Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T13:52:03.572Z Has data issue: false hasContentIssue false

Formation of iron-rich phyllosilicates in the FeO–SiO2–H2O system during hydrothermal synthesis as a function of pH

Published online by Cambridge University Press:  14 March 2024

Liva Dzene*
Affiliation:
Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, Mulhouse, France
Amira Doggaz
Affiliation:
Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, Mulhouse, France
Patrick Dutournié
Affiliation:
Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, Mulhouse, France
Sayako Inoué
Affiliation:
Geodynamics Research Center (GRC), Ehime University, Matsuyama, Ehime, Japan
Mustapha Abdelmoula
Affiliation:
LCPME, CNRS-Université de Lorraine UMR7564, Nancy, France
Alexandra Jourdain
Affiliation:
Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, Mulhouse, France
Jean-Marc Le Meins
Affiliation:
Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, Mulhouse, France
Jocelyne Brendlé
Affiliation:
Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, Mulhouse, France
Christelle Martin
Affiliation:
Andra, Scientific & Technical Division, Waste, Radionuclides, Chemicals & Geochemistry Department, Châtenay-Malabry, France
Nicolas Michau
Affiliation:
Andra, Scientific & Technical Division, Waste, Radionuclides, Chemicals & Geochemistry Department, Châtenay-Malabry, France
*
Corresponding author: Liva Dzene; Email: liva.dzene@uha.fr

Abstract

The formation of iron-rich phyllosilicates can occur at different natural or engineered settings. In this study, the influence of pH in the hydrothermal synthesis of iron-rich phyllosilicates was investigated in the pH range 8.50–12.10 after the ageing of the precursor. The synthesized samples were characterized by powder X-ray diffraction, Raman and Mössbauer spectroscopies and transmission electron microscopy. Three domains of pH were identified, and these correlated with silica availability and its speciation in the solution. The formation of 1:1-type FeIII/FeII phyllosilicate was observed between pH 9.67 and 10.75. Above pH 10.75, two types of phyllosilicate-like mineral phases were observed. In addition to 1:1-type FeIII/FeII phyllosilicate, 2:1-type FeIII/FeII phyllosilicate was observed. Below pH 9.67, mainly amorphous silica and iron oxides were observed. The findings show that pH governed the crystallinity and nature of the obtained phyllosilicate-like phases.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Javier Huertas

