Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T07:33:53.597Z Has data issue: false hasContentIssue false

Chemical Senses in Feeding, Belonging, and Surviving

Or, Are You Going to Eat That?

Published online by Cambridge University Press:  05 July 2019

Paul A. S. Breslin
Affiliation:
Rutgers University, New Jersey

Summary

This Element looks at the physiological and social roles of taste and the proximal chemical senses. First, how we perceive food and people when we contact them is discussed. These perceptions help us identify what we are eating and with whom we are present and serves as an analysis of the complex scene. Second, the influence of taste in food choice, metabolism, and nutrition is considered. Next, the impact of taste and the proximal chemical senses in social interactions is examined, including social eating. Then, the role of taste and the proximal chemical senses in emotion is explored.
Get access
Type
Element
Information
Online ISBN: 9781108644372
Publisher: Cambridge University Press
Print publication: 11 July 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelmann, P. K., & Zajonc, R. B. (1989). Facial efference and the experience of emotion. Annual Review of Psychology, 40, 249280.CrossRefGoogle ScholarPubMed
Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372(6507), 669672. doi:10.1038/372669a0Google Scholar
Aksenov, A. A., Gojova, A., Zhao, W., Morgan, J. T., Sankaran, S., Sandrock, C. E., & Davis, C. E. (2012). Characterization of volatile organic compounds in human leukocyte antigen heterologous expression systems: a cell’s “chemical odor fingerprint”. Chembiochem, 13(7), 10531059. doi:10.1002/cbic.201200011Google Scholar
Allen, M. L., Yovovich, V., & Wilmers, C. C. (2016). Evaluating the responses of a territorial solitary carnivore to potential mates and competitors. Sci Rep, 6, 27257. doi:10.1038/srep27257Google Scholar
Attems, J., Walker, L., & Jellinger, K. A. (2015). Olfaction and aging: A mini-review. Gerontology, 61(6), 485490. doi:10.1159/000381619CrossRefGoogle ScholarPubMed
Bartelt, R. J., Schaner, A. M., & Jackson, L. L. (1985). cis-Vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J Chem Ecol, 11(12), 17471756. doi:10.1007/BF01012124Google Scholar
Beauchamp, G. K., & Yamazaki, K. (1997). HLA and mate selection in humans: commentary. Am J Hum Genet, 61(3), 494496. doi:10.1086/515521CrossRefGoogle ScholarPubMed
Behrens, M., & Meyerhof, W. (2010). Oral and extraoral bitter taste receptors. Results Probl Cell Differ, 52, 8799. doi:10.1007/978-3-642-14426-4_8CrossRefGoogle ScholarPubMed
Bender, G., Hummel, T., Negoias, S., & Small, D. M. (2009). Separate signals for orthonasal vs. retronasal perception of food but not nonfood odors. Behav Neurosci, 123(3), 481489. doi:10.1037/a0015065Google Scholar
Berthoud, H. R. (2002). Multiple neural systems controlling food intake and body weight. Neurosci Biobehav Rev, 26(4), 393428.CrossRefGoogle ScholarPubMed
Besnard, P., Passilly-Degrace, P., & Khan, N. A. (2016). Taste of fat: A sixth taste modality? Physiol Rev, 96(1), 151176. doi:10.1152/physrev.00002.2015Google Scholar
Billeter, J. C., Atallah, J., Krupp, J. J., Millar, J. G., & Levine, J. D. (2009). Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature, 461(7266), 987991. doi:10.1038/nature08495Google Scholar
Birch, L. L., McPhee, L., Steinberg, L., & Sullivan, S. (1990). Conditioned flavor preferences in young children. Physiol Behav, 47(3), 501505.Google Scholar
Bowman, E., & Tatar, M. (2016). Reproduction regulates Drosophila nutrient intake through independent effects of egg production and sex peptide: Implications for aging. Nutr Healthy Aging, 4(1), 5561. doi:10.3233/NHA-1613.CrossRefGoogle ScholarPubMed
Blue, V. (2014). Kissing: A Field Guide. Berkeley, CA: Cleis Press Inc.Google Scholar
Blum, M. S. (1969). Alarm pheromones. Annual Review of Entomology, 14, 5780.Google Scholar
