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Thinking and Coding in Parallel

Computers have always been very good at giving users the impression that they can perform
multiple tasks at the same time. For example, even a single core PC will allow you to browse
the web while running a lengthy calculation in the background. However, this is accom-
plished by fast task switching – the user gets CPU cycles when active, otherwise the CPU
cycles are given to the calculation. This is resource sharing not true parallel programming.

If you have a more recent 4-core PC, you might launch four instances of your lengthy
calculation with different parameter values to genuinely perform parallel computation without
any extra programming effort. Problems that can be solved with this approach are sometimes
called “trivially parallel”. In spite of the name, this approach is perfectly valid if it gets your
job done effectively and has the enormous advantage of requiring little extra programming
effort. If the potential number of jobs is large, a simple script file might be useful to automate
the launching of new jobs and collecting their results. A nice example is the CERN data centre
which has more than 200,000 cores mostly running event data processing or Monte Carlo
simulation using the same program but different event data or different random numbers.

Unfortunately, the trivial programming approachdoes notwork onGPUswhich havevery simple
processing cores designed towork together on a single task. True parallel programming requires just
this – many processing cores working together to complete a single task. It turns out that writing
effective parallel code is often rather straightforward – as hopefully we demonstrate in this book.

2.1 Flynn’s Taxonomy

Computer scientists recognise a small number of serial and parallel computer architectures
described by 4-letter acronyms summed up in Flynn’s taxonomy shown in Table 2.1.1

The first, SISD case, represents a “normal” single processor running a single thread.
Computers with this architecture can still be relatively fast and by employing rapid switching
between tasks they can give human beings the illusion that they are multitasking but in fact
they only execute one operation on one data item in a clock-cycle.

The second, SIMD case, covers architectures where the hardware can execute the same
instruction on multiple data items at the same time. This can be achieved by have multiple
ALUs fed with different data items but using a common instruction decoder. To overcome
memory access bottlenecks the data items are fed to the ALUs in a vector format. Hence
these architectures are often known as vector processors. The fondly remembered CRAY
supercomputers, dating from the 1970s, were early and very effective examples of this
approach. In 1999 Intel CPUs introduced their so-called Streaming SIMD Extensions (SSE)
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instruction set into the Pentium III architecture; these instructions could perform operations
on vectors of four 32-bit floating point numbers using what were effectively 128-bit
registers. Over the years the capabilities of Intel SIMD operations have increased; currently
Intel supports advanced vector extensions using 512-bit registers (AVX-512 ), enough for up
to 16 32-bit numbers. We discuss this topic in more detail in Appendix D.
The third, MIMD, is effectively just a set of separate CPUs performing separate tasks. This

case includes both modern multicore PCs running Linux or Windows and clusters of PCs
connected by a network. In both cases suitable software, for example, MPI or OpenMP, can be
used to allow the multiple independent processors to work together on a single computing task.
The fourth, MISD, is included for the sake of completeness and is rarely used. It might be used

in specialised embedded systems requiring redundancy against failure; for example, satellites.
The final, SIMT, was introduced by NVIDIA as a variation of SIMD to describe their GPU

architecture. Although both are used to tackle similar scientific computations, there are differences
between them. In the SIMD model a relatively small number of threads use vector hardware to
process data. In the SIMT model a large number of threads are used to process individual data
items. If a common instruction is used by all threads then SIMD behaviour is replicated, but the
SIMTarchitecture also permits threads to perform divergent operationswhich,while itmay lead to
a drop in performance, also allows for more versatile code. In the recent Volta and Turing
generations of GPU,NVIDIA have extended the capabilities for programming individual threads.
It is the SIMD/T case that is of interest for parallel programming. We look for sections of

our code where the same operation is performed on multiple data items – obvious candidates
are for loops. However, if we want to share the computation of a loop across multiple
threads it is important that there are no dependencies between passes through the loop, for
example the order in which the loop traversals are executed should not matter.
Consider again the loop in the Example 1.1

23 double sum_host = 0.0;
24 for (int step = 0; step <= steps; step++){
25 float x = step_size*step;
26 sum_host += sinsum(x, terms);
27 }

Table 2.1 Flynn’s taxonomy

acronym Name comment

SISD Single Instruction
Single Data

Single-core system running one thread.