References

Alexander, G.B., Heston, W.M. & Iler, R.K. (1954) The solubility of amorphous silica in water. Journal of Physical Chemistry, 58, 453455.10.1021/j150516a002CrossRefGoogle Scholar
Baron, F., Petit, S., Tertre, E. & Decarreau, A. (2016) Influence of aqueous Si and Fe speciation on tetrahedral Fe(III) substitutions in nontronites: a clay synthesis approach. Clays and Clay Minerals, 64, 230244.10.1346/CCMN.2016.0640309CrossRefGoogle Scholar
Benali, O., Abdelmoula, M., Refait, P. & Génin, J.-M.R. (2001) Effect of orthophosphate on the oxidation products of Fe(II)–Fe(III) hydroxycarbonate: the transformation of green rust to ferrihydrite. Geochimica et Cosmochimica Acta, 65, 17151726.10.1016/S0016-7037(01)00556-7CrossRefGoogle Scholar
Bertoldi, C., Dachs, E., Cemic, L., Theye, T., Wirth, R. & Groger, W. (2005) The heat capacity of the serpentine subgroup mineral berthierine (Fe2.5Al0.5)[Si1.5Al0.5O5](OH)4. Clays and Clay Minerals, 53, 380388.10.1346/CCMN.2005.0530406CrossRefGoogle Scholar
Boumaiza, H., Dutournié, P., Le Meins, J.-M., Limousy, L., Brendlé, J., Martin, C. et al. (2020) Iron-rich clay mineral synthesis using design of experiments approach. Applied Clay Science, 199, 105876.10.1016/j.clay.2020.105876CrossRefGoogle Scholar
Carriere, C., Neff, D., Martin, C., Tocino, F., Delanoë, A., Gin, S. et al. (2021) AVM nuclear glass/steel/claystone system altered by Callovo–Oxfordian poral water with and without cement–bentonite grout at 70°C. Materials and Corrosion, 72, 474482.10.1002/maco.202011766CrossRefGoogle Scholar
Criouet, I., Viennet, J.C., Baron, F., Balan, E., Buch, A., Delbes, L. et al. (2023) Influence of pH on the hydrothermal Ssynthesis of Al-substituted smectites (saponite, beidellite, and nontronite). Clays and Clay Minerals, 71, 539558.10.1007/s42860-023-00255-3CrossRefGoogle Scholar
Cundy, C.S. & Cox, P.A. (2005) The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 82, 178.10.1016/j.micromeso.2005.02.016CrossRefGoogle Scholar
de Faria, D.L.A., Venâncio Silva, S. & de Oliveira, M.T. (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. Journal of Raman Spectroscopy, 28, 873878.10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B3.0.CO;2-B>CrossRefGoogle Scholar
de Kimpe, C., Gastuche, M.C. & Brindley, G. (1961) Ionic coordination in alumino-silicic gels in relation to clay mineral formation. American Mineralogist, 46, 13701381.Google Scholar
Decarreau, A. & Bonnin, D. (1986) Synthesis and crystallogenesis at low temperature of Fe(III)-smectites by evolution of coprecipitated gels: experiments in partially reducing conditions. Clay Minerals, 21, 861877.10.1180/claymin.1986.021.5.02CrossRefGoogle Scholar
Doelsch, E., Rose, J., Masion, A., Bottero, J.Y., Nahon, D. & Bertsch, P.M. (2002) Hydrolysis of Iron(II) Chloride under anoxic conditions and influence of SiO4 ligands. Langmuir, 18, 42924299.10.1021/la011605rCrossRefGoogle Scholar
Dyar, M.D., Agresti, D.G., Schaefer, M.W., Grant, C.A. & Sklute, E.C. (2006) Mössbauer spectroscopy of Earth and planetary materials. Annual Review of Earth and Planetary Sciences, 34, 83125.10.1146/annurev.earth.34.031405.125049CrossRefGoogle Scholar
Dzene, L., Brendlé, J., Limousy, L., Dutournié, P., Martin, C. & Michau, N. (2018) Synthesis of iron-rich tri-octahedral clay minerals: a review. Applied Clay Science, 166, 276287.10.1016/j.clay.2018.09.030CrossRefGoogle Scholar
Eikenberg, J. (1990) On the Problem of Silica Solubility at High pH. Paul Scherrer Institut, Würenlingcn und Villigen, Switzerland, 59 pp.Google Scholar
Felmy, A.R., Cho, H., Rustad, J.R. & Mason, M.J. (2001) An aqueous thermodynamic model for polymerized silica species to high ionic strength. Journal of Solution Chemistry, 30, 509525.10.1023/A:1010382701742CrossRefGoogle Scholar