Breslin, P., & Huang, L. (2006). Human Taste: Peripheral Anatomy, Taste Transduction, and Coding. In Hummel, T. & Welge-Lüssen, A. (Eds.), Taste and Smell: An Update (Vol. 63, pp. 152190). Basel: Karger.CrossRefGoogle Scholar
Breslin, P. A. (2013). An evolutionary perspective on food and human taste. Curr Biol, 23(9), R409418. doi:10.1016/j.cub.2013.04.010CrossRefGoogle ScholarPubMed
Breslin, P. A., Beauchamp, G. K., & Pugh, E. N. J. (1996). Monogeusia for fructose, glucose, sucrose, and maltose. Perception and Psychophysics, 58(3), 327341.CrossRefGoogle ScholarPubMed
Breslin, P. A., & Spector, A. C. (2008).Mammalian taste perception. Curr Biol, 18(4), R148155. doi:10.1016/j.cub.2007.12.017Google Scholar
Breslin, P. A. S. (2008). Multi-modal sensory integration: Evaluating foods and mates. Chemosensory Perception, 1, 9294.CrossRefGoogle Scholar
Breslin, P. A. S. (2018). The Sense of Taste Encompasses Two Roles: Conscious Taste Perception and Subconscious Metabolic Responses. In Linden, D. J. (Ed.), Think Tank: Forty Neuroscientists Explore the Biological Roots of Human Experience (pp. 110118). New Haven: Yale University Press.Google Scholar
Breslin, P.A.S., Gilmore, M.M., Beauchamp, G.K., & Green, B.G. (1993). Psychophysical evidence that oral astringency is a tactile sensation. Chemical Senses, 18(4), 405417. https://doi.org/10.1093/chemse/18.4.405Google Scholar
Broad, K. D., Curley, J. P., & Keverne, E. B. (2006). Mother-infant bonding and the evolution of mammalian social relationships. Philos Trans R Soc Lond B Biol Sci, 361(1476), 21992214. doi:10.1098/rstb.2006.1940Google Scholar
Brunet, L. J., Gold, G. H., & Ngai, J. (1996). General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron, 17(4), 681693.Google Scholar
Buchinger, T. J., Li, W., & Johnson, N. S. (2014). Bile salts as semiochemicals in fish. Chem Senses, 39(8), 647654. doi:10.1093/chemse/bju039CrossRefGoogle ScholarPubMed
Cain, W. S., de Wijk, R., Lulejian, C., Schiet, F., & See, L. C. (1998). Odor identification: perceptual and semantic dimensions. Chem Senses, 23(3), 309326.CrossRefGoogle ScholarPubMed
Caprio, J., Brand, J. G., Teeter, J. H., Valentincic, T., Kalinoski, D. L., Kohbara, J., … Wegert, S. (1993). The taste system of the channel catfish: from biophysics to behavior. Trends Neurosci, 16(5), 192197.CrossRefGoogle ScholarPubMed
Cernoch, J. M., & Porter, R. H. (1985). Recognition of maternal axillary odors by infants. Child Dev, 56(6), 15931598.Google Scholar
Chaudhari, N., & Roper, S. D. (2010). The cell biology of taste. J Cell Biol, 190(3), 285296. doi:10.1083/jcb.201003144CrossRefGoogle ScholarPubMed
Chen, Q. Y., Alarcon, S., Tharp, A., Ahmed, O. M., Estrella, N. L., Greene, T. A., … Breslin, P. A. (2009). Perceptual variation in umami taste and polymorphisms in TAS1 R taste receptor genes. American Journal of Clinical Nutrition, 90(3), 770S779S. doi:10.3945/ajcn.2009.27462 NGoogle Scholar
Chen, S., Lee, A. Y., Bowens, N. M., Huber, R., & Kravitz, E. A. (2002). Fighting fruit flies: A model system for the study of aggression. Proc Natl Acad Sci USA, 99(8), 56645668. doi:10.1073/pnas.082102599Google Scholar
Cowart, B. J. (1989). Relationships between taste and smell across the adult life span. Ann N Y Acad Sci, 561, 3955.CrossRefGoogle ScholarPubMed
Cox, C. R., & Le Boeuf, B. J. (1977). Female incitation of male competition: A mechanism in sexual selection. American Naturalist, 111, 317335.Google Scholar
Darwin, C. (1872). The Expression of the Emotions in Man and Animals. London: John Murray.Google Scholar
Depoortere, I. (2014). Taste receptors of the gut: emerging roles in health and disease. Gut, 63(1), 179190. doi:10.1136/gutjnl-2013-305112Google Scholar
Desor, J. A., Maller, O., & Andrews, K. (1975). Ingestive responses of human newborns to salty, sour, and bitter stimuli. J Comp Physiol Psychol, 89(8), 966970.Google Scholar
Dondero, M., & Van Hook, J. (2016). Generational status, neighborhood context, and mother-child resemblance in dietary quality in Mexican-origin families. Social Science & Medicine, 150, 212220.CrossRefGoogle ScholarPubMed
