Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T08:00:19.641Z Has data issue: false hasContentIssue false

7 - Emergence and early development of color vision and color perception

from Part III - Development of and differences in color vision

Published online by Cambridge University Press:  05 April 2016

Andrew J. Elliot
Affiliation:
University of Rochester, New York
Mark D. Fairchild
Affiliation:
Rochester Institute of Technology, New York
Anna Franklin
Affiliation:
University of Sussex
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramov, I., and Gordon, J. (1997). Constraining color categories: the problem of the baby and the bath water. Behavioral and Brain Sciences, 20, 179–80.CrossRefGoogle Scholar
Abramov, I., Gordon, J., Hendrickson, A., Hainline, L., Dobson, V., and LaBossiere, E. (1982). The retina of the newborn human infant. Science, 217, 265–7.CrossRefGoogle ScholarPubMed
Adams, R. J. (1987). An evaluation of color preference in early infancy. Infant Behavior and Development, 10, 143–50.CrossRefGoogle Scholar
Adams, R. J. (1995). Further exploration of human neonatal chromatic-achromatic discrimination. Journal of Experimental Child Psychology, 60, 344–60.CrossRefGoogle ScholarPubMed
Adams, R. J., and Courage, M. L. (1995). Development of chromatic discrimination in early infancy. Behavioral Brain Research, 67, 99101.CrossRefGoogle ScholarPubMed
Adams, R. J., and Courage, M. L. (1998). Human newborn color vision: measurement with chromatic stimuli varying in excitation purity. Journal of Experimental Psychology, 68, 2234.Google ScholarPubMed
Adams, R. J., and Courage, M. L. (2002). A psychophysical test of the early maturation of infants’ mid- and long-wavelength retinal cones. Infant Behavior and Development, 25, 247–54.CrossRefGoogle Scholar
Adams, R. J., Courage, M. L., and Mercer, M. E. (1994). Systematic measurement of human neonatal color vision. Vision Research, 34, 16911701.CrossRefGoogle ScholarPubMed
Allen, D., Banks, M. S., and Norcia, A. M. (1993). Does chromatic sensitivity develop more slowly than luminance sensitivity? Vision Research, 33, 2553–62.CrossRefGoogle ScholarPubMed
Ankrum, C., Clavadetscher, J., and Teller, D. (1986). Chromatic discriminations and brightness matches in infants. Investigative Ophthalmology and Vision Science Supplement, 27(3), 264.Google Scholar
Anstis, S., and Cavanagh, P. (1983). A minimum motion technique for judging equiluminance. In Mollon, J. D. and Sharpe, L. T. (eds.), Colour Vision: Physiology and Psychophysics (pp. 475–81). London: Academic Press.Google Scholar
Anstis, S., Cavanagh, P., Maurer, D., and Lewis, T. (1986). Early maturation of luminous efficiency for colored stimuli. Investigative Ophthalmology and Vision Science Supplement, 27(3), 264.Google Scholar
Backscheider, A. G., and Shatz, M. (1993). Children’s acquisition of lexical domains. Paper presented at the regional meeting of the Chicago Linguistics Society.Google Scholar
Baldwin, J. M. (1893). Distance and color perception by infants. Science, 21, 231–2.Google ScholarPubMed
Baldwin, J. M. (1906). Mental Development in the Child and the Race. New York: Macmillan.Google Scholar
Banks, M. S., and Bennett, P. J. (1988). Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2059–79.CrossRefGoogle Scholar
Banks, M. S., and Crowell, J. A. (1993). Front-end limitations to infant spatial vision: examination of two analyses. In Simons, K. (ed.), Early Visual Development: Normal and Abnormal (pp. 91116). New York: Oxford University Press.Google Scholar
Bartlett, E. J. (1977). The acquisition of the meaning of color terms: a study of lexical development. In Campbell, R. N. and Smith, P. T. (eds.), Recent Advances in the Psychology of Language (pp. 89108). New York: Plenum.Google Scholar
Beau Lotto, R. (2004). Visual development: experience puts the color in life. Current Biology, 14, R619–21.CrossRefGoogle ScholarPubMed
Berlin, B., and Kay, P. (1969). Basic Color Terms: Their Universality and Evolution. Berkeley, CA: University of California Press.Google Scholar
Bieber, M. L., Knoblauch, K., and Werner, J. S. (1997). Detecting color vision deficiency in 4- and 8-week-old human infants. In Cavonius, C. R., Color Vision Deficiencies XIII (pp. 277–82). Boston: Kluwer Academic.Google Scholar
Bieber, M., Volbrecht, V., and Werner, J. (1995). Spectral efficiency measured by heterochromatic flicker photometry is similar in human infants and adults. Vision Research, 35, 1385–92.CrossRefGoogle ScholarPubMed
Bieber, M. L., Werner, J. S., Knoblauch, K., Neitz, J., and Neitz, M. (1998). Comparison of genotypic and phenotypic markers of color vision in infants and adults. Vision Research, 38, 3293–7.CrossRefGoogle ScholarPubMed
Boothe, R., Teller, D. Y., and Sackett, G. P. (1975). Trichromacy in normally reared and light deprived infant monkeys (Macaca nemestrina). Vision Research, 15, 1187–91.CrossRefGoogle ScholarPubMed
