Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-22T01:15:08.951Z Has data issue: false hasContentIssue false

10 - Greenland: recent mass balance observations

Published online by Cambridge University Press:  16 October 2009

Robert H. Thomas
Affiliation:
EG&G Services, NASA Wallops Flight Facility, Virginia
Jonathan L. Bamber
Affiliation:
University of Bristol
Antony J. Payne
Affiliation:
University of Bristol
Get access

Summary

Introduction

Tide-gauge measurements indicate that sea level has risen by about 15 ± 5 cm over the past century, with perhaps 7.5 ± 5 cm of this rise caused by effects other than changes in the polar ice sheets (IPCC, 2001). The missing 7.5 ± 7 cm was most probably caused by net losses from the Greenland and Antarctic ice sheets at an average rate of about 300 ± 280 km3 of ice per year. This is equivalent to 12 ± 11% of their combined annual snow accumulation, and would represent a thinning rate of 2 ± 2 cm per year averaged over the entire area of both ice sheets. Although the uncertainty of this estimate is quite large, it is far lower than that resulting from many decades of glaciological observations, which have yet to yield even the sign of the collective mass balance of these two ice sheets, with an uncertainty equivalent to about 20% of their combined snow-accumulation rate. Until recently, this level of uncertainty applied equally to both ice sheets, and provided the prime motivation for NASA's Program for Arctic Regional Climate Assessment (PARCA) which had, as its initial goal, measurement of the mass balance of the Greenland ice sheet. To a large extent, this goal has been achieved, and PARCA has significantly improved our knowledge of many of the factors that determine the mass balance.

Type
Chapter
Information
Mass Balance of the Cryosphere
Observations and Modelling of Contemporary and Future Changes
, pp. 393 - 436
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdalati, W. and Steffen, K. 1997a. Snowmelt on the Greenland ice sheet as derived from passive microwave satellite data. J. Climate 10, 165–752.0.CO;2>CrossRefGoogle Scholar
Abdalati, W. and Steffen, K. 1997b. The apparent effect of the Mt. Pinatubo eruption on the Greenland ice sheet melt conditions. Geophys. Res. Lett. 24, 1795–7CrossRefGoogle Scholar
Abdalati, W. and Steffen, K. 2001. Greenland ice sheet melt extent: 1979–1999. J. Geophys. Res. Atmos. 106 (D24), 33 983–8CrossRefGoogle Scholar
Abdalati, W.et al. 2001. Outlet glacier and margin elevation changes: near coastal thinning of the Greenland ice sheet. J. Geophys. Res. Atmos. 106 (D24), 33 729–42CrossRefGoogle Scholar
Allen, C. T., Ghandi, M., Gogineni, P. and Jezek, K. C. 1997. Feasibility study for mapping the polar ice bottom topography using interferometric synthetic-aperture radar techniques. Remote Sensing Laboratory Technical Report 11680–1, University of Kansas, January 1997
Alley, R. B.et al. 1993. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362, 527–9CrossRefGoogle Scholar
Anklin, M., Stauffer, B., Geis, K. and Wagenbach, D. 1994. Pattern of actual snow accumulation along a west Greenland flow line: no significant change observed during recent decades. Tellus 46B, 294–303CrossRefGoogle Scholar
Anklin, M., Bales, R. C., Mosley-Thompson, E. and Steffen, K. 1998. Annual accumulation at two sites in northwest Greenland during recent decades. J. Geophys. Res. 103, 28 775–83CrossRefGoogle Scholar
Appenzeller, C., Stocker, T. F. and Anklin, M. 1998. North Atlantic oscillation dynamics recorded in Greenland ice cores. Science 282, 446–9CrossRefGoogle ScholarPubMed