Doty, R. L. (1981). Olfactory communication in humans. Chemical Senses, 6, 351376.CrossRefGoogle Scholar
Dubovski, N., Ert, E., & Niv, M. (2017). Bitter mouth-rinse affects emotions. Food Quality and Preference, 60, 154164. doi:10.1016/j.foodqual.2017.04.007Google Scholar
Dudley, R. (2014). The Drunken Monkey: Why We Drink and Abuse Alcohol. Oakland: University of California Press.CrossRefGoogle Scholar
Duncan, J. L., & Laird, J. D. (1977). Cross-modality consistencies in individual differences in self-attribution. Journal of Personality, 45, 191206.Google Scholar
Eibl-Eibesfeldt, I. (1972). Love and Hate: The Natural History of Behavior Patterns. Austin: Holt, Rinehart and Winston.Google Scholar
Ekman, P. (2003). Emotions Revealed: Recognizing Faces and Feelings to Improve Communication and Emotional Life. New York: Henry Holt.Google Scholar
Enns, J. T., & Rensink, R. A. (1990). Influence of scene-based properties on visual search. Science, 247(4943), 721723.Google Scholar
Fan, P., Manoli, D. S., Ahmed, O. M., Chen, Y., Agarwal, N., Kwong, S., … Shah, N. M. (2013). Genetic and neural mechanisms that inhibit Drosophila from mating with other species. Cell, 154(1), 89102. doi:10.1016/j.cell.2013.06.008CrossRefGoogle ScholarPubMed
Finger, T. E., Bottger, B., Hansen, A., Anderson, K. T., Alimohammadi, H., & Silver, W. L. (2003). Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci U S A, 100(15), 89818986. doi:10.1073/pnas.1531172100Google Scholar
Galef, B. G. Jr., & Kennett, D. J. (1987). Different mechanisms for social transmission of diet preference in rat pups of different ages. Dev Psychobiol, 20(2), 209215. doi:10.1002/dev.420200209Google Scholar
Galef, B. G. Jr., & Whiskin, E. E. (1997). Effects of social and asocial learning on longevity of food-preference traditions. Anim Behav, 53(6), 13131322.CrossRefGoogle ScholarPubMed
Ganchrow, J. R., Steiner, J. E., & Daher, M. (1983). Neonatal facial expressions in response to different qualities and intensities of gustatory stimuli. Infant Behavior & Development, 6(4), 473484. http://dx.doi.org/10.1016/S0163-6383(83)90301-6CrossRefGoogle Scholar
Garcia, J., Hankins, W. G., & Rusiniak, K. W. (1976). Letter: Flavor aversion studies. Science, 192(4236), 265267.CrossRefGoogle ScholarPubMed
Garcia, J., Lasiter, P. S., Bermudez-Rattoni, F., & Deems, D. A. (1985). A general theory of aversion learning. Ann N Y Acad Sci, 443, 821.Google Scholar
Gates, W. (2017). Bill Gates has humble expectations for the biggest issue tech can solve in the next 10 years. Quartz, February 27, 2017. https://qz.com/920314/bill-gates-thinks-isolation-is-the-most-pressing-problem-technology-can-solve-within-the-next-10-years/Google Scholar
Giacometti, T. (1979). Free and bound glutamate in natural products. In Filer, L. J. J. (Ed.), Glutamic Acid: Advances in Biochemistry and Physiology (pp. 2534). New York: Raven Press.Google Scholar
Glendinning, J. I., Tarre, M., & Asaoka, K. (1999). Contribution of different bitter-sensitive taste cells to feeding inhibition in a caterpillar (Manduca sexta). Behav Neurosci, 113(4), 840854.CrossRefGoogle Scholar
Grammer, K., Fink, B., & Neave, N. (2005). Human pheromones and sexual attraction. Eur J Obstet Gynecol Reprod Biol, 118(2), 135142. doi:10.1016/j.ejogrb.2004.08.010Google Scholar
Gratiolet, P. (1865). De la physionomie et des mouvements d’ expression. Paris: Hetzel.Google Scholar
Green, B.G. (1993). Oral astringency: a tactile component of flavor. Acta Psychol (Amst), 84(1),119125. PMID: 8237452Google Scholar
Greenspan, R. J., & Ferveur, J. F. (2000). Courtship in Drosophila. Annu Rev Genet, 34, 205232. doi:10.1146/annurev.genet.34.1.205Google Scholar
Grill, H. J., & Norgren, R. (1978a). The taste reactivity test. I. Mimetic responses to gustatory stimuli in neurologically normal rats. Brain Res, 143(2), 263279.Google Scholar
