We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To examine the reliability of the data produced by an automated system for the surveillance of nosocomial infections.
Setting:
A 906-bed, tertiary-care teaching hospital.
Design:
Three surveillance techniques were concurrently performed in seven high-risk units during an 11-week period: automated surveillance (AS) based on the prospective processing of computerized medical records; laboratory-based ward surveillance (LBWS) based on the retrospective verification by ward clinicians of weekly reports of positive bacteriologic results; and a reference standard (RS) consisting of the infection control team reviewing case records of patients with positive bacteriology results. Bacteremia, urinary tract infections, and catheter-related infections were recorded for all inpatients. The performances (sensitivity, specificity, and time consumption) of AS and LBWS were compared with those of RS.
Results:
Of 548 positive bacteriology samples included during the study period, 229 (42%) were classified as nosocomial infections. The overall sensitivity was 91% and 59% for AS and LBWS, respectively. The two methods had the same overall specificity value (91%). Kappa measures of agreement were 0.81 and 0.54 for AS and LBWS, respectively. AS required less time to collect data (54 seconds per week per unit) compared with LBWS (7 minutes and 43 seconds per week per unit) and RS (37 minutes and 15 seconds per week per unit).
Conclusion:
Our results confirm that the retrospective review of charts and laboratory data by physicians lacks sensitivity for the surveillance of nosocomial infections. The intranet-based automated method developed for this purpose was more accurate and less time-consuming than the weekly, retrospective LBWS method.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.