Francisco, P.C.M., Mitsui, S., Ishidera, T., Tachi, Y., Doi, R. & Shiwaku, H. (2020) Interaction of FeII and Si under anoxic and reducing conditions: structural characteristics of ferrous silicate co-precipitates. Geochimica et Cosmochimica Acta, 270, 120.10.1016/j.gca.2019.11.009CrossRefGoogle Scholar
Frank-Kamenetzkij, V.A., Kotov, N.V. & Tomashenko, A.N. (1973) The role of AlIV and AlVI in transformation and synthesis of layer silicates. Kristall und Technik, 8, 425435.10.1002/crat.19730080404CrossRefGoogle Scholar
Galai, L., Marchetti, L., Miserque, F., Frugier, P., Godon, N., Brackx, E. et al. (2023) Effect of dissolved Si on the corrosion of iron in deaerated and slightly alkaline solutions (pH ≈ 8.1) at 50 °C. Corrosion Science, 210, 110790.10.1016/j.corsci.2022.110790CrossRefGoogle Scholar
Gong, K., Aytas, T., Zhang, S.Y. & Olivetti, E.A. (2022) Data-driven prediction of quartz dissolution rates at near-neutral and alkaline environments. Frontiers in Materials, 9, 115.10.3389/fmats.2022.924834CrossRefGoogle Scholar
Grubb, P.L.C. (1971) Silicates and their paragenesis in the Brockman iron formation of Wittenoom Gorge, Western Australia. Economic Geology, 66, 281292.10.2113/gsecongeo.66.2.281CrossRefGoogle Scholar
Gunnarsson, I. & Arnórsson, S. (2000) Amorphous silica solubility and the thermodynamic properties of H4SiO°4 in the range of 0° to 350°C at Psat. Geochimica et Cosmochimica Acta, 64, 22952307.10.1016/S0016-7037(99)00426-3CrossRefGoogle Scholar
Halevy, I., Alesker, M., Schuster, E.M., Popovitz-Biro, R. & Feldman, Y. (2017) A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nature Geoscience, 10, 135139.10.1038/ngeo2878CrossRefGoogle Scholar
Harder, H. (1978) Synthesis of iron layer silicate minerals. Clays and Clay Minerals, 26, 6572.10.1346/CCMN.1978.0260108CrossRefGoogle Scholar
Herbert, H.-J., Kasbohm, J., Nguyen-Thanh, L., Meyer, L., Hoang-Minh, T. et al. (2016) Alteration of expandable clays by reaction with iron while being percolated by high brine solutions. Applied Clay Science, 121–122, 174187.10.1016/j.clay.2015.12.022CrossRefGoogle Scholar
Hinz, I.L., Nims, C., Theuer, S., Templeton, A.S. & Johnson, J.E. (2021) Ferric iron triggers greenalite formation in simulated Archean seawater. Geology, 49, 905910.10.1130/G48495.1CrossRefGoogle Scholar
Jaber, M., Komarneni, S. & Zhou, C.-H. (2013) Synthesis of clay minerals. Pp. 223–241 in: Handbook of Clay Science Fundamentals (Bergaya, F. & Lagaly, G., editors). Elsevier, Amsterdam, The Netherlands.Google Scholar
Kikuchi, R., Sato, T., Fujii, N., Shimbashi, M. & Arcilla, C.A. (2022) Natural glass alteration under a hyperalkaline condition for about 4000 years. Scientific Reports, 12, 110.Google Scholar
Kilaas, R. (1998) Optimal and near-optimal filters in high-resolution electron microscopy. Journal of Microscopy, 190, 4551.10.1046/j.1365-2818.1998.3070861.xCrossRefGoogle Scholar
Kloprogge, J.T. (1994) Solid-state nuclear magnetic resonance spectroscopy on synthetic ammonium/aluminum-saponites. Clays and Clay Minerals, 42, 416420.10.1346/CCMN.1994.0420406CrossRefGoogle Scholar
Kloprogge, J.T. (1998) Synthesis of smectites and porous pillared clay catalysts: a review. Journal of Porous Materials, 5, 541.10.1023/A:1009625913781CrossRefGoogle Scholar
Konhauser, K.O., Amskold, L., Lalonde, S.V., Posth, N.R., Kappler, A. & Anbar, A. (2007) Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth and Planetary Science Letters, 258, 87100.10.1016/j.epsl.2007.03.026CrossRefGoogle Scholar
Lanson, B., Lantenois, S., van Aken, P.A., Bauer, A. & Plancon, A. (2012) Experimental investigation of smectite interaction with metal iron at 80 °C: structural characterization of newly formed Fe-rich phyllosilicates. American Mineralogist, 97, 864871.10.2138/am.2012.4062CrossRefGoogle Scholar