Grill, H. J., & Norgren, R. (1978b). The taste reactivity test. II. Mimetic responses to gustatory stimuli in chronic thalamic and chronic decerebrate rats. Brain Res, 143(2), 281297.CrossRefGoogle ScholarPubMed
Gurkan, S., & Bradley, R. M. (1987). Autonomic control of von Ebner’s lingual salivary glands and implications for taste sensation. Brain Res, 419(12), 287293.Google Scholar
Harlow, H. F. (1958). The nature of love. American Psychologist, 13, 673685.Google Scholar
Harlow, H. F., & Zimmermann, R. R. (1959). Affectional responses in the infant monkey. Science, 130, 421432.Google Scholar
Havlicek, J., & Roberts, S. C. (2009). MHC-correlated mate choice in humans: a review. Psychoneuroendocrinology, 34(4), 497512. doi:10.1016/j.psyneuen.2008.10.007Google Scholar
Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends Cogn Sci, 4(6), 223233.Google Scholar
Herness, S., Zhao, F. L., Kaya, N., Shen, T., Lu, S. G., & Cao, Y. (2005). Communication routes within the taste bud by neurotransmitters and neuropeptides. Chem Senses, 30 Suppl 1, i3738. doi:10.1093/chemse/bjh101CrossRefGoogle ScholarPubMed
Herz, R. (2008). The Scent of Desire: Discovering Our Enigmatic Sense of Smell. New York: Harper Perennial.Google Scholar
Herz, R. S. (2016). The role of odor-evoked memory in psychological and physiological health. Brain Sci, 6(3). doi:10.3390/brainsci6030022Google Scholar
Howitt, M. R., Lavoie, S., Michaud, M., Blum, A. M., Tran, S. V., Weinstock, J. V., … Garrett, W. S. (2016). Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science, 351(6279), 13291333. doi:10.1126/science.aaf1648CrossRefGoogle ScholarPubMed
Hudson, R., Labra-Cardero, D., & Mendoza-Soylovna, A. (2002). Sucking, not milk, is important for the rapid learning of nipple-search odors in newborn rabbits. Dev Psychobiol, 41(3), 226235. doi:10.1002/dev.10073Google Scholar
Jacob, S., McClintock, M. K., Zelano, B., & Ober, C. (2002). Paternally inherited HLA alleles are associated with women’s choice of male odor. Nat Genet, 30(2), 175179. doi:10.1038/ng830CrossRefGoogle ScholarPubMed
Jaeggi, A. V., & Gurven, M. (2013). Natural Cooperators: Food Sharing in Humans and Other Primates. Evolutionary Anthropology, 22, 186195.Google Scholar
James, W. (1884). What is an emotion? Mind, 9, 188205.Google Scholar
Janetos, A. C. (1980). Strategies of female mate choice: A theoretical analysis. Behavioral Ecology and Sociobiology, 7, 107112.Google Scholar
Jiang, P., Josue, J., Li, X., Glaser, D., Li, W., Brand, J. G., … Beauchamp, G. K. (2012). Major taste loss in carnivorous mammals. Proc Natl Acad Sci U S A, 109(13), 49564961. doi:10.1073/pnas.1118360109Google Scholar
Kare, M. R., & Beauchamp, G. K. (1985). The role of taste in the infant diet. American Journal of Clinical Nutrition, 41(2 Suppl), 418422. doi:10.1093/ajcn/41.2.418Google Scholar
Kass, M. D., Rosenthal, M. C., Pottackal, J., & McGann, J. P. (2013). Fear learning enhances neural responses to threat-predictive sensory stimuli. Science, 342(6164), 13891392. doi:10.1126/science.1244916Google Scholar
Katz, S. E. (2012). The Art of Fermentation: An In-Depth Exploration of Essential Concepts and Processes from around the World. White River Junction: Chelsea Green Publishing.Google Scholar
Keverne, E. B. (1999). The vomeronasal organ. Science, 286(5440), 716720.Google Scholar
Keverne, E. B. (2002). Pheromones, vomeronasal function, and gender-specific behavior. Cell, 108(6), 735738.Google Scholar
Kim, U., Wooding, S., Ricci, D., Jorde, L. B., & Drayna, D. (2005). Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Hum Mutat, 26(3), 199204. doi:10.1002/humu.20203Google Scholar
Kim, U. K., Breslin, P. A. S., Reed, D., & Drayna, D. (2004). Genetics of Human Taste Perception. Journal of Dental Research, 83(6), 448453.Google Scholar
Kimball, B. A., Cohen, A. S., Gordon, A. R., Opiekun, M., Martin, T., Elkind, J., … Beauchamp, G. K. (2016). Brain injury alters volatile metabolome. Chem Senses, 41(5), 407414. doi:10.1093/chemse/bjw014Google Scholar
Kinnamon, S. C. (1988). Taste transduction: a diversity of mechanisms. Trends Neurosci, 11(11), 491496.Google Scholar
