We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Despite efforts to predict suicide risk in children, the ability to reliably identify who will engage in suicide thoughts or behaviours has remained unsuccessful.
Aims
We apply a novel machine-learning approach and examine whether children with suicide thoughts or behaviours could be differentiated from children without suicide thoughts or behaviours based on a combination of traditional (sociodemographic, physical health, social–environmental, clinical psychiatric) risk factors, but also more novel risk factors (cognitive, neuroimaging and genetic characteristics).
Method
The study included 5885 unrelated children (50% female, 67% White, 9–11 years of age) from the Adolescent Brain Cognitive Development (ABCD) study. We performed penalised logistic regression analysis to distinguish between: (a) children with current or past suicide thoughts or behaviours; (b) children with a mental illness but no suicide thoughts or behaviours (clinical controls); and (c) healthy control children (no suicide thoughts or behaviours and no history of mental illness). The model was subsequently validated with data from seven independent sites involved in the ABCD study (n = 1712).
Results
Our results showed that we were able to distinguish the suicide thoughts or behaviours group from healthy controls (area under the receiver operating characteristics curve: 0.80 child-report, 0.81 for parent-report) and clinical controls (0.71 child-report and 0.76–0.77 parent-report). However, we could not distinguish children with suicidal ideation from those who attempted suicide (AUROC: 0.55–0.58 child-report; 0.49–0.53 parent-report). The factors that differentiated the suicide thoughts or behaviours group from the clinical control group included family conflict, prodromal psychosis symptoms, impulsivity, depression severity and history of mental health treatment.
Conclusions
This work highlights that mostly clinical psychiatric factors were able to distinguish children with suicide thoughts or behaviours from children without suicide thoughts or behaviours. Future research is needed to determine if these variables prospectively predict subsequent suicidal behaviour.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.