Bornstein, M. H. (1973). Color vision and color naming: a psychophysiological hypothesis of cultural difference. Psychological Bulletin, 80, 257–85.CrossRefGoogle ScholarPubMed
Bornstein, M. H. (1975a). Spectral sensitivity of the modulation-sensitive mechanism of vision: effects of field size and retinal locus. Vision Research, 15, 865–9.CrossRefGoogle ScholarPubMed
Bornstein, M. H. (1975b). Qualities of color vision in infancy. Journal of Experimental Child Psychology, 19, 401–19.CrossRefGoogle ScholarPubMed
Bornstein, M. H. (1975c). Hue is an absolute code for young children. Nature, 256, 309–10.CrossRefGoogle ScholarPubMed
Bornstein, M. H. (1976a). Infants are trichomats. Journal of Experimental Child Psychology, 21, 425–45.CrossRefGoogle Scholar
Bornstein, M. H. (1976b). Infants’ recognition memory for hue. Developmental Psychology, 12, 185–91.CrossRefGoogle Scholar
Bornstein, M. H. (1976c). Name codes and color memory. American Journal of Psychology, 89, 269–79.Google Scholar
Bornstein, M. H. (1977). Developmental pseudocyananopsia: ontogenetic change in human color vision. American Journal of Optometry and Physiological Optics, 54, 464–9.CrossRefGoogle ScholarPubMed
Bornstein, M. H. (1978a). Chromatic vision in infancy. In Reese, H. W. and Lipsitt, L. P. (eds.), Advances in Child Development and Behavior (vol. XII, pp. 117–82). New York: Academic Press.Google Scholar
Bornstein, M. H. (1978b). Visual behavior in the young human infant. Journal of Experimental Child Psychology, 26, 174–92.Google ScholarPubMed
Bornstein, M. H. (1979). Effects of habituation experience on posthabituation behavior in young infants: discrimination and generalization among colors. Developmental Psychology, 15, 348–9.CrossRefGoogle Scholar
Bornstein, M. H. (1981a). Psychological studies of color perception in human infants. In Lipsitt, L. P. (ed.), Advances in Infancy Research (vol. I, pp. 140). Norwood, NJ: Ablex.Google Scholar
Bornstein, M. H. (1981b). Two kinds of perceptual organization near the beginning of life. In Collins, W. A. (ed.), Minnesota Symposia on Child Psychology (vol. XIV, pp. 3991). Hillsdale, NJ: Erlbaum.Google Scholar
Bornstein, M. H. (2006). Hue categorization and color naming: physics to sensation to perception. In Pitchford, N. and Biggam, C. P. (eds.), Progress in Color Studies, vol. II: Psychological Aspects (pp. 134). Amsterdam: John Benjamins.Google Scholar
Bornstein, M. H. (2007). Hue categorization and color naming: cognition to language to culture. In MacLaury, R. E., Paramei, G. V., and Dedrick, D. (eds.), Anthropology of Color: Interdisciplinary Multilevel Modeling (pp. 327). Amsterdam: John Benjamins.CrossRefGoogle Scholar
Bornstein, M. H., Arterberry, M. E., and Lamb, M. E. (2014). Development in Infancy: A Contemporary Introduction. New York: Psychology Press.Google Scholar
Bornstein, M. H., Kessen, W., and Weiskopf, S. (1976a). The categories of hue in infancy. Science, 191, 201–2.CrossRefGoogle ScholarPubMed
Bornstein, M. H., Kessen, W., and Weiskopf, S. (1976b). Color vision and hue categorization in young human infants. Journal of Experimental Psychology: Human Perception and Performance, 2, 115–29.Google ScholarPubMed
Bornstein, M. H., and Korda, N. O. (1984). Discrimination and matching within and between hues measured by reaction times: some implications for categorical perception and levels of information processing. Psychological Research, 46, 207–22.CrossRefGoogle ScholarPubMed
Bornstein, M. H., and Marks, L. E. (1972). Photopic luminosity measured by the method of critical frequency. Vision Research, 12, 2023–33.CrossRefGoogle ScholarPubMed
Bornstein, M. H., and Marks, L. E. (1973). Studies of spectral sensitivity as measured by a procedure of flicker threshold. American Journal of Optometry and Archives of American Academy of Optometry, 50, 376–82.CrossRefGoogle ScholarPubMed
Bornstein, M. H., and Monroe, M. D. (1978). Color-naming evidence for tritan vision in the fovea. American Journal of Optometry and Physiological Optics, 55, 627–30.CrossRefGoogle ScholarPubMed
Bornstein, M. H., and Monroe, M. D. (1980). Chromatic information processing: rate depends on stimulus location in the category and psychological complexity. Psychological Research, 42, 213–25.CrossRefGoogle Scholar
Bosworth, R. G., and Dobkins, K. R. (2009). Chromatic and luminance contrast sensitivity in fullterm and preterm infants. Journal of Vision, 9, 116.CrossRefGoogle ScholarPubMed
Boynton, R. M. (1971). Color vision. In Riggs, L. A. and Kling, J. (eds.), Woodworth and Schlosberg’s Experimental Psychology. New York: Holt.Google Scholar
Boynton, R. M. (1975). Color, hue, and wavelength. In Carterette, E. C. and Friedman, M. P. (eds.), Handbook of Perception (vol. V). New York: Academic Press.Google Scholar
Boynton, R. M. (1979). Human Color Vision. New York: Holt.Google Scholar