Arthern, R. J. and Wingham, D. J. 1998. The natural fluctuations of firn densification and their effect on the geodetic determination of ice sheet mass balance. Climatic Change 40, 605–24CrossRefGoogle Scholar
Bales, R. C., Mosley-Thompson, E. and McConnell, J. R. 2001a. Variability of accumulation in northwest Greenland over the past 250 years. Geophys. Res. Lett. 28 (14), 2679–82CrossRefGoogle Scholar
Bales, R. C., McConnell, J. R., Mosley-Thompson, E. and Csatho, B. 2001b. Accumulation over the Greenland ice sheet from historical and recent records. J. Geophys. Res. Atmos. 106 (D24), 33 813–26CrossRefGoogle Scholar
Bamber, J. L., Layberry, R. and Gogineni, S. 2001. A new ice thickness and bedrock dataset for the Greenland ice sheet, 1, measurement, data reduction, and errors. J. Geophys. Res. Atmos. 106 (D24), 33 773–80CrossRefGoogle Scholar
Bender, G. 1984. The distribution of snow accumulation on the Greenland ice sheet. Masters Thesis, University of Alaska
Bindschadler, R. A., Zwally, H. J., Major, J. A. and Brenner, A. C. 1989. Surface topography of the Greenland ice sheet from satellite altimetry. Washington, D. C., NASA Special Publication-503
Bolzan, J. F. and Jezek, K. C. 2000. Accumulation rate changes in central Greenland from passive microwave data. J. Geophys. Res. Oceans, Polar Geog. 24 (2), 98–112Google Scholar
Bolzan, J. F. and Strobel, M. 1994. Accumulation rate variations around Summit, Greenland. J. Glaciol. 40, 56–66CrossRefGoogle Scholar
Box, J. and Steffen, K. 2001. Sublimation estimates for the Greenland ice sheet using automated weather stations observations. J. Geophys. Res. Atmos. 106 (D24), 33 965–82CrossRefGoogle Scholar
Braithwaite, R. J. 1983. Detection of climate signal by interstake correlations on annual ablation data, QamanånarssÛp Sermia, west Greenland. J. Glaciol. 35, 253–9CrossRefGoogle Scholar
Braithwaite, R. J. 1984. Calculation of degree-days for glacier-climate research. Z. Gletscherkd. Glazialgeol. 20, 1–8Google Scholar
Braithwaite, R. J. 1993. Is the Greenland ice sheet getting thicker?Climatic Change 23, 379–81CrossRefGoogle Scholar
Braithwaite, R. J. 1995a. Aerodynamic stability and turbulent sensible-heat flux over a melting ice surface, the Greenland ice sheet. J. Glaciol. 41, 562–71CrossRefGoogle Scholar
Braithwaite, R. J. 1995b. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modeling. J. Glaciol. 41, 153–60CrossRefGoogle Scholar
Braithwaite, R. J. 1996. Models of ice-atmosphere interactions for the Greenland ice sheet. Ann. Glaciol. 23, 149–53CrossRefGoogle Scholar
Bromwich, D. H., Cullather, R. I., Chen, Q.-S. and Csatho, B. M. 1998. Evaluation of recent precipitation studies for Greenland ice sheet. J. Geophys. Res. 103, 26007–24CrossRefGoogle Scholar
Bromwich, D. H., Chen, Q.-S., Li, Y. and Cullather, R. I. 1999. Precipitation over Greenland and its relation to the North Atlantic oscillation. J. Geophys. Res. 104, 22 103–15CrossRefGoogle Scholar
Chen, Q.-S., Bromwich, D. H. and Bai, L. 1997. Precipitation over Greenland retrieved by a dynamic method and its relation to cyclonic activitity. J. Climate 10, 839–702.0.CO;2>CrossRefGoogle Scholar
Chen, Q.-S. and Bromwich, D. H. 1999. An equivalent isobaric geopotential height and its application to synoptic analysis and generalized omega-equation in sigma-coordinates. Month. Weather Rev. 127, 145–722.0.CO;2>CrossRefGoogle Scholar
Cuffey, K. M. and Marshall, S. J. 2000. Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature 404, 591–4CrossRefGoogle ScholarPubMed
Davis, C. H. 1997. A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeters. IEEE Trans. Geosci. Remote Sensing 35, 974–9CrossRefGoogle Scholar