SIMD Single Instruction
Multiple Data

Multiple processors running the same task on multiple data
streams.

MIMD Multiple Instruction
Multiple Data

Multi-core system with each core running a different task, also
multiple connected systems.

MISD Multiple Instructions
Single Data

Rare, possible application in fault tolerant designs.

SIMT Single Instruction
Multiple Threads

Variation on SIMD implemented in CUDA.
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The loop statements shown in lines 25–26 are independent of other passes through the
loop, because the order in which we sum the values in the variable sum_host does affect
the final result.2 Thus, this loop is a good candidate for parallel code, particularly so if the
evaluation of the function sin_host is computationally expensive. Before we proceed
there is a subtle technical problem to resolve. Either the variable sin_host must be
global – therefore, visible to all the threads participating in the parallel calculation or some
other means must be found to get the correct final sum.

Making sin_host global to all threads, while straightforward to implement, introduces
yet another complication – if two or more threads try to update the variable simultaneously
the result will be undefined! With CUDA, one thread will succeed and the attempts by other
threads at simultaneous update will be ignored, so the final answer will be wrong. There is a
fix for this problem, which is actually a generic issue for all parallel computing platforms; it
is to use so-called Atomic operations to perform the required operation serially. Atomic
operations are usually implemented by calling platform specific functions, and their use in
CUDA code is discussed in Appendix B. For now we note that using atomics might slow
down a calculation and we choose an alternative approach, which is to simply store the
individual values returned by the sinsum function in separate elements of a large array. The
elements of the array will be summed together in a separate step once they have all been
calculated. This is an example of parallel thinking; we separate a serial loop into a part that
can be done in parallel – calling the simsummany times, and a part which cannot be done in
parallel – the reduce operation of adding up all the individual stored values. These two steps
are the only parts of the calculation that will be done on the GPU; code running on the CPU
takes care of everything else.

Now it is time to look in more detail at our first CUDA program emphasising the
steps necessary to convert the serial version in Example 1.1 to the parallel version in
Example 1.3.

The first step is to add the header files needed for CUDA

04.1 #include "cuda_runtime.h" // cuda basic
04.2 #include "thrust/device_vector.h" // thrust device vectors

The headers added are cuda_runtime.h which provides basic support for CUDA and
thrust/device_vector.h provides a container class like std::vector for 1D
arrays in GPU memory. Most of the examples in this book use these headers.

We then convert the function sinsum into a function that can be used on both the CPU
and the GPU. This is simply done be adding a CUDA keyword to the function declaration.

05 __host__ __device__ inline float sinsum(float x, int terms)

The keyword __device__ tells the compiler to compile a version of the function that runs
on the GPU and can be called by kernels and other functions running on the GPU. Likewise,
__host__ tells the compiler to create a version of the function for the CPU code to use. The
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inline keyword is part of standard C++ and tells the compiler to generate function code
embedded in the caller’s code, removing the overhead of a function call at the price of
increasing the size of the final exe file. In CUDA inline is the default for __device__
functions. The __host__ keyword is only needed if the function is to be used on both the
host and device; for device only functions just __device__ is needed. The entire body of the
function in lines 6–15 is unchanged. This is a very powerful feature of CUDA.
It is also possible to have two different versions of a function, one declared with

__device__ and one declared with __host__. The __host__ prefix could be omitted
from the host version as this is the default, but we recommend using it to make your
intentions clear. Obviously this prefix is not needed (or recommended) for functions which
are only used by the host.
The __device__ version of sinsum is simply a GPU function and is not callable

directly from the host. We need to write a separate CUDA kernel function which runs on the
GPU and can be called from the host. CUDA kernels are declared using __global__
instead of __device__ this reflects their dual nature – callable by the host but running on
the GPU. In the CUDA world people talk about “launching” kernels rather than “calling”
them so that is what we shall do from now on. Our first kernel gpu_sum in lines 15.1–15.8
is all new code which replaces most of lines 23–27 in the original program.