Boynton, R. M., and Gordon, J. (1965). Bezold–Brücke hue shift measured by color-naming technique. Journal of the Optical Society of America, 55, 7885.CrossRefGoogle Scholar
Brenner, E., Cornelissen, F., and Nuboer, W. (1990). Striking absence of long-lasting effects of early color deprivation on monkey vision. Developmental Psychobiology, 23, 441–8.CrossRefGoogle ScholarPubMed
Brenner, E., Schelvis, J., and Nuboer, W. (1985). Early colour deprivation in a monkey (Macaca fascicularis). Vision Research, 25, 1337–9.CrossRefGoogle Scholar
Brindley, G. S. (1970). Physiology of the Retina and the Visual Pathway, 2nd edn. Baltimore, MD: Williams and Wilkins.Google Scholar
Brown, A. M. (1994). Intrinsic contrast noise and infant visual contrast discrimination. Vision Research, 34, 1947–64.CrossRefGoogle ScholarPubMed
Brown, A. M. (2009). Contrast insensitivity: the critical immaturity in infant visual performance. Optometry and Vision Science, 86, 572–6.CrossRefGoogle ScholarPubMed
Brown, A. M., and Lindsey, D. T. (2013). Infant color vision and color preferences: a tribute to Davida Teller. Visual Neuroscience, 30, 18.CrossRefGoogle ScholarPubMed
Brown, A. M., Lindsey, D. T., McSweeney, E. M., and Walters, M. M. (1995). Infant luminance and chromatic contrast sensitivity: optokinetic nystagmus data on 3-month-olds. Vision Research, 35, 3145–60.CrossRefGoogle ScholarPubMed
Brown, A. M., and Teller, D. T. (1989). Color opponency in human infants. Vision Research, 29, 3745.CrossRefGoogle ScholarPubMed
Catherwood, D. (1994). Exploring the seminal phase in infant memory for color and shape. Infant Behavior and Development, 17, 235–43.CrossRefGoogle Scholar
Catherwood, D., Crassini, B., and Freiberg, K. (1987). The nature of infant memory for hue. British Journal of Developmental Psychology, 5(4), 385–94.CrossRefGoogle Scholar
Catherwood, D., Crassini, B., and Freiberg, K. (1989). Infant response to stimuli of similar hue and dissimilar shape: tracing origins of the categorization of objects by hue. Child Development, 60, 752–62.CrossRefGoogle ScholarPubMed
Catherwood, D., Crassini, B., and Freiberg, K. (1990). The course of infant memory for hue. Australian Journal of Psychology, 42(3), 277–85.CrossRefGoogle Scholar
Chase, W. P. (1937). Color vision in infants. Journal of Experimental Psychology, 20, 203–22.CrossRefGoogle Scholar
Chien, S. H. L., Bronson-Castain, K., Palmer, J., and Teller, D. Y. (2006). Lightness constancy in 4-month-old infants. Vision Research, 46(13), 2139–48.CrossRefGoogle ScholarPubMed
Chien, S. H. L., Palmer, J., and Teller, D. (2003). Infant lightness perception: do 4-month-old infants follow Wallach’s ratio rule? Psychological Science, 14(4), 291–5.CrossRefGoogle ScholarPubMed
Chien, S. H. L., Palmer, J., and Teller, D. (2005). Achromatic contrast effects in infants: adults and 4-month-old infants show similar deviations from Wallach’s ratio rule. Vision Research, 45(22), 2854–61.CrossRefGoogle ScholarPubMed
Chien, S. H. L., Teller, D. Y., and Palmer, J. (2000). The transition from scotopic to photopic vision in 3-month-old infants and adults: an evaluation of the rod dominance hypothesis. Vision Research, 40(28), 3853–71.CrossRefGoogle ScholarPubMed
Child, I. L., Hansen, J. A., and Hornbeck, F. W. (1968). Age and sex differences in children’s color preferences. Child Development, 39, 237–47.CrossRefGoogle ScholarPubMed
Clavadetscher, J. E., Brown, A. M., Ankrum, C., and Teller, D. Y. (1988). Spectral sensitivity and chromatic discriminations in 3- and 7-week-old infants. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 5(12), 20932105.CrossRefGoogle ScholarPubMed
Clifford, A., Franklin, A., Davies, I. R. L., and Holmes, A. (2009). Electrophysiological markers of categorical perception of color in 7-month-old infants. Brain and Cognition, 71, 165–72.CrossRefGoogle Scholar
Clifford, A., Franklin, A., Holmes, A., Drivonikou, V. G., Özgen, E., and Davies, I. R. (2012). Neural correlates of acquired color category effects. Brain and Cognition, 80(1), 126–43.CrossRefGoogle ScholarPubMed
Colby, M. G., and Robertson, J. B. (1942). Genetic studies in abstraction. Journal of Comparative Psychology, 33, 385401.CrossRefGoogle Scholar
Conrad, R. (1972). Form and color as short-term memory codes in preschool children. Psychonomic Science, 27, 225–6.CrossRefGoogle Scholar
Cook, R. S., Kay, P., and Regier, T. (2005). The World Color Survey database: history and use. In Cohen, H. and Lefebvre, C. (eds.), Handbook of Categorization in the Cognitive Sciences (pp. 223–42). Amsterdam: Elsevier.Google Scholar
Crognale, M. A., Kelly, J. P., Weiss, A., and Teller, D. Y. (1998). Development of the spatio-chromatic visual evoked potential (VEP): a longitudinal study. Vision Research, 38, 3283–92.CrossRefGoogle ScholarPubMed
Cruse, D. A. (1977). A note on the learning of color names. Journal of Child Language, 4, 305–11.CrossRefGoogle Scholar