Davis, C. H., Kluever, C. A. and Haines, B. J. 1998. Elevation change of the southern Greenland ice sheet. Science 279, 2086–8CrossRefGoogle ScholarPubMed
Davis, C. H., Kluever, C. A., Haines, B. J., Perez, C. and Yoon, Y. 2000. Improved elevation change measurement of the southern Greenland ice sheet from satellite radar altimetry. IEEE Trans. Geosci. Remote Sensing 38, 1367–78CrossRefGoogle Scholar
Davis, C. H., McConnell, J. R., Bolzan, J., Bamber, J. L., Thomas, R. H. and Mosley-Thompson, E. 2001. Elevation change of the southern Greenland ice sheet from 1978 to 1988: interpretation. J. Geophys. Res. Atmos. 106 (D24), 33 743–54CrossRefGoogle Scholar
Drinkwater, M. R. and Long, D. G. 1998. Seasat, ERS-1/2 and NSCAT scatterometer-observed changes on the large ice sheets. In Proceedings of the Joint ESA-EUMETSAT Workshop on Emerging Scatterometer Applications – From Research to Operations. ESA SP-424. ESTEC, Noordwijk, The Netherlands, ESA Publications Division, pp. 91–6
Drinkwater, M. R., Long, D. G. and Bingham, A. W. 2001. Greenland snow accumulation estimates from scatterometer data. J. Geophys. Res. Atmos. 106 (D24), 33 935–50CrossRefGoogle Scholar
Drygalski, E. von. 1897. Gronland-Expedition der Gesellschaft fur Erdkunde zu Berlin 1891–1893, vol. 1. Berlin, W. H. Kuhl
Ekholm, S. 1996. A full coverage, high-resolution, topographic model of Greenland computed from a variety of digital elevation data. J. Geophys. Res. 101, 21 961–72CrossRefGoogle Scholar
Fahnestock, M., Bindschadler, R., Kwok, R. and Jezek, K. 1993. Greenland ice-sheet surface properties and ice dynamics from ERS-1 SAR imagery. Science 262, 1530–4CrossRefGoogle ScholarPubMed
Fischer, H. 1997. Raumliche Variabilitat in Eiskernzeitreihen Nordostgronlands: Rekonstruktion klimatischer und luftchemischer Langzeittrends seit 1500 A. D. Ph.D. Thesis, Ruprecht-Karls-Universitat, Heidelberg
Fischer, H. M.et al. 1998. Little Ice Age clearly recorded in northern Greenland ice cores. Geophys. Res. Lett. 25 (10), 1749–52CrossRefGoogle Scholar
Friedmann, A., Moore, J. C., Thorsteinsson, T., Kipfstuhl, J. and Fischer, H. 1995. A 1200 year record of accumulation from northern Greenland ice cores. Ann. Glaciol. 21, 19–25CrossRefGoogle Scholar
Fuhrer, K., Neftel, A., Anklin, M. and Maggi, V. 1993. Continuous measurements of hydrogen peroxide, formaldehyde, calcium and ammonium concentrations along a new GRIP ice core from Summit, central Greenland. Atmos. Environ. 27, 1873–80CrossRefGoogle Scholar
Gogineni, S., Chuah, T., Allen, C., Jezek, K. and Moore, R. K. 1998. An improved coherent radar depth sounder. J. Glaciol. 44, 659–69CrossRefGoogle Scholar
Gogineni, S.et al. 2001. Coherent radar ice thickness measurements over the Greenland ice sheet. J. Geophys. Res. Atmos. 106 (D24), 33 761–72CrossRefGoogle Scholar
Goldstein, R. M., Engelhardt, H., Kamb, B. and Frolich, R. M. 1993. Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science 262, 1525–30CrossRefGoogle Scholar
Greuell, W. and Knap, W. H. 2000. Remote sensing of the albedo and detection of the slush line on the Greenland ice sheet. J. Geophys. Res. 105, 15 567–76CrossRefGoogle Scholar
Greuell, W., Denby, B., Wal, R. S. W. and Oerlemans, J. 2001. Ten years of mass-balance measurements along a transect near Kangerlussuaq, central west Greenland. J. Glaciol. 47, 157–8CrossRefGoogle Scholar
Gudmandsen, P. 1976. Studies of ice by means of radio echo soundings. Technical University of Denmark, Laboratory of Electromagnetic Theory, R 162, Lyngby, Denmark
Hamilton, G. S. and Whillans, I. M. 2000. Point measurements of mass balance of the Greenland ice sheet using precision vertical global positioning system (GPS) surveys. J. Geophys. Res. 105 (B7), 16 295CrossRefGoogle Scholar