Lantenois, S., Lanson, B., Muller, F., Bauer, A., Jullien, M. & Plançon, A. (2005) Experimental study of smectite interaction with metal Fe at low temperature: 1. Smectite destabilization. Clays and Clay Minerals, 53, 597612.10.1346/CCMN.2005.0530606CrossRefGoogle Scholar
Manceau, A. (1995) Crystal chemistry of hydrous iron silicate scale deposits at the Salton Sea Geothermal Field. Clays and Clay Minerals, 43, 304317.10.1346/CCMN.1995.0430305CrossRefGoogle Scholar
Marks, L.D. (1996) Wiener-filter enhancement of noisy HREM images. Ultramicroscopy, 62, 4352.10.1016/0304-3991(95)00085-2CrossRefGoogle ScholarPubMed
Meite, F., Hauet, T., Billard, P., Ferté, T., Abdelmoula, M. & Zegeye, A. (2022) Insight into the magnetic properties of Pb-dopped iron oxide nanoparticles during Fe(III) bio-reduction by Shewanella oneidensis MR-1. Chemical Geology, 606, 120904.10.1016/j.chemgeo.2022.120904CrossRefGoogle Scholar
Mizutani, T., Fukushima, Y., Okada, A., Kamigaito, O. & Kobayashi, T. (1991) Synthesis of 1:1 and 2:1 iron phyllosilicates and characterization of their iron state by Mössbauer spectroscopy. Clays and Clay Minerals, 39, 381386.10.1346/CCMN.1991.0390407CrossRefGoogle Scholar
Mosser-Ruck, R., Cathelineau, M., Guillaume, D., Charpentier, D., Rousset, D., Barres, O. & Michau, N. (2010) Effects of temperature, pH, and iron/clay and liquid/clay ratios on experimental conversion of dioctahedral smectite to berthierine, chlorite, vermiculite, or saponite. Clays and Clay Minerals, 58, 280291.10.1346/CCMN.2010.0580212CrossRefGoogle Scholar
Murad, E. & Johnston, J.H. (1987) Iron oxides and oxyhydroxides. Pp. 507–582 in: Mössbauer Spectroscopy Applied to Inorganic Chemistry, Volume 2 (Long, G.J., editor). Springer, New York, NY, USA.Google Scholar
Petit, S., Baron, F. & Decarreau, A. (2017) Synthesis of nontronite and other Fe-rich smectites: a critical review. Clay Minerals, 52, 469483.10.1180/claymin.2017.052.4.05CrossRefGoogle Scholar
Pignatelli, I., Bourdelle, F., Bartier, D., Mosser-Ruck, R., Truche, L., Mugnaioli, E. & Michau, N. (2014) Iron–clay interactions: detailed study of the mineralogical transformation of claystone with emphasis on the formation of iron-rich T–O phyllosilicates in a step-by-step cooling experiment from 90 °C to 40 °C. Chemical Geology, 387, 111.10.1016/j.chemgeo.2014.08.010CrossRefGoogle Scholar
Rancourt, D.G. & Ping, J.Y. (1991) Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 58, 8597.10.1016/0168-583X(91)95681-3CrossRefGoogle Scholar
Schwertmann, U. & Cornell, R.M. (editors) (2000) Iron Oxides in the Laboratary. Wiley-VCH Verlag GmbH, Weinheim, Germany, 188 pp.10.1002/9783527613229CrossRefGoogle Scholar
Schwertmann, U. & Thalmann, H. (1976) The influence of [Fe(II)], [Si], and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solutions. Clay Minerals, 11, 189200.10.1180/claymin.1976.011.3.02CrossRefGoogle Scholar
Stucki, J.W., Goodman, B.A. & Schwertmann, U. (editors) (1989) Iron in Soils and Clay Minerals. D. Reidel Publishing Company, Dordrecht, The Netherlands, 310 pp.Google Scholar
Tosca, N.J., Guggenheim, S. & Pufahl, P.K. (2016) An authigenic origin for Precambrian greenalite: implications for iron formation and the chemistry of ancient seawater. Geological Society of America Bulletin, 128, 511530.10.1130/B31339.1CrossRefGoogle Scholar
Vandenberghe, R.E., Barrero, C.A., da Costa, G.M., Van San, E. & De Grave, E. (2000) Mössbauer characterization of iron oxides and (oxy)hydroxides: the present state of the art. Hyperfine Interactions, 126, 247259.10.1023/A:1012603603203CrossRefGoogle Scholar
Supplementary material: File

Dzene et al. supplementary material

Dzene et al. supplementary material
Download Dzene et al. supplementary material(File)
File 12.7 MB