Daehler, M., Bukatko, D., Benson, K., and Myers, N. (1976). The effects of size and color cues on the delayed response of very young children. Bulletin of the Psychonomic Society, 7, 65–8.CrossRefGoogle Scholar
Dain, S. J. (2004). Clinical color vision tests. Clinical and Experimental Optometry, 87, 276–93.CrossRefGoogle Scholar
Dannemiller, J. L. (1989). A test of color constancy in 9- and 20-week-old human infants following simulated illuminant changes. Developmental Psychology, 25, 171–84.CrossRefGoogle Scholar
Dannemiller, J. L., and Hanko, S. A. (1987). A test of color constancy in 4-month-old human infants. Journal of Experimental Child Psychology, 44, 255–67.CrossRefGoogle ScholarPubMed
Darwin, C. (1877). A biographical sketch of a young child. Kosmos, 1, 367–76.Google Scholar
De Valois, R. L., and De Valois, K. K. (1975). Neural coding of color. In Carterette, E. C. and Friedman, M. P. (eds.), Handbook of Perception (vol. V, pp. 117–66). New York: Academic Press.Google Scholar
Di, S., Neitz, J., and Jacobs, G. H. (1987). Early color deprivation and subsequent color vision in a dichromatic monkey. Vision Research, 27, 2009–13.CrossRefGoogle Scholar
Dobkins, K. R., and Anderson, C. M. (2002). Color-based motion processing is stronger in infants than in adults. Psychological Science, 13, 7680.CrossRefGoogle ScholarPubMed
Dobkins, K. R., Anderson, C. M., and Kelly, J. (2001). Development of psychophysically-derived detection contours in L- and M-cone contrast space. Vision Research, 41, 17911807.CrossRefGoogle Scholar
Dobkins, K. R., Bosworth, R. G., and McCleery, J. P. (2009). Effects of gestational length, gender, postnatal age, and birth order on visual contrast sensitivity in infants. Journal of Vision, 9, 121.CrossRefGoogle ScholarPubMed
Dobkins, K. R., Lia, B., and Teller, D. Y. (1997). Infant color vision: temporal contrast sensitivity functions for chromatic (red/green) stimuli in 3-month-olds. Vision Research, 37(19), 26992716.CrossRefGoogle ScholarPubMed
Dobson, V. (1976). Spectral sensitivity of the 2-month infant as measured by the visually evoked cortical potential. Vision Research, 15, 367–74.Google Scholar
Dorcus, R. M. (1926). Color preferences and color associations. Pedagogical Seminary and Journal of Genetic Psychology, 33, 399434.CrossRefGoogle Scholar
Elliot, A. J., and Maier, M. A. (2014). Color psychology: effects of perceiving color on psychological functioning in humans. Annual Review of Psychology, 65, 95120.CrossRefGoogle ScholarPubMed
Eysenck, H. J. (1941). A critical and experimental study of color preferences. American Journal of Psychology, 54, 385–68.Google Scholar
Fagan, J. F. (1974). Infant color perception. Science, 183, 973–5.CrossRefGoogle ScholarPubMed
Farnham-Diggory, S., and Gregg, L. W. (1975). Color, form, and function as dimensions of natural classification: developmental changes in eye movements, reaction time, and response strategies. Child Development, 46, 101–14.CrossRefGoogle ScholarPubMed
Franklin, A., Bevis, L., Ling, Y., and Hurlbert, A. (2010). Biological components of colour preference in infancy. Developmental Science, 13(2), 346–54.CrossRefGoogle ScholarPubMed
Franklin, A., Clifford, A., Williamson, E., and Davies, I. R. L. (2005). Color term knowledge does not affect categorical perception of color in toddlers. Journal of Experimental Child Psychology, 90, 114–41.CrossRefGoogle Scholar
Franklin, A., and Davies, I. R. L. (2004). New evidence for infant colour categories. British Journal of Developmental Psychology, 22, 349–77.CrossRefGoogle Scholar
Franklin, A., Drivonikou, G. V., Bevis, L., Davies, I. R. L., Kay, P., and Regier, T. (2008). Categorical perception of color is lateralized to the right hemisphere in infants, but to the left hemisphere in adults. Proceedings of the National Academy of Sciences of the United States of America, 105, 3221–5.Google Scholar
Franklin, A., Pilling, M., and Davies, I. (2005). The nature of infant color categorization: evidence from eye movements on a target detection task. Journal of Experimental Child Psychology, 91, 227–48.CrossRefGoogle ScholarPubMed
Franklin, A., Pitchford, N., Hart, L., Davies, I. R. L., Clausse, S., and Jennings, S. (2008). Salience of primary and secondary colours in infancy. British Journal of Developmental Psychology, 26, 471–83.CrossRefGoogle Scholar
Franklin, A., Sowden, P., Burley, R., Norman, L., and Alder, E. (2008). Color perception in children with autism. Journal of Autism and Developmental Disorders, 38, 1837–47.CrossRefGoogle ScholarPubMed
Fushikida, W., Schloss, K., Yokosawa, K., and Palmer, S. (2009). Cross-cultural differences in color preference: Japan vs. the USA. Journal of Vision, 9, 336.CrossRefGoogle Scholar
Goethe, W. (1967/1810). Theory of Colours. London: Frank Cass.Google Scholar