Hanna, E., Valdes, P. and McConnell, J. 2001. Patterns and variations of snow accumulation over Greenland, 1979–98, from ECMWF analyses, and their verification. J. Climate 14, 3521–352.0.CO;2>CrossRefGoogle Scholar
Higgins, A. K. and Weidick, A. 1988. The world's northernmost surging glacier?Zeits. Gletscherkunde Glazialgeol. 24, 111–23Google Scholar
Huybrechts, P. 1994. The present evolution of the Greenland ice sheet: an assessment by modeling. Global & Planetary Change 9, 39–51CrossRefGoogle Scholar
Huybrechts, P. 1996. Basal temperature conditions of the Greenland ice sheet during the glacial cycles. Ann. Glaciol. 23, 226–36CrossRefGoogle Scholar
IPCC 2001. Climate Change 2001– the Scientific Basis. Contribution of Working Group I to the Third Assessment Report. Cambridge University Press
Jezek, K. C., Gogineni, P. and Shanableh, M. 1994. Radar measurements of melt zones on the Greenland ice sheet. Geophys. Res. Lett. 21, 33–6CrossRefGoogle Scholar
Joshi, M. 1999. Estimation of surface melt and absorbed radiation on the Greenland ice sheet using passive microwave data. Ph. D. Thesis, The Ohio State University, Columbus
Joughin, I., Kwok, R. and Fahnestock, M. 1996a. Estimation of ice sheet motion using satellite radar interferometry: method and error analysis with application to the Humboldt Glacier, Greenland. J. Glaciol. 42, 564–75CrossRefGoogle Scholar
Joughin, I., Kwok, R. and Fahnestock, M. 1998. Interferometric estimation of the three-dimensional ice-flow velocity vector using ascending and descending passes. IEEE Trans. Geosci. Remote Sensing 36, 25–37CrossRefGoogle Scholar
Joughin, I., Winebrenner, D. P. and Fahnestock, M. 1995. Observations of complex ice sheet motion in Greenland using satellite radar interferometry. Geophys. Res. Lett. 22, 571–4CrossRefGoogle Scholar
Joughin, I., Winebrenner, D. P., Fahnestock, M., Kwok, R. and Krabill, W. 1996b. Measurement of ice-sheet topography using satellite radar interferometry. J. Glaciol. 42, 231–41CrossRefGoogle Scholar
Joughin, I., Tulaczyk, S., Fahnestock, M. and Kwok, R. 1996c. A mini-surge on the Ryder Glacier, Greenland, observed via satellite radar interferometry. Science 274, 228–30CrossRefGoogle Scholar
Joughin, I., Fahnestock, M., Kwok, R., Gogineni, P. and Allen, C. 1999a. Ice flow of Humboldt, Petermann and Ryder Gletscher, northern Greenland. J. Glaciol. 45, 231–41CrossRefGoogle Scholar
Joughin, I.et al. 1996b. Tributaries of West Antarctic ice streams revealed by RADARSAT interferometry. Science 286, 283–6CrossRefGoogle Scholar
Joughin, I., Fahnestock, M., MacAyeal, D., Bamber, J. and Gogineni, P. 2001. Observation and analysis of ice flow in the largest Greenland ice stream. J. Geophys. Res. Atmos. 106 (D24), 34021–34CrossRefGoogle Scholar
Kanagaratnam, P., Gogineni, S. P., Gundestrup, N. and Larson, L. 2001. High-resolution radar mapping of internal layers at the north Greenland ice core project. J. Geophys. Res. Atmos. 106 (D24), 33 799–812CrossRefGoogle Scholar
Konzelmann, T., Wal, R. S. W., Greuell, W., Bintanja, R., Henneken, E. and Abe-Ouchi, A. 1994. Parameterization of global and longwave incoming radiation for the Greenland ice sheet. Global & Planetary Change 9, 143–64CrossRefGoogle Scholar
Krabill, W. B., and Martin, C. F. 1987. Aircraft positioning using global positioning system carrier phase data. J. Inst. Nav. 34, 1–21CrossRefGoogle Scholar
Krabill, W., Thomas, R., Martin, C., Swift, R. and Frederick, E. 1995. Accuracy of airborne laser altimetry over the Greenland ice sheet. Int. J. Remote Sensing 16, 1211–22CrossRefGoogle Scholar