15.1 __global__ void gpu_sin(float *sums, int steps, int terms,
float step_size)

15.2 {
15.3 int step = blockIdx.x*blockDim.x+threadIdx.x;
15.4 if(step<steps){
15.5 float x = step_size*step;
15.6 sums[step] = sinsum(x,terms); // store values
15.7 }
15.8 }

The kernel declaration in line 15.1 looks very much like a normal C++ declaration
except for the prefix __global__. There are, however, some restrictions based on the fact
that although the kernel is called from the host it cannot access any memory on the host. All
kernels must be declared void and their arguments are restricted to scalar items or pointers
to previously allocated regions of device memory. All kernel arguments are passed by value.
In particular, references are not allowed. It is not a good idea to try and pass large C++
objects to kernels; this is because they will be passed by value and there may be significant
copying overheads. Also any changes made by the kernel will not be reflected back in the
host’s copy after the kernel call. Additionally, any C++ classes or structs passed to a kernel
must have __device__ versions of all their member functions.

• Line 15.3 declares a variable step equivalent to the for loop index variable of the same
name in line 24 of Example 1.1. It is set to a value defined by the built-in variables
blockDim.x, blockIdx.x and threadIdx.x. The values of these variables depend
on the launch parameters used in the host call to the kernel as follows:
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○ blockDim.x will be set to threads, i.e. the thread block size used by the
kernel.

○ blockIdx.x will be set to the rank of the thread block to which the current thread
belongs and will be in the range [0,blocks-1].

○ threadIdx.x will be set to the rank of the current thread within its thread block and
will be in the range [0,threads-1].

○ step = blockDimx.blockIdx.x+threadIdx.x is in range [0, threads
× blocks - 1].

The key point is that the system will run threads × blocks instances of the kernel on
the GPU covering all possible combinations of values for threadIdx and blockIdx.
Thus, when we look at a kernel listing we must imagine that we are looking at the contents
of a loop which is executed for all possible values of these built-in variables. In this
case step takes all values in the range [0,size-1] where size = threads ×
blocks. When looking at a kernel code, you must imagine that the code is being run
simultaneously by all the threads. Once you have mastered this concept, you will be a
parallel programmer!3

• Line 15.4: This is an out-of-range check on the value of step, the kernel will exit at this
point for threads that fail the check.

• Line 15.5: Calculate the x value corresponding to step.
• Line 15.6: Call sinsum with the thread dependant value of x. The result is stored in the
array sums using step as an index.

• Line 15.7: The kernel exits at here; recall that return statements are not required for
void functions in C++.

The changes to the main routine are as follows:

19.1 int threads = 256;
19.2 int blocks = (steps+threads-1)/threads; // round up

• Lines 19.1–19.2: The two lines are added to define the kernel launch configuration
parameters threads and blocks. In this our first example, we use a fixed value
of 256 for threads and a calculated value for blocks which is set to be just big enough
to get the total number of threads in the launch to satisfy threads × blocks ≥
steps.

21.1 thrust::device_vector<float> dsums(steps); // GPU buffer
21.2 float *dptr = thrust::raw_pointer_cast(&dsums[0]);

• Line 21.1: This line creates the array dsums of size steps in the device memory using
the thrust device_vector class as a container. By default the array will be initialised to
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zeros on the device. This array is used by the gpu_sin kernel to hold the individual
values returned by calls to the sinsum function.

• Line 21.2: We cannot pass dsums to the kernel directly as thrust was not designed
to make this possible,4 but we can pass a pointer to the memory array managed by the
class. For std::vector objects, the member function data() does this job. While
this function does work for thrust host_vector objects it does not work for
device_vector objects. Therefore we have to use the more complicated cast shown
in this line. As an alternative you could instead use the undocumented data().get()
member function of device_vectors.

22.1 gpu_sin<<<blocks,threads>>>

(dptr,steps,terms,(float)step_size);

• Line 22.1: This line shows our first CUDA kernel launch; this is basically just a function call
with a weird extra bit <<<blocks, threads>>> inserted between the function name
and its argument list. The int variables that appear here specify the number of threads in
each thread block (threads) and the number of thread blocks (blocks). Note these
values can be defined at run time and if you have multiple kernel launches in your code each
launch can use different values. As discussed above, threads should be a multiple of
32 and has a maximum allowed value of 1024 for all current GPUs.5 The second parameter
blocks should be large. These values affect the performance of the kernel and “tuning”
them to get the best performance involves trying different combinations and choosing the
combination that runs the kernel fastest. To aid this in most of our subsequent example code
we will make these launch parameters user settable command line parameters. For most
kernels a good starting point is <<<4*Nsm, 256>>> where Nsm is the number of SMs on
the target GPU.6 In this book we often use <<<288, 256>>> as our GPU has 36 SM
units. For testing or debugging purposes using <<<1, 1>>> is sometimes interesting and
is allowed. That version has the effect of running just a single thread on one SM unit.