Gregory, R. L. (1974). Patent specification for a heterochromatic photometer. In Concepts and Mechanisms of Perception (pp. 475–81). London: Duckworth.Google Scholar
Hamer, R. D., Alexander, K. R., and Teller, D. Y. (1982). Rayleigh discriminations in young human infants. Vision Research, 22, 575–87.CrossRefGoogle ScholarPubMed
Hardy, J. L., Frederick, C. M., Kay, P., and Werner, J. S. (2005). Color naming, lens aging, and grue: what the optics of the aging eye can teach us about color language. Psychological Science, 16(4), 321–7.CrossRefGoogle ScholarPubMed
Hendrickson, A. E. (1994). Primate foveal development: a microcosm of current questions in neurobiology. Investigative Opthalmology and Visual Science, 35, 3129–33.Google ScholarPubMed
Hering, E. (1964/1878). Outlines of a Theory of the Light Sense, trans. Hurvich, L. M. and Jameson, D.. Cambridge, MA: Harvard University Press.Google Scholar
Hernandez-Reif, M., and Bahrick, L. E. (2001). The development of visual-tactual perception of objects: amodal relations provide the basis for learning arbitrary relations. Infancy, 2, 5172.CrossRefGoogle ScholarPubMed
Horiguchi, H., Winawer, J., Dougherty, R. F., and Wandell, B. A. (2012). Human trichromacy revisited. Proceedings of the National Academy of Sciences of the United States of America, 110, E260–9.Google ScholarPubMed
Hurlbert, A., and Ling, Y. (2007). Biological components of sex differences in color preference. Current Biology, 17, R623–5.CrossRefGoogle ScholarPubMed
Istomina, Z. M. (1963). Perception and naming of color in early childhood. Soviet Psychology and Psychiatry, 1, 3745.CrossRefGoogle Scholar
James, W. (1924). Some Problems of Philosophy. New York: Longmans, Green and Co.Google Scholar
Joh, A. S., and Spivey, L. A. (2012). Colorful success: preschoolers’ use of perceptual color cues to solve a spatial reasoning problem. Journal of Experimental Child Psychology, 113, 523–34.CrossRefGoogle ScholarPubMed
Jordan, G., and Mollon, J. D. (1998). Shifts in Rayleigh matches after adaptation to monochromatic light of various intensities. Vision Research, 38, 3253–7.CrossRefGoogle ScholarPubMed
Kaldy, Z., and Blaser, E. (2009). How to compare apples and oranges: infants’ object identification tested with equally salient shape, luminance, and color changes. Infancy, 14(2), 222–43.CrossRefGoogle ScholarPubMed
Kaldy, Z., Blaser, E., and Leslie, A. M. (2006). A new method for calibrating perceptual salience across dimensions in infants: the case of color vs. luminance. Developmental Science, 9, 482–9.CrossRefGoogle ScholarPubMed
Kessen, W., and Bornstein, M. H. (1978). Discriminability of brightness change for infants. Journal of Experimental Child Psychology, 25, 526–30.CrossRefGoogle ScholarPubMed
Kimura, A., Wada, Y., Yang, J., Otsuka, Y., Dan, I., Masuda, T., and Yamaguchi, M. (2010). Infants’ recognition of objects using canonical color. Journal of Experimental Psychology, 105, 256–63.Google ScholarPubMed
Knoblauch, K., Beiber, M. L., and Werner, J. S. (1998). M- and L-cones in early infancy. I. VEP responses to receptor-isolating stimuli at 4 and 8 weeks of age. Vision Research, 38, 1753–64.CrossRefGoogle ScholarPubMed
Knoblauch, K., Saunders, F., Kusuda, M., Hynes, R., Podgor, M., Higgins, K. E., and de Monasterio, F. M. (1987). Age and illuminance effects in the Farnsworth–Munsell 100-hue test. Applied Optics, 26, 1441–8.CrossRefGoogle ScholarPubMed
Knoblauch, K., Vital-Durand, F., and Barbur, J. L. (2001). Variation of chromatic sensitivity across the life span. Vision Research, 41, 2336.CrossRefGoogle ScholarPubMed
Koida, K., and Komatsu, H. (2007). Effects of task demands on the responses of color-selective neurons in the inferior temporal cortex. Nature Neuroscience, 10, 108–16.CrossRefGoogle ScholarPubMed
Kowalski, K., and Zimiles, H. (2006). The relation between children’s conceptual functioning with color and color term acquisition. Journal of Experimental Child Psychology, 94(4), 301–21.CrossRefGoogle ScholarPubMed
Ladenheim, B., and Gordon, J. (1986). Heterochromatic flicker photometry in neonates. Investigative Ophthalmology and Vision Science Supplement, 27(3), 76.Google Scholar
Laeng, B., Brennen, T., Elden, Å., Gaare Paulsen, H., Banerjee, A., and Lipton, R. (2007). Latitude-of-birth and season-of-birth effects on human color vision in the Arctic. Vision Research, 47(12), 15951607.CrossRefGoogle ScholarPubMed
Lee, L. C. (1965). Concept utilization in preschool children. Child Development, 36, 221–8.CrossRefGoogle ScholarPubMed
Lindsey, D. T., and Brown, A. M. (2002). Color naming and the phototoxic effects of sunlight on the eye. Psychological Science, 13, 506–12,CrossRefGoogle ScholarPubMed
Ling, Y., Hurlbert, A., and Robinson, L. (2006). Sex differences in color preference. In Pitchford, N. J. and Biggam, C. P. (eds.), Progress in Color Studies, II: Cognition (pp. 173–88). Amsterdam: John Benjamins.Google Scholar