Krabill, W.et al. 1999. Rapid thinning of parts of the southern Greenland ice sheet. Science 283, 1522–4CrossRefGoogle ScholarPubMed
Krabill, W. 2000. Greenland ice sheet: high-elevation balance and peripheral thinning. Science 289, 428–30CrossRefGoogle ScholarPubMed
Kwok, R. and Fahnestock, M. A. 1996. Ice sheet motion and topography from radar interferometry. IEEE Trans. Geosci. Remote Sensing 34, 189–200CrossRefGoogle Scholar
Long, D. G. and Drinkwater, M. R. 1994. Greenland ice sheet surface properties observed by the Seasat-A scatterometer at enhanced resolution. J. Glaciol. 40, 213–30CrossRefGoogle Scholar
Long, D. G. and Drinkwater, M. R. 1999. Cryosphere applications of NSCAT data. IEEE Trans. Geosci. Remote Sensing 37, 1671–84CrossRefGoogle Scholar
McConnell, J. R., Mosley-Thompson, E., Bromwich, D. H., Bales, R. C. and Kyne, J. D. 2000a. Interannual variations of snow accumulation on the Greenland ice sheet (1985–1996): new observations versus model predictions. J. Geophys. Res. 105, 4039–46CrossRefGoogle Scholar
McConnell, J. R.et al. 2000b. Changes in Greenland ice sheet elevation attributed primarily to snow accumulation variability. Nature 406, 877–9CrossRefGoogle Scholar
McConnell, J. R. 2001. Annual net snow accumulation over southern Greenland from 1975 to 1998. J. Geophys. Res. Atmos. 106 (D24), 33 827–38CrossRefGoogle Scholar
Mohr, J. J., Reeh, N. and Madsen, S. N. 1998. Three-dimensional glacial flow and surface elevation measured with radar interferometry. Nature 391, 273–6CrossRefGoogle Scholar
Mosley-Thompson, E., Thompson, L. G., Dai, J., Davis, M. and Lin, P. N. 1993. Climate of the last 500 years: high resolution ice core records. Quat. Sci. Rev. 12, 419–30CrossRefGoogle Scholar
Mosley-Thompson, E.et al. 2001. Local to regional-scale variability of annual net accumulation on the Greenland ice sheet from PARCA cores. J. Geophys. Res. Atmos. 106 (D24), 33 839–52CrossRefGoogle Scholar
Mote, T. L. 2000. Ablation rate estimates over the Greenland ice sheet from microwave radiometric data. Prof. Geog. 52, 322–31CrossRefGoogle Scholar
Mote, T. L., and Anderson, M. R. 1995. Variations in snowpack melt on the Greenland ice sheet based on passive microwave measurements. J. Glaciol. 41, 51–60CrossRefGoogle Scholar
Oerlemans, J. and Vugts, H. 1993. A meteorological experiment in the melting zone of the Greenland ice sheet. Bull. Am. Meteorol. Soc. 74, 355–652.0.CO;2>CrossRefGoogle Scholar
Ohmura, A. 1987. New temperature distribution maps for Greenland. Zeits. Gletscherkunde Glazialgeol. 21 (1), 1–45Google Scholar
Ohmura, A. and Reeh, N. 1991. New precipitation and accumulation maps for Greenland. J. Glaciol. 37, 140–8CrossRefGoogle Scholar
Ohmura, A., Wild, M. and Bengtsson, L. 1996. A possible change in mass balance of Greenland and Antarctic ice sheets in the coming century. J. Climate 9, 2124–352.0.CO;2>CrossRefGoogle Scholar
Ohmura, A. et al. 1994. Energy balance for the Greenland ice sheet by observation and model computation. In Snow and Ice Cover: Interactions with the Atmosphere and Ecosystem. IAHS Publ. 233, pp. 85–94
Pfeffer, W. T., Meier, M. F. and Illangasekare, T. H. 1991. Retention of Greenland runoff by refreezing; implications for projected sea-level rise. J. Geophys. Res. 96 (C12), 22 117–24CrossRefGoogle Scholar
Reeh, N. 1985. Greenland ice-sheet mass balance and sea-level change. In Glaciers, Ice Sheets and Sea-Level: Effects of a CO2-induced Climatic Change. Washington, D. C., National Academy Press, pp. 155–71
