We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Photochemical methods were developed to obtain a variation of the refractive index in aromatic polymer surfaces and a change in the photoluminescence characteristics of phenylene-vinylene-based polymers. Films of aromatic polymers, among them polystyrene (PS), poly(2-vinylnaphthalene) (PVN) and derivatives of poly(-phenylene-vinylene) (PPV) were UV irradiated in the presence of gaseous hydrazine (N2H4). The photoreaction led to a strongreduction of the refractive index of the polymers due to a hydrogenation of the aromatic units. In the case of PPV, we observed reductive photobleaching. This new technique was employed to produce photogenerated patterns in PPV. The results are compared to oxidative bleaching.
A styrene copolymer of 4-vinylbenzyl thiocyanate (PST-co-VBT) was employed as recording material for optical interference patterns with periods ∧ < 1 μm. Using lower intensity laser irradiation (4 mJ cm-2, λ = 266 nm), refractive index gratings were produced in PST-co-VBT by an UV induced photoisomerization SCN - NCS. Subsequent modification of the patterns with gaseous amines yielded surface relief gratings via the formation of derivatives of thiourea. Laser irradiation with higher pulse energies (7 mJ cm-2, λ = 266 nm) directly produced surface relief gratings (modulation depth 30 nm). These gratings were also reactive towards amine reagents and allowed a selective functionalization of the grooves of the relief (“reactive gratings”). Optically inscribed gratings in PST-co-VBT were employed as optical resonators for distributed feedback (DFB) lasing. With a laser dye (DCM) dissolved in PST-co-VBT, optically pumped DFB laser action was observed after inscribing index and relief gratings. The pumping threshold for lasing Ith was 250 nJ cm-2 at λ = 532 nm.
Photochemical methods were developed to obtain a variation of the refractive index in aromatic polymer surfaces and a change in the photoluminescence characteristics of phenylenevinylene-based polymers. Films of aromatic polymers, among them polystyrene (PS), poly(2-vinylnaphthalene) (PVN) and derivatives of poly(p-phenylene-vinylene) (PPV) were UV irradiated in the presence of gaseous hydrazine (N2H4). The photoreaction led to a strong reduction of the refractive index of the polymers due to a hydrogenation of the aromatic units. In the case of PPV, we observed reductive photobleaching. This new technique was employed to produce photogenerated patterns in PPV. The results are compared to oxidative bleaching.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.