Linhares, J. M. M., Pinto, P. D., and Nascimento, S. M. C. (2008). The number of discernible colors in natural scenes. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 25, 2918–24.CrossRefGoogle ScholarPubMed
Livingstone, M. S., and Hubel, D. H. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240, 740–9.CrossRefGoogle ScholarPubMed
Lythgoe, J. N. (1979). The Ecology of Vision. New York: Oxford University Press.Google Scholar
Marks, L. E., and Bornstein, M. H. (1973). Spectral sensitivity by constant CFF: effect of chromatic adaptation. Journal of the Optical Society of America, 63, 220–6.CrossRefGoogle ScholarPubMed
Marks, L. E., and Bornstein, M. H. (1974). Spectral sensitivity of the modulation-sensitive mechanism of vision. Vision Research, 14, 665–9.CrossRefGoogle ScholarPubMed
Maurer, D., Lewis, T., Cavanagh, P., and Anstis, S. (1989). A new test of luminous efficiency for babies. Investigative Ophthalmology and Visual Science, 30, 297303.Google ScholarPubMed
Melkman, R., Tversky, B., and Baratz, D. (1981). Developmental trends in the use of perceptual and conceptual attributes in grouping, clustering and retrieval. Journal of Experimental Child Psychology, 31, 470–86.CrossRefGoogle ScholarPubMed
Mercer, M. E., Courage, M. L., and Adams, R. J. (1991). Contrast/color card procedure: a new test of young infants’ color vision. Optometry and Vision Science, 68, 522–32.CrossRefGoogle ScholarPubMed
Mollon, J. D. (1989). “Tho’ she kneel’d in that place where they grew…” The uses and origins of primate color vision. Journal of Experimental Biology, 146, 2138.CrossRefGoogle ScholarPubMed
Morrone, M. C., Burr, D. C., and Fiorentini, A. (1990). Development of contrast sensitivity and acuity of the infant color system. Proceedings of the Royal Society of London. Series B, Biological Sciences, 242, 134–9.Google Scholar
Moskowitz-Cook, A. (1979). The development of photopic spectral sensitivity in human infants. Vision Research, 19, 1133–42.CrossRefGoogle ScholarPubMed
Nagel, W. A. (1906). Observations on the color-sense of a child. Journal of Comparative Neurology and Psychology, 16, 217–30.CrossRefGoogle Scholar
Oakes, L. M., Ross-Sheehy, S., and Luck, S. L. (2006). Rapid development of feature binding in visual short-term memory. Psychological Science, 17, 781–7.CrossRefGoogle ScholarPubMed
Odom, R. D. (1972). Effects of perceptual salience on the recall of relevant and incidental dimensional values: a developmental study. Journal of Experimental Psychology, 92, 285–91.CrossRefGoogle ScholarPubMed
Offenbach, S. I. (1980). Children’s perception of Munsell colors. Journal of Psychology, 104, 4351.CrossRefGoogle ScholarPubMed
Oster, H. S. (1975). Color Perception in Human Infants. Doctoral dissertation, University of California, Berkeley (University Microfilms, no. 76–15, 330).Google Scholar
Ou, L.-C., Luo, M. R., Sun, P.-L., Hu, N.-C., and Chen, H.-S. (2012). Age effects on color emotion, preference, and harmony. Color Research & Application, 37, 92105.CrossRefGoogle Scholar
Packer, O., Hartmann, E. E., and Teller, D.Y. (1984). Infant color vision: the effect of test field size on Rayleigh discriminations. Vision Research, 24, 1247–60.CrossRefGoogle ScholarPubMed
Payne, M. C. (1964). Color as an independent variable in perceptual research. Psychological Bulletin, 61, 199208.CrossRefGoogle ScholarPubMed
Peeples, D. R., and Teller, D. Y. (1975). Color vision and brightness discrimination in two-month-old human infants. Science, 189, 1102–3.Google Scholar
Peeples, D. R., and Teller, D. Y. (1978). White-adapted photopic spectral sensitivity in human infants. Vision Research, 18, 3953.CrossRefGoogle ScholarPubMed
Pereverzeva, M., Chien, S. H. L., Palmer, J., and Teller, D. Y. (2002). Infant photometry: are mean adult isoluminance values a sufficient approximation to individual infant values? Vision Research, 42, 1639–49.CrossRefGoogle ScholarPubMed
Pereverzeva, M., and Teller, D. Y. (2004). Infant color vision: influence of surround chromaticity on spontaneous looking preferences. Visual Neuroscience, 21(3), 389–95.CrossRefGoogle ScholarPubMed
Pereverzeva, M., and Teller, D. Y. (2009). Simultaneous color contrast in 4-month-old infants. Perception, 38(1), 3043.CrossRefGoogle ScholarPubMed
Petry, H. M., and Kelly, J. P. (1991). Psychophysical measurement of spectral sensitivity and color vision in red-light-reared tree shrews (Tupaia belangeri). Vision Research, 31, 1749–57.CrossRefGoogle ScholarPubMed
Petzold, A., and Sharpe, L. T. (1998). Hue memory and discrimination in young children. Vision Research, 38, 3759–72.CrossRefGoogle ScholarPubMed
Pointer, M. R., and Attridge, G. G. (1998). The number of discernible colors. Color Research & Application, 23, 52–4.Google Scholar
Pompe, M. T., Kranjc, B. S., and Brecelj, J. (2006). Visual evoked potentials to red-green stimulation in schoolchildren. Visual Neuroscience, 23, 447–51.CrossRefGoogle ScholarPubMed