Reeh, N.1989. Dynamic and climatic history of the Greenland ice sheet. In Fulton, R. J., ed., The Geology of North America, vol. K1. Quaternary Geology of Canada and Greenland, chap. 14. Boulder, CO, Geological Society of America
Reeh, N. 1991. Parameterization of melt rate and surface temperature on the Greenland ice sheet. Polarforschung 59, 113–28Google Scholar
Reeh, N.et al. 2002. Glacier specific ablation rate derived by remote sensing measurements, Geophys. Res. Lett. 29, 10.1–10.4CrossRefGoogle Scholar
Rignot, E. 1996. Tidal flexure, ice velocities and ablation rates of Petermann Gletscher, Greenland. J. Glaciol. 42, 476–85CrossRefGoogle Scholar
Rignot, E. 1998. Hinge-line migration of Petermann Gletscher, north Greenland, detected using satellite radar interferometry. J. Glaciol. 44, 469–76CrossRefGoogle Scholar
Rignot, E., Jezek, K. C. and Sohn, H. G. 1995. Ice flow dynamics of the Greenland ice sheet from SAR interferometry. Geophys. Res. Lett. 22, 575–8CrossRefGoogle Scholar
Rignot, E., Gogineni, S., Krabill, W. and Ekholm, S. 1997. Ice discharge from north and northeast Greenland as observed from satellite radar interferometry. Science 276, 934–7CrossRefGoogle Scholar
Rignot, E., Buscarlet, G., Csatho, B., Gogineni, S., Krabill, W. and Schmeltz, M. 2000. Mass balance of the northeast sector of the Greenland ice sheet: a remote sensing perspective. J. Glaciol. 46, 265–73CrossRefGoogle Scholar
Rignot, E., Gogineni, S. P., Joughin, I. and Krabill, W. B. 2001. Contribution to the glaciology of northern Greenland from satellite radar interferometry. J. Geophys. Res. Atmos. 106 (D24), 34007–20CrossRefGoogle Scholar
Shepherd, A., Wingham, D. J., Mansley, J. A. D. and Corr, H. F. J. 2001. Inland thinning of Pine Island glacier, west Antarctica. Science 291, 862–4CrossRefGoogle ScholarPubMed
Shuman, C. A., Bromwich, D. H., Kipfstuhl, J. and Schwager, M. 2001a. Multiyear accumulation and temperature history near the North Greenland ice core project site, north central Greenland. J. Geophys. Res. Atmos. 106 (D24), 33 853–66CrossRefGoogle Scholar
Shuman, Fahnestock M., Alley, R. and Stearns, C. R. 2001b. A dozen years of temperature observations at the Summit: central Greenland automatic weather stations 1987–1999. J. App. Meteorol. 40 (4), 741–522.0.CO;2>CrossRefGoogle Scholar
Sohn, H. S., Jezek, K. C. and Veen, C. J. 1998. Jakobshavn Glacier, west Greenland: 30 years of spaceborne observations. Geophys. Res. Lett. 25, 2699–702CrossRefGoogle Scholar
Steffen, K. 1995. Surface energy exchange during the onset of melt at the equilibrium line altitude of the Greenland ice sheet. Ann. Glaciol. 21, 13–8CrossRefGoogle Scholar
Steffen, K. and Box, J. 2001. Surface climatology of the Greenland ice sheet: Greenland climate network 1990–1999. J. Geophys. Res. Atmos. 106 (D24), 33 951–64CrossRefGoogle Scholar
Steffen, K., Box, J. and Abdalati, W. 1996. Greenland climate network: GC-Net. CRREL Report on Glacier, Ice Sheets and Volcanoes, no. 96–27, 98–103
Stroeve, J. 2001. Assessment of Greenland albedo variability from the AVHRR polar pathfinder data set. J. Geophys. Res. Atmos. 106 (D24), 33989–4006CrossRefGoogle Scholar
Stroeve, J. and Steffen, K. 1998. Variability of AVHRR-derived clear sky surface temperature over the Greenland ice sheet. J. Appl. Meteorol. 37, 23–312.0.CO;2>CrossRefGoogle Scholar
Stroeve, J., Nolin, A. and Steffen, K. 1997. Comparison of AVHRR-derived and in-situ surface albedo over the Greenland ice sheet. Remote Sensing Environ. 62, 262–76CrossRefGoogle Scholar
Tapley, B. D.et al. 1996. The joint gravity model 3. J. Geophys. Res. 101, 28 029–49CrossRefGoogle Scholar