22.2 double gpu_sum =

thrust::reduce(dsums.begin(),dsums.end());

• Line 22.2: Here we use the host callable reduce function in the thrust library to sum all
the elements of the array dsums in GPU memory. This call involves two steps, firstly we
perform the required additions on the GPU and secondly we copy the result from GPU
memory to CPU memory. This is often referred to as a D2H (device to host) transfer.

That is the end of our detailed description of our first kernel. We have deliberately kept this
code as simple as possible.
It is worth looking at line 15.1 of the code in more detail. For any particular thread at line

15.1 of the kernel function the CUDA system variable blockIdx.x is set to the number of
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the currently executing thread block and the variable threadIdx.x is set to the rank
of that current thread within its thread block. Thus, in the present case where steps is set to
109 and threads is set to 256, blocks will be set to 3906251 and blockIdx.x will be in
the range [0,3906250], threadIdx.x will be in [0,255] and blockDim.x will be 256.
Thus, for each thread the calculation, line 15.1 produces a unique value for step in the
range 0–109 - 1. This is exactly what we need to replicate the behaviour of the original for
loop from Example 1.1. You will find something like line 15.1 in every CUDA kernel
function – it allows each thread to determine what specific task it has to do. In fact, the
variable step is nothing more than a unique thread id; this is often referred to as the rank of
the thread. NVIDIA also use the term lane to refer to the rank of a thread within its particular
32-thread warp.

There is another important point to make about line 15.1. The GPU hardware allocates
all the threads in any particular thread block to a single SM unit on the GPU, and these
threads are run together very tightly on warp-engines as warps of 32 threads. The variable
threadIdx.x is set so that threads in the same warp have consecutive values of
this variable; specifically threadIdx.x%32 is the rank or lane of a thread within its
warp (range 0–31) and threadIdx.x/32 is the rank of the warp within the thread
block (range 0–7 in our case). Thus, in line 15.6 of the kernel where we store a value in
sums[step], the adjacent threads within a given warp have adjacent values of step and
so they will address adjacent memory locations in the array sums. This is vital to make
efficient use of the GPU memory caching. Had we not known this we might have used the
formula:

step = threadIdx.x*gridDim.x+blockIdx.x;

in line 15.1. Since the variable gridDim.x is set to the number of thread blocks the
alternative would have given us the same range of values for the variable step but now
adjacent hardware threads have values of step separated by 3906251 – resulting in a
serious loss of memory performance.

In case you were wondering about the .x decoration, these variables are actually all
dim3 structs defined by the CUDA SDK (in vector_types.h). The type dim3 is a struct with
three const uint members x, y and z. In the next example we will see how they are
used in 3D grids of threads to best fit the needs of a particular problem. The CUDA SDK
defines a number of structs like this with up to four elements. For example, uint3 is similar
to dim3 except that uint3 defines overloaded operators to support basic arithmetic
operations whereas dim3 does not. Also, dim3 has a default constructor that initialises
all unspecified values to one so that it is always safe to use all components of the variables
even if the user has not explicitly set them. Although we used simple integers for our kernel
launch, the compiler will silently and safely promote them to type dim3 for the actual
kernel launch.

The values of threads and blocks are defined in lines 19.1 and 19.2 of the example to ensure
that there are at least steps threads so that we use a separate thread for each call to sinsum.
This may well be optimal here because the sinsum function does a great deal of computation.
But this code gives the user no chance to experiment to find out if that is true. A more general
approach is to allow the user to specify values for threads and blocks and to modify the
gpu_sin kernel to allow individual threads to make more than one call to gpu_sin if
necessary. Both modifications are very straightforward as shown in Example 2.1.

