 3 cases this approach failed and a Foley catheter was used to remove the coin. One child suffered a tonsillar abrasion and two sustained minor lip trauma, but all were extubated and discharged home from the emergency department with no significant complications. Eleven of the 13 patients were successfully followed up, and the parents reported no problems.
This pilot study suggests that the removal of a coin from the upper esophageal tract by an emergency physician can be both safe and effective. A larger study is needed before this procedure can be generally recommended.
The authors of this article argue that companies' high cost of capital or short investment horizons do not explain the decline in global competitiveness of many U.S. industries in the 1970s and 1980s. Instead, they find the source of malaise in the capital-budgeting and financial-planning systems that arose after the Second World War. Although they allowed managers in large companies to evaluate some aspects of their business efficiently and comprehensively, these systems also obscured the value of investment in organizational capabilities, because such investments were hard to quantify—indeed, even to describe—within the financial models in widespread use. As a result, companies often invested vigorously—but in the wrong things. The authors define a set of desirable capabilities and, using case studies, describe both the problems of the recent past and the requirements for successful investment in the future.
Email your librarian or administrator to recommend adding this to your organisation's collection.