Thomas, R. H., Csatho, B. M., Gogineni, S., Jezek, K. C. and Kuivinen, K. 1998. Thickening of the western part of the Greenland ice sheet. J. Glaciol. 44, 653–8CrossRefGoogle Scholar
Thomas, R.et al. 2000a. Mass balance of the Greenland ice sheet at high elevations. Science 289, 426–8CrossRefGoogle Scholar
Thomas, R. 2000b. Substantial thinning of a major east Greenland outlet glacier. Geophys. Res. Lett. 27, 1291–4CrossRefGoogle Scholar
Thomas, R. 2001a. Program for Arctic regional climate assessment (PARCA): goals, key findings, and future directions. J. Geophys. Res. Atmos. 106 (D24), 33 691–706CrossRefGoogle Scholar
Thomas, R. 2001b. Mass balance of higher-elevation parts of the Greenland ice sheet. J. Geophys. Res. Atmos. 106 (D24), 33 707–16CrossRefGoogle Scholar
Veen, C. J. 1993. Interpretation of short-term ice-sheet elevation changes inferred from satellite altimetry. Climatic Change 23, 383–405CrossRefGoogle Scholar
Veen, C. J. and Bolzan, J. F. 1999. Interannual variability in net accumulation on the Greenland ice sheet: observations and implications for mass balance measurements. J. Geophys. Res. 104, 2009–14CrossRefGoogle Scholar
Wal, R. S. W. 1996. Mass-balance modeling of the Greenland ice sheet: a comparison of an energy-balance and a degree-day model. Ann. Glaciol. 23, 36–45Google Scholar
Wal, R. S. W. and Oerlemans, J. 1994. An energy balance model of the Greenland ice sheet. Global & Planetary Change 9, 115–31Google Scholar
Wal, R. S. W.et al. 1995. Mass-balance measurements in the S⊘ndre Str⊘mfjord area in the period 1990–1994. Z. Gletscherk. Glazialgeol. 31, 57–63Google Scholar
Tatenhove, F. G. M., Meer, J. J. M. and Huybrechts, P. 1995. Glacial/geomorphological research in Greenland used to test an ice-sheet model. Quat. Res. 44, 317–27CrossRefGoogle Scholar
Wahr, J. M., Dam, T., Larson, K. and Francis, O. 2001. GPS and absolute gravity measurements in Greenland. J. Geophys. Res. Solid Earth 106, 16 567–82CrossRefGoogle Scholar
Weidick, A. 1985. Review of glacier changes in west Greenland. Z. Gletscherkd. Glacialgeol. 21, 301–9Google Scholar
Weidick, A. 1993. Neoglacial change of ice cover and the related response of the earth's crust in west Greenland. Rapp. Gronlands Geol. Unders. 159, 121–6Google Scholar
Weidick, A. 1995. Satellite image atlas of glaciers of the world. Greenland, US Geological Survey Professional Paper 1386-C, Washington, D. C. US Government Printing Office
Winebrenner, D. P., Arthern, R. J. and Shuman, C. A. 2001. Mapping ice sheet accumulation rates using observations of thermal emission at 4.5 cm wavelength. J. Geophys. Res. Atmos. 106 (D24), 33 919–34CrossRefGoogle Scholar
Wingham, D. J., Ridout, A. J., Scharroo, R., Arthern, R. and Shum, C. K. 1998. Antarctic elevation change from 1992 to 1996. Science 282, 456–8CrossRefGoogle ScholarPubMed
Yoon, Y. T. 1998. Global orbit-error analysis using stochastic filtering methods. M. S. Thesis, University of Missouri, Columbia
Zwally, H. J. and Giovinetto, M. B. 1995. Accumulation in Antarctica and Greenland derived from passive-microwave data: a comparison with contoured compilations. Ann. Glaciol. 21, 123–30CrossRefGoogle Scholar
Zwally, H. J. and Brenner, A. C. 2001. Ice sheet dynamics and mass balance. In Fu, L. and Cazenave, A., eds., Satellite Altimetry and Earth Sciences. New York, Academic Press, pp. 351–69
Zwally, H. J., Brenner, A. C. and DiMarzio, J. P. 1998. Technical comment: Growth of the southern Greenland ice sheet. Science 281, 1251CrossRefGoogle Scholar
Zwally, H. J., Brenner, A. C., Major, J. A., Bindschadler, R. A. and Marsh, J. G. 1989. Growth of Greenland ice sheet: measurement. Science 246, 1587–9CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×