Powers, M. K., Schneck, M., and Teller, D. Y. (1981). Spectral sensitivity of human infants at absolute visual threshold. Vision Research, 21, 1005–16.CrossRefGoogle ScholarPubMed
Preyer, W. T. (1890). The Mind of the Child. New York: Appleton.Google Scholar
Pulos, E., Teller, D. Y., and Buck, S. L. (1980). Infant color vision: a search for short-wavelength-sensitive mechanisms by means of chromatic adaptation. Vision Research, 20, 485–93.CrossRefGoogle ScholarPubMed
Raskin, L., Maital, S., and Bornstein, M. H. (1983). Perceptual categorization of color: a life-span study. Psychological Research, 45, 135–45.CrossRefGoogle ScholarPubMed
Reardon, P., and Bushnell, E. W. (1988). Infants’ sensitivity to arbitrary pairings of color and taste. Infant Behavior and Development, 11, 245–50.CrossRefGoogle Scholar
Regier, T., Kay, P., and Cook, R. S. (2005). Focal colors are universal after all. Proceedings of the National Academy of Sciences of the United States of America, 102, 8386–91.Google Scholar
Reimchen, T. E. (1987). Human color vision deficiencies and atmospheric twilight. Social Biology, 34, 111.Google ScholarPubMed
Rosch, E. (1978). Human categorization. In Warren, N. (ed.), Studies in Cross-Cultural Psychology (vol. I, pp. 149). London: Academic Press.Google Scholar
Rose, D. H., and Slater, A. M. (1983). Infant recognition memory following brief stimulus exposure. British Journal of Developmental Psychology, 1, 221–30.CrossRefGoogle Scholar
Saito, M. (1996). A comparative study of color preference in Japan, China and Indonesia, with emphasis on the preference for white. Perception and Motor Skills, 83, 115–28.CrossRefGoogle ScholarPubMed
Sandell, J. H., Gross, C. G., and Bornstein, M. H. (1979). Color categories in macaques. Journal of Comparative and Physiological Psychology, 93, 626–35.Google ScholarPubMed
Schaller, M. J. (1975). Chromatic vision in human infants: conditioned operant fixation to “hues” of varying intensity. Bulletin of the Psychonomic Society, 6, 3942.CrossRefGoogle Scholar
Segall, M. H., Dasen, P. R., Berry, J. W., and Poortinga, Y. H. (1990). Human Behavior in Global Perspective: An Introduction to Cross-Cultural Psychology. Oxford: Pergamon Press.Google Scholar
Shevell, S. K., and Kingdom, F. A. (2008). Color in complex scenes. Annual Review of Psychology, 59, 143–66.CrossRefGoogle ScholarPubMed
Shi, D., Neitz, J., and Jacobs, G. H. (1987). Early color deprivation and subsequent color vision in a dichromatic monkey. Vision Research, 27, 2009–13.Google Scholar
Slater, A., Mattock, A., Brown, E., Burnham, D., and Young, A. (1991). Visual processing of stimulus compounds in newborn infants. Perception, 20, 2933.CrossRefGoogle ScholarPubMed
Soja, N. N. (1994). Young children’s concept of color and its relation to the acquisition of color words. Child Development, 65, 918–37.CrossRefGoogle Scholar
Sperling, H. G., Johnson, C., and Harwerth, R. S. (1980). Differential spectral photic damage to primate cones. Vision Research, 20(12), 1117–25.CrossRefGoogle ScholarPubMed
Sperling, H. G., Wright, A. A., and Mills, S. L. (1991). Color vision following intense green light exposure: data and a model. Vision Research, 31(10), 17971812.CrossRefGoogle ScholarPubMed
Staples, R. (1932). The responses of infants to color. Journal of Experimental Psychology, 15, 119–41.CrossRefGoogle Scholar
Stephen, I. D., Coetzee, V., Smith, M. L., and Perrett, D. I. (2009). Skin blood perfusion and oxygenation colour affect perceived human health. PLoS ONE, 4(4), e5083.CrossRefGoogle ScholarPubMed
Stephens, B. R., and Banks, M. S. (1987). Contrast discrimination in human infants. Journal of Experimental Psychology: Human Perception & Performance, 13, 558–65.Google ScholarPubMed
Sugita, Y. (2004). Experience in early infancy is indispensable for color perception. Current Biology, 14, 1267–71.CrossRefGoogle ScholarPubMed
Suttle, C. M., Anderson, S. J., and Harding, G. F. A. (1997). A longitudinal study of visual evoked responses to tritan stimuli in human infants. Optometry and Vision Science, 74, 717–25.CrossRefGoogle ScholarPubMed
Suttle, C. M., Banks, M. S., and Graf, E. W. (2002). FPL and sweep VEP to tritan stimuli in young human infants. Vision Research, 42, 2879–91.CrossRefGoogle ScholarPubMed
Taylor, C., Clifford, A., and Franklin, A. (2013). Color preferences are not universal. Journal of Experimental Psychology, 142(4), 1015–27.Google Scholar
Teller, D. Y. (1998). Spatial and temporal aspects of infant color vision. Vision Research, 38, 3275–82.CrossRefGoogle ScholarPubMed
Teller, D. Y., and Bornstein, M. H. (1985). Color vision and color perception in infancy. In Cohen, L. B. and Salapatek, P. (eds.), Handbook of Infant Perception (pp. 185236). New York: Academic Press.Google Scholar
Teller, D. Y., Civan, A., and Bronson-Castain, K. (2004). Infants’ spontaneous color preferences are not due to adult-like brightness variations. Visual Neuroscience, 21(3), 397401.CrossRefGoogle Scholar