Kromer, J., Hummel, T., Pietrowski, D., Giani, A. S., Sauter, J., Ehninger, G., … Croy, I. (2016). Influence of HLA on human partnership and sexual satisfaction. Sci Rep, 6, 32550. doi:10.1038/srep32550Google Scholar
Laird, J. D. (1974). Self-attribution of emotion: The effects of expressive behavior on the quality of emotional experience. Journal of Personality and Social Psychology, 29, 475486.CrossRefGoogle ScholarPubMed
Lapis, T. J., Penner, M. H., Balto, A. S., & Lim, J. (2017). Oral digestion and perception of starch: Effects of cooking, tasting time, and salivary alpha-amylase activity. Chem Senses, 42(8), 635645. doi:10.1093/chemse/bjx042Google Scholar
Lawless, H.T., Schlake, S., Smythe, J., Lim, J., Yang, H., Chapman, K., & Bolton, B. (2004). Metallic taste and retronasal smell. Chem Senses, 29(1), 2533. PMID: 14752037CrossRefGoogle ScholarPubMed
LeDoux, J. E. (1987). Emotion. In Plum, F. (Ed.), Handbook of Physiology: The Nervous System (pp. 419459). Washington, DC: American Physiological Society.Google Scholar
Lee, S. J., Depoortere, I., & Hatt, H. (2018). Therapeutic potential of ectopic olfactory and taste receptors. Nat Rev Drug Discov. doi:10.1038/s41573-018-0002-3CrossRefGoogle Scholar
Lemogne, C., Smadja, J., Zerdazi el, H., Soudry, Y., Robin, M., Berthoz, S., … Bonfils, P. (2015). Congenital anosmia and emotion recognition: A case-control study. Neuropsychologia, 72, 5258. doi:10.1016/j.neuropsychologia.2015.04.028CrossRefGoogle ScholarPubMed
Lenfestey, M. W., & Neu, J. (2017). Probiotics in newborns and children. Pediatr Clin North Am, 64(6), 12711289. doi:10.1016/j.pcl.2017.08.006Google Scholar
Li, X. (2009). T1 R receptors mediate mammalian sweet and umami taste. American Journal of Clinical Nutrition, 90(3), 733S737S. doi:10.3945/ajcn.2009.27462 GGoogle Scholar
Li, X., Li, W., Wang, H., Cao, J., Maehashi, K., Huang, L., … Brand, J. G. (2005). Pseudogenization of a sweet-receptor gene accounts for cats’ indifference toward sugar. PLoS Genet, 1(1), 2735. doi:10.1371/journal.pgen.0010003Google Scholar
Li, X., Staszewski, L., Xu, H., Durick, K., Zoller, M., & Adler, E. (2002). Human receptors for sweet and umami taste. Proc Natl Acad Sci, 99, 46924696.Google Scholar
Lorig, T. S. (1999). On the similarity of odor and language perception. Neurosci Biobehav Rev, 23(3), 391398.Google Scholar
Lorig, T. S. (2012). Beyond self-report: Brain imaging at the threshold of odor perception. Chemosensory Perception, 5, 4654.Google Scholar
Maddigan, S. L., Feeny, D. H., & Johnson, J. A. (2005). Health-related quality of life deficits associated with diabetes and comorbidities in a Canadian National Population Health Survey. Qual Life Res, 14(5), 13111320.CrossRefGoogle Scholar
Mandel, A. L., & Breslin, P. A. (2012). High endogenous salivary amylase activity is associated with improved glycemic homeostasis following starch ingestion in adults. J Nutr, 142(5), 853858. doi:10.3945/jn.111.156984Google Scholar
Mattes, R. D. (1994). Influences on acceptance of bitter foods and beverages. Physiol Behav, 56(6), 12291236.Google Scholar
Mattes, R. D. (1997). The taste for salt in humans. American Journal of Clinical Nutrition, 65(2), 692S697S.Google Scholar
McBurney, D. H., & Gent, J. F. (1979). On the nature of taste qualities. Psychol Bull, 86(1), 151167.Google Scholar
McGann, J. P. (2013). Presynaptic inhibition of olfactory sensory neurons: New mechanisms and potential functions. Chem Senses, 38(6), 459474. doi:10.1093/chemse/bjt018Google Scholar
Meredith, M. (2001). Human vomeronasal organ function: a critical review of best and worst cases. Chem Senses, 26(4), 433445.Google Scholar
Munger, S. D., Leinders-Zufall, T., McDougall, L. M., Cockerham, R. E., Schmid, A., Wandernoth, P., … Kelliher, K. R. (2010). An olfactory subsystem that detects carbon disulfide and mediates food-related social learning. Curr Biol, 20(16), 14381444. doi:10.1016/j.cub.2010.06.021Google Scholar