28 Thinking and Coding in Parallel

https://doi.org/10.1017/9781108855273.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108855273.003


Our modifications to the kernel are changing the if in line 15.4 to while and inserting
an extra line 15.65 at the end of the while loop. In line 15.65 we increment step by the
total number of threads in the grid of thread blocks. The while loop will continue until steps
values have been calculated for all (non-zero) user supplied values of blocks and
threads. Moreover, and importantly for performance reasons, on each pass through the
while loop adjacent threads always address adjacent memory locations. Other ways of
traversing through the data could be devised but the one shown here is the simplest and best.
This technique of using a while loop with indices having a grid-size stride between passes
through the loop is called “thread-linear addressing” and is common in CUDA code. It
should always be considered as an option when porting a loop in host code to CUDA.
The added lines 19.1 and 19.2 of the main routine now also use the C/C++ ternary

operator (?:)and set the values of threads and blocks according to whether or not the user
has supplied extra command line arguments. If the user does not specify these arguments
then argc will be set to three or less and both tests will fail so both default values (after
the :) will be used. If the user specifies just one extra argument argc will be set to four so the
first test will succeed and threads will be set using the expression before the : which will
be the user supplied value. The second test will still fail and a default value for blocks will
be used in the calculation. Finally, if the user supplies both extra arguments then both
threads and blocks will be set using the user’s values.
We confess to being ambivalent about the (?:) operator; it is very terse and was

introduced in the early days of C in the 1970s when it was desirable to minimise keystrokes
on heavy mechanical teletype machines when inputting code. Careless use of this operator
can make code hard to read. However, crucially it returns a value whereas if statements do
not. Using (?:) allows us to declare and initialise a variable in the same statement which is
in line with modern C++ RAII practices. In our view this trumps the terse syntax of the
operator. We do use it in our examples when initialising a variable to one of two alternatives.

Example 2.1 Modifications to Example 1.3 to implement thread-linear addressing

. . .
15.1 __global__ void gpu_sin(float *sums, int steps,

int terms, float step_size)
15.2 {
15.3 int step = blockIdx.x*blockDim.x+threadIdx.x; // ID
15.4 while(step<steps){
15.5 float x = step_size*step;
15.6 sums[step] = sinsum(x,terms); // store value
15.65 step += gridDim.x*blockDim.x; // grid size stride
15.7 }
15.8 }
. . . // NB ternary operator (test) ? a : b used here
19.1 int threads = (argc > 3) ? atoi(argv[3]) : 256;
19.2 int blocks = (argc > 4) ? atoi(argv[4]) :

(steps+threads-1)/threads;
. . .
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One drawback of this approach to reading command line arguments for setting program
options is that the user has to know the order in which the options are defined and cannot set
a given option without also specifying all the previous options. For production code we
would of course recommend something better.

For thread-linear addressing it is possible to replace the while loop Example 2.1 with a
for loop as shown in Example 2.2.

Feel free to use either version but for me the first version using while seems clearer;
there is so much going on in the for statement in the second version that I find the code
harder to follow. A good compiler will generate identical code from either version.

2.2 Kernel Call Syntax

The general form of a call to a CUDA kernel uses up to four special arguments in the
<<< >>> brackets and the kernel itself can have a number of function arguments. The four
arguments inside the <<< >>> brackets in order are:

First: defines the dimensions of the grid of thread blocks used by the kernel. Either an
integer (or unsigned integer) for linear block addressing or a dim3 type defining a 2D
or 3D grid of thread blocks.

Second: defines the number of threads in a single thread block. Either an integer (or
unsigned integer) for thread-linear addressing within a block or a dim3 type to define a
2D or 3D array structure for the threads within a thread block.

Third: An optional argument of type size_t (or int) defining the number of bytes of
dynamically allocated shared memory used by each thread block of the kernel. No
shared memory is reserved if this argument is omitted or set to zero. Note that as an
alternative the kernel itself can declare static shared memory. The size of a static shared
memory allocation must be known at compile time but the size of dynamically allocated
shared memory can be determined at run time.

Fourth: An optional argument of type cudaStream_t specifying the CUDA stream in
which to run the kernel. This option is only needed in advanced applications running
multiple simultaneous kernels. CUDA streams are discussed in Chapter 7.