Teller, D. Y., and Lindsey, D. T. (1989). Motion nulls for white versus isochromatic gratings in infants and adults. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 6, 1945–54.CrossRefGoogle ScholarPubMed
Teller, D. Y., and Palmer, J. (1996). Infant color vision: motion nulls for red/green vs. luminance-modulated stimuli in infants and adults. Vision Research, 36(7), 955–74.CrossRefGoogle ScholarPubMed
Teller, D. Y., Peeples, D. R., and Sekel, M. (1978). Discrimination of chromatic from white light by two-month-old human infants. Vision Research, 18, 41–8.CrossRefGoogle ScholarPubMed
Thomas, H. (1973). Unfolding the baby’s mind. Psychological Review, 80, 468–88.Google ScholarPubMed
Thomasson, M. A., and Teller, D. Y. (2000). Infant color vision: sharp chromatic edges are not required for chromatic discrimination in 4-month-olds. Vision Research, 40, 1051–7.CrossRefGoogle Scholar
Thornton, J. E., and Pugh, E. N. (1983). Relationship of opponent-colours cancellation measures to cone-antagonistic signals deduced from increment threshold data. In Mollon, J. D. and Sharpe, L. T. (eds.), Colour Vision: Physiology and Psychophysics (pp. 361–73). London: Academic Press.Google Scholar
Valdez, P., and Mehrabian, A. (1994). Effects of color on emotions. Journal of Experimental Psychology: General, 123(4), 394409.CrossRefGoogle ScholarPubMed
Varner, D., Cook, J. E., Schneck, M. E., McDonald, M., and Teller, D. Y. (1985). Tritan discriminations by 1- and 2-month-old human infants. Vision Research, 25, 821–31.CrossRefGoogle ScholarPubMed
Vautin, R. G., and Dow, B. M. (1985). Color cell groups in foveal striate cortex of the behaving macaque. Journal of Neurophysiology, 54(2), 273–92.CrossRefGoogle ScholarPubMed
Verriest, G. (1963). Further studies on acquired deficiency of color discrimination. Journal of the Optical Society of America, 53, 185–95.CrossRefGoogle ScholarPubMed
Verriest, G., Laethem, J. V., and Uvijls, A. (1982). A new assessment of the normal ranges of the 100 hue total scores. In Verriest, G. and Junk, W. (eds.), Color Vision Deficiencies VI (pp. 199208). The Hague: Documenta Ophthalmologica Proceedings Series (vol. 33).Google Scholar
Volbrecht, V. J., and Werner, J. S. (1986). Isolation of short-wavelength-sensitive cone photoreceptors in 4–6-week-old human infants. Investigative Ophthalmology and Vision Science Supplement, 27(3), 264.Google Scholar
von Frisch, K. (1964). Bees: Their Vision, Chemical Senses, and Language. Ithaca, NY: Cornell University Press.Google Scholar
Webster, M. A., Webster, S. M., Bharadwaj, S., Verma, R., Jaikumar, J., Madan, G., and Vaithilingham, E. (2002). Variations in normal color vision. III. Unique hues in Indian and United States observers. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 19 (10), 1951–62.CrossRefGoogle ScholarPubMed
Werner, J. S. (1982). Development of scotopic sensitivity and the absorption spectrum of the human ocular media. Journal of the Optical Society of America, 72(2), 247–58.CrossRefGoogle ScholarPubMed
Wiesel, T. N., and Hubel, D. H. (1963). Single cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26, 1003–17.CrossRefGoogle ScholarPubMed
Wilcox, T., Haslup, J. A., and Boas, D. A. (2010). Dissociation of processing of featural and spatiotemporal information in the infant cortex. NeuroImage, 53(4), 1256–63.CrossRefGoogle ScholarPubMed
Yang, J., Kanazawa, S., and Yamaguchi, M. K. (2010). Perception of Munker–White illusion in 4–8-month-old infants. Infant Behavior and Development, 33, 589–95.CrossRefGoogle ScholarPubMed
Yuodelis, C., and Hendrickson, A. (1986). A qualitative and quantitative analysis of the human fovea during development. Vision Research, 26, 847–55.CrossRefGoogle ScholarPubMed
Zeaman, D., and Hanley, P. (1983). Stimulus preferences as structural features. In Tighe, T. G. and Shepp, B. E. (eds.), Perception, Cognition and Development: Interactional Analyses (pp. 103238). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Zeki, S. (1974). Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. Journal of Physiology, 236, 549–73.CrossRefGoogle ScholarPubMed
Zemach, I., Chang, S., and Teller, D. Y. (2007). Infant color vision: prediction of infants’ spontaneous color preferences. Vision Research, 47(10), 1368–81.Google ScholarPubMed
Zemach, I. K., and Teller, D. Y. (2004). Infants’ spontaneous hue preferences are not due solely to variations in perceived saturation. Journal of Vision, 4, 323.CrossRefGoogle Scholar
Zemach, I. K., and Teller, D. Y. (2007). Infant color vision: infants’ spontaneous color preferences are well behaved. Vision Research, 47(10), 1362–7.Google ScholarPubMed
Zentner, M. R. (2001). Preferences for colors and color – emotion combinations in early childhood. Developmental Science, 4, 389–98.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×