Murphy, C., Cardello, A. V., & Brand, J. (1981). Tastes of fifteen halide salts following water and NaCl: Anion and cation effects. Physiol Behav, 26(6), 10831095.Google Scholar
Nissim, I., Dagan-Wiener, A., & Niv, M. Y. (2017). The taste of toxicity: A quantitative analysis of bitter and toxic molecules. IUBMB Life, 69(12), 938946. doi:10.1002/iub.1694Google Scholar
Noel, C., Dando, R. (2015). The effect of emotional state on taste perception. Appetite, 95, 8995. doi:10.1016/j.appet.2015.06.003Google Scholar
Norgren, R., & Leonard, C. M. (1971). Taste pathways in rat brainstem. Science, 173(4002), 11361139.Google Scholar
Papes, F., Logan, D. W., & Stowers, L. (2010). The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell, 141(4), 692703. doi:10.1016/j.cell.2010.03.037Google Scholar
Parr, L. A., Waller, B. M., & Fugate, J. (2005). Emotional communication in primates: implications for neurobiology. Curr Opin Neurobiol, 15(6), 716720. doi:10.1016/j.conb.2005.10.017Google Scholar
Peyrot des Gachons, C., Beauchamp, G. K., Stern, R. M., Koch, K. L., & Breslin, P. A. (2011). Bitter taste induces nausea. Curr Biol, 21(7), R247248. doi:10.1016/j.cub.2011.02.028Google Scholar
Piderit, T. (1858). Grundzuge der Mimik und Physiognomik. Braunschweig: Vieweg und Sohn.Google Scholar
Piderit, T. (1888). La Mimique et la physiognomie. Paris: Alcan.Google Scholar
Pijls, K. E., Smolinska, A., Jonkers, D. M., Dallinga, J. W., Masclee, A. A., Koek, G. H., & van Schooten, F. J. (2016). A profile of volatile organic compounds in exhaled air as a potential non-invasive biomarker for liver cirrhosis. Sci Rep, 6, 19903. doi:10.1038/srep19903Google Scholar
Porter, R. H., Cernoch, J. M., & McLaughlin, F. J. (1983). Maternal recognition of neonates through olfactory cues. Physiol Behav, 30(1), 151154.Google Scholar
Powley, T. L., & Berthoud, H. R. (1985). Diet and cephalic phase insulin responses. American Journal of Clinical Nutrition, 42(5 Suppl), 9911002. doi:10.1093/ajcn/42.5.991Google Scholar
Quinn, W. G., & Greenspan, R. J. (1984). Learning and courtship in Drosophila: Two stories with mutants. Annu Rev Neurosci, 7, 6793. doi:10.1146/annurev.ne.07.030184.000435Google Scholar
Raihani, G., Gonzalez, D., Arteaga, L., & Hudson, R. (2009). Olfactory guidance of nipple attachment and suckling in kittens of the domestic cat: Inborn and learned responses. Dev Psychobiol, 51(8), 662671. doi:10.1002/dev.20401Google Scholar
Rhodewalt, F., & Comer, R. (1979). Induced compliance attitude change: once more with feeling. Journal of Experimental Social Psychology, 15, 3547.Google Scholar
Rolls, E. T. (2000). Precis of the brain and emotion. Behav Brain Sci, 23(2), 177191; discussion 192233.Google Scholar
Rozin, E. (1973). The Flavor-Principle Cookbook. Portland: Hawthorn Books.Google Scholar
Running, C. A., Craig, B. A., & Mattes, R. D. (2015). Oleogustus: The unique taste of fat. Chem Senses, 40(7), 507516. doi:10.1093/chemse/bjv036Google Scholar
Rutledge, L. L., & Hupka, R. B. (1985). The facial feedback hypothesis: Methodological concerns and new supporting evidence. Motivation and Emotion, 9, 219240.Google Scholar
Sandell, M. A., & Breslin, P. A. (2006). Variability in a taste-receptor gene determines whether we taste toxins in food. Curr Biol, 16(18), R792794. doi:10.1016/j.cub.2006.08.049Google Scholar
Sato, K., Endo, S., & Tomita, H. (2002). Sensitivity of three loci on the tongue and soft palate to four basic tastes in smokers and non-smokers. Acta Otolaryngol Suppl, 546, 7482.Google Scholar
Scalera, G. (2002). Effects of conditioned food aversions on nutritional behavior in humans. Nutr Neurosci, 5(3), 159188. doi:10.1080/10284150290013059Google Scholar
Schiffman, S. S., & Dackis, C. (1975). Taste of nutrients: Amino acids, vitamins, and fatty acids. Perception & Psychophysics, 17, 140146.Google Scholar
Sclafani, A., & Nissenbaum, J. W. (1988). Robust conditioned flavor preference produced by intragastric starch infusions in rats. Am J Physiol, 255(4 Pt 2), R672675. doi: 10.1152/ajpregu.1988.255.4.R672Google ScholarPubMed
