We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
La(Fe0.88Si0.12)13 shows peculiar magnetic properties such as the first order paramagnetic-ferromagnetic transition and magnetic-field induced metamagnetic transition accompanied by the lattice expansion. The practical application using the magnetic transition temperature controlled by hydrogen absorption is expected in this compound. Here, the electronic structure of La(Fe0.88Si0.12)13 has been investigated by photoemission spectroscopy using synchrotron soft x-rays. The Fe 3s core-level photoemission spectra below and above the Curie temperature TC exhibit a satellite structure at ~ 4.3 eV higher binding energy than the main peak, which is attributed to the exchange splitting due to the local moment of Fe. The exchange splitting of the Fe 3s photoemission spectrum with the asymmetric line shape shows that the magnetization of La(Fe0.88Si0.12)13 is derived by the exchange split Fe 3d bands like the itinerant ferromagnetism in Fe metal, while the magnetic transition of La(Fe0.88Si0.12)13 is the first order. The valence band photoemission spectrum shows temperature dependence across the TC. The temperature dependence of the photoemission spectra is discussed based on the difference between the electronic structure in the ferromagnetic phase and that in the paramagnetic phase.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.