We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Previous studies have confirmed that miR-146a-5p overexpression suppresses neurogenesis, thereby enhancing depression-like behaviors. However, it remains unclear how miR-146a-5p dysregulation produces in vivo brain structural abnormalities in patients with major depressive disorder (MDD).
Methods
In this case–control study, we combined cortical morphology analysis of magnetic resonance imaging (MRI) and miR-146a-5p quantification to investigate the neuropathological effect of miR-146a-5p on cortical thickness in MDD patients. Serum-derived exosomes that were considered to readily cross the blood-brain barrier and contain miR-146a-5p were isolated for miRNA quantification. Moreover, follow-up MRI scans were performed in the MDD patients after 6 weeks of antidepressant treatment to further validate the clinical relevance of the relationship between miR-146a-5p and brain structural abnormalities.
Results
In total, 113 medication-free MDD patients and 107 matched healthy controls were included. Vertex-vise general linear model revealed miR-146a-5p-dependent cortical thinning in MDD patients compared with healthy individuals, i.e., overexpression of miR-146a-5p was associated with reduced cortical thickness in the left orbitofrontal cortex (OFC), anterior cingulate cortex, bilateral lateral occipital cortices (LOCs), etc. Moreover, this relationship between baseline miR-146a-5p and cortical thinning was nonsignificant for all regions in the patients who had received antidepressant treatment, and higher baseline miR-146a-5p expression was found to be related to greater longitudinal cortical thickening in the left OFC and right LOC.
Conclusions
The findings of this study reveal a relationship between miR-146a-5p overexpression and cortical atrophy and thus may help specify the in vivo mediating effect of miR-146a-5p dysregulation on brain structural abnormalities in patients with MDD.
We hypothesize that the tumor necrosis factor-α (TNF-α) may play a role in disturbing the effect of selective serotonin reuptake inhibitor (SSRI) on the striatal connectivity in patients with major depressive disorder (MDD).
Methods
We performed a longitudinal observation by combining resting-state functional magnetic resonance imaging (rs-fMRI) and biochemical analyses to identify the abnormal striatal connectivity in MDD patients, and to evaluate the effect of TNF-α level on these abnormal connectivities during SSRI treatment. Eighty-five rs-fMRI scans were collected from 25 MDD patients and 35 healthy controls, and the scans were repeated for all the patients before and after a 6-week SSRI treatment. Whole-brain voxel-wise functional connectivity (FC) was calculated by correlating the rs-fMRI time courses between each voxel and the striatal seeds (i.e. spherical regions placed at the striatums). The level of TNF-α in serum was evaluated by Milliplex assay. Factorial analysis was performed to assess the interaction effects of ‘TNF-α × treatment’ in the regions with between-group FC difference.
Results
Compared with controls, MDD patients showed significantly higher striatal FC in the medial prefrontal cortex (MPFC) and bilateral middle/superior temporal cortices before SSRI treatment (p < 0.001, uncorrected). Moreover, a significant interaction effect of ‘TNF-α × treatment’ was found in MPFC-striatum FC in MDD patients (p = 0.002), and the significance remained after adjusted for age, gender, head motion, and episode of disease.
Conclusion
These findings provide evidence that treatment-related brain connectivity change is dependent on the TNF-α level in MDD patients, and the MPFC-striatum connectivities possibly serve as an important target in the brain.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.