Siniscalchi, M., d’Ingeo, S., Minunno, M., & Quaranta, A. (2018). Communication in dogs. Animals (Basel), 8(8). doi:10.3390/ani8080131Google Scholar
Skinner, J. D., Carruth, B. R., Houck, K. S., Bounds, W., Morris, M., Cox, D. R., … Coletta, F. (1999). Longitudinal study of nutrient and food intakes of white preschool children aged 24 to 60 months. J Am Diet Assoc, 99(12), 15141521. doi:10.1016/S0002-8223(99)00371-5Google Scholar
Skinner, J. D., Carruth, B. R., Wendy, B., & Ziegler, P. J. (2002). Children’s food preferences: a longitudinal analysis. J Am Diet Assoc, 102(11), 16381647.Google Scholar
Small, D. M., Gerber, J. C., Mak, Y. E., & Hummel, T. (2005). Differential neural responses evoked by orthonasal versus retronasal odorant perception in humans. Neuron, 47(4), 593605. doi:10.1016/j.neuron.2005.07.022Google Scholar
Smolinska, A., Klaassen, E. M., Dallinga, J. W., van de Kant, K. D., Jobsis, Q., Moonen, E. J., … van Schooten, F. J. (2014). Profiling of volatile organic compounds in exhaled breath as a strategy to find early predictive signatures of asthma in children. PLoS One, 9(4), e95668. doi:10.1371/journal.pone.0095668Google Scholar
Spielman, A. I., Sunavala, G., Harmony, J. A., Stuart, W. D., Leyden, J. J., Turner, G., … Preti, G. (1998). Identification and immunohistochemical localization of protein precursors to human axillary odors in apocrine glands and secretions. Arch Dermatol, 134(7), 813818.Google Scholar
Steiner, J. E. (1973). The gustofacial response: Observation on normal and anencephalic newborn infants. Symp Oral Sens Percept, 4, 254278.Google Scholar
Steiner, J. E., Glaser, D., Hawilo, M. E., & Berridge, K. C. (2001). Comparative expression of hedonic impact: affective reactions to taste by human infants and other primates. Neurosci Biobehav Rev, 25(1), 5374.Google Scholar
Stern, K., & McClintock, M. K. (1998). Regulation of ovulation by human pheromones. Nature, 392(6672), 177179. doi:10.1038/32408Google Scholar
Sternini, C., Anselmi, L., & Rozengurt, E. (2008). Enteroendocrine cells: a site of “taste” in gastrointestinal chemosensing. Curr Opin Endocrinol Diabetes Obes, 15(1), 7378. doi:10.1097/MED.0b013e3282f43a73Google Scholar
Stillman, J. A. (1993). Color influences flavor identification in fruit‐flavored beverages. Journal of Food Science, 58, 810812.Google Scholar
Stoddart, D. M. (1990). Scented Ape: Biology of Human Odour. Cambridge: Cambridge University Press.Google Scholar
Strack, F., Martin, L. L., & Stepper, S. (1988). Inhibiting and facilitating conditions of the human smile: A nonobtrusive test of the facial feedback hypothesis. J Pers Soc Psychol, 54(5), 768777.Google Scholar
Sun, J., & Chang, E. B. (2014). Exploring gut microbes in human health and disease: Pushing the envelope. Genes Dis, 1(2), 132139. doi:10.1016/j.gendis.2014.08.001Google Scholar
Taucher, J., Hansel, A., Jordan, A., & Lindinger, W. (1996). Analysis of compounds in human breath after ingestion of garlic using proton-transfer-reaction mass spectrometry. Journal of Agricultural and Food Chemistry, 44, 37783782.Google Scholar
Taylor, A. J. (1996). Volatile flavor release from foods during eating. Crit Rev Food Sci Nutr, 36(8), 765784. doi:10.1080/10408399609527749Google Scholar
Teff, K. L., Devine, J., & Engelman, K. (1995). Sweet taste: Effect on cephalic phase insulin release in men. Physiol Behav, 57(6), 10891095.Google Scholar
Teff, K. L., Mattes, R. D., & Engelman, K. (1991). Cephalic phase insulin release in normal weight males: Verification and reliability. Am J Physiol, 261(4 Pt 1), E430436. doi: 10.1152/ajpendo.1991.261.4.E430Google Scholar
Toller, S. V. (1999). Assessing the impact of anosmia: Review of a questionnaire’s findings. Chem Senses, 24(6), 705712.Google Scholar
Tomkins, S. S. (1962). Affect, Imagery, Consciousness: Vol. 1. The Positive Affects. New York: Springer.Google Scholar
Tordoff, M. G. (2001). Calcium: taste, intake, and appetite. Physiol Rev, 81(4), 15671597. doi:10.1152/physrev.2001.81.4.1567Google Scholar
Tsuda, M., & Aigaki, T. (2016). Evolution of sex-peptide in Drosophila. Fly (Austin), 10(4), 1721777. doi:10.1080/19336934.2016.1193655Google Scholar
Twenge, J. M., Sherman, R. A., & Wells, B. E. (2017). Declines in sexual frequency among American adults, 1989–2014. Arch Sex Behav, 46(8), 23892401. doi:10.1007/s10508-017-0953-1Google Scholar
von Frisch, K., & Lindauer, M. (1956). The “language” and orientation of the honey bee. Annual Review of Entomology, 1, 4558.Google Scholar
Von Skramlik, E. R. (1926). Handbuch der physiologie der niederen sinne. Leipzig: G. Thieme.Google Scholar
Wang, Z., & Wang, C. (2013). Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. J Breath Res, 7(3), 037109. doi:10.1088/1752-7155/7/3/037109Google Scholar
Weber, S. T., & Heuberger, E. (2008). The impact of natural odors on affective states in humans. Chem Senses, 33(5), 441447. doi:10.1093/chemse/bjn011CrossRefGoogle ScholarPubMed
Wedekind, C., Seebeck, T., Bettens, F., & Paepke, A. J. (1995). MHC-dependent mate preferences in humans. Proc Biol Sci, 260(1359), 245249. doi:10.1098/rspb.1995.0087Google Scholar
Welge-Lussen, A., Husner, A., Wolfensberger, M., & Hummel, T. (2009). Influence of simultaneous gustatory stimuli on orthonasal and retronasal olfaction. Neurosci Lett, 454(2), 124128. doi:10.1016/j.neulet.2009.03.002Google Scholar
Wlodarski, R., & Dunbar, R. I. (2013). Examining the possible functions of kissing in romantic relationships. Arch Sex Behav, 42(8), 14151423. doi:10.1007/s10508-013-0190-1Google Scholar
Wlodarski, R., & Dunbar, R. I. (2014). What’s in a kiss? The effect of romantic kissing on mating desirability. Evol Psychol, 12(1), 178199.Google Scholar
Wolfe, J. M., Alvarez, G. A., Rosenholtz, R., Kuzmova, Y. I., & Sherman, A. M. (2011). Visual search for arbitrary objects in real scenes. Atten Percept Psychophys, 73(6), 16501671. doi:10.3758/s13414-011-0153-3Google Scholar
Wrangham, R. (2009). Catching Fire: How Cooking Made Us Human. New York: Basic Books.Google Scholar
Wysocki, C. J., Beauchamp, G. K., Reidinger, R. R., & Wellington, J. L. (1985). Access of large and nonvolatile molecules to the vomeronasal organ of mammals during social and feeding behaviors. J Chem Ecol, 11(9), 11471159. doi:10.1007/BF01024105Google Scholar
Wysocki, C. J., & Gilbert, A. N. (1989). National Geographic Smell Survey: Effects of age are heterogenous. Ann N Y Acad Sci, 561, 1228.Google Scholar
Wysocki, C. J., Wellington, J. L., & Beauchamp, G. K. (1980). Access of urinary nonvolatiles to the mammalian vomeronasal organ. Science, 207(4432), 781783.Google Scholar
Yamaguchi, S., & Ninomiya, K. (2000). Umami and food palatability.J Nutr, 130(4S Suppl), 921S926S. doi:10.1093/jn/130.4.921SGoogle Scholar
Zelano, C., Bensafi, M., Porter, J., Mainland, J., Johnson, B., Bremner, E., … Sobel, N. (2005). Attentional modulation in human primary olfactory cortex. Nat Neurosci, 8(1), 114120. doi:10.1038/nn1368Google Scholar
Zhao, H., Yang, J. R., Xu, H., & Zhang, J. (2010). Pseudogenization of the umami taste receptor gene Tas1r1 in the giant panda coincided with its dietary switch to bamboo. Mol Biol Evol, 27(12), 26692673. doi:10.1093/molbev/msq153Google Scholar
Zhong, S., Pinto, J. M., Wroblewski, K. E., & McClintock, M. K. (2018). Sensory dysfunction and sexuality in the U.S. population of older adults. J Sex Med, 15(4), 502509. doi:10.1016/j.jsxm.2018.01.021Google Scholar
Zucco, G. M., Priftis, K., & Stevenson, R. J. (2015). From blindsight to blindsmell: A mini review. Transl Neurosci, 6(1), 812. doi:10.1515/tnsci-2015-0002Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Chemical Senses in Feeding, Belonging, and Surviving
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Chemical Senses in Feeding, Belonging, and Surviving
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Chemical Senses in Feeding, Belonging, and Surviving
Available formats
×