Example 2.2 gpu_sin kernel alternative version using a for loop

. . .
15.1 __global__ void gpu_sin(float *sums, int steps,

int terms, float step_size)
15.2 {
15.3 for(int step = blockIdx.x*blockDim.x+threadIdx.x;

step<steps; step += gridDim.x*blockDim.x){
15.5 float x = step_size*step;
15.6 sums[step] = sinsum(x,terms); // store value
15.7 }
15.8 }
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2.3 3D Kernel Launches

Only the first 2 arguments specified as simple integers have been used in our examples so far.
Our next Example 2.3 shows the use of dim3 variables to run a kernel on a 3D grid. This
example is really just for illustrative purposes and most of the code is concerned with
printing grid related quantities.

Example 2.3 grid3D using a 3D grid of thread blocks

01 #include "cuda_runtime.h"
02 #include "device_launch_parameters.h"
03 #include <stdio.h>
04 #include <stdlib.h>

05 __device__ int a[256][512][512]; // file scope
06 __device__ float b[256][512][512]; // file scope

07 __global__ void grid3D(int nx, int ny, int nz, int id)
08 {
09 int x = blockIdx.x*blockDim.x+threadIdx.x; // find
10 int y = blockIdx.y*blockDim.y+threadIdx.y; // (x,y,z)
11 int z = blockIdx.z*blockDim.z+threadIdx.z;
12 if(x >=nx || y >=ny || z >=nz) return; // range check

13 int array_size = nx*ny*nz;
14 int block_size = blockDim.x*blockDim.y*blockDim.z;
15 int grid_size = gridDim.x*gridDim.y*gridDim.z;
16 int total_threads = block_size*grid_size;
17 int thread_rank_in_block = (threadIdx.z*blockDim.y+

threadIdx.y)*blockDim.x+threadIdx.x;
18 int block_rank_in_grid = (blockIdx.z*gridDim.y+

blockIdx.y)*gridDim.x+blockIdx.x;
19 int thread_rank_in_grid = block_rank_in_grid*block_size+

thread_rank_in_block;
20 // do some work here
21 a[z][y][x] = thread_rank_in_grid;
22 b[z][y][x] = sqrtf((float)a[z][y][x]);
23 if(thread_rank_in_grid == id) {
24 printf("array size %3d x %3d x %3d = %d\n",

nx,ny,nz, array_size);
25 printf("thread block %3d x %3d x %3d = %d\n",

blockDim.x, blockDim.y, blockDim.z, block_size);
26 printf("thread grid %3d x %3d x %3d = %d\n",

gridDim.x, gridDim.y, gridDim.z, grid_size);
27 printf("total number of threads in grid %d\n",

total_threads);
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Description of Example 2.3

• Lines 1–4: Basic include statements for CUDA.
• Lines 5–6: Declare two large 3D arrays which have file scope and so can be used by any of
the functions declared later in the same file. This is standard C/C++ but with an extra CUDA
feature. By declaring the arrays with the __device__ prefix we are telling the compiler to allocate
these arrays in the GPU memory not in the host memory. Thus, the arrays a and b are usable by kernel
functions but not host functions. Notice the array dimensions are in order z, y, x going from left to
right, where memory is allocated so the adjacent x values are adjacent in memory. This is standard in
C/C++ but opposite to Fortran which uses x, y, z order. Apart from array subscripts we will use
“natural” x, y, z ordering in our code. This follows CUDA practice where for example a float4
variable a has members a.x, a.y, a.z, a.w which are ordered from x to w in memory.

Using a global declaration is actually an easy way to create GPU arrays of known size, but we will
rarely use it – there are two important disadvantages. Firstly, the array dimensions must be set at
compile time not run time and secondly declaring variables with file scope is a deeply depreciated
programming style because it leads to unstructured code where functions can easily cause unwanted
side effects. In our subsequent examples we will allocate arrays in code and then pass them as pointer
arguments to called functions as necessary.

• Line 7: The kernel grid3D is declared with four arguments which are the array dimensions and id
which specifies the thread whose information will be printed.

• Lines 9–11: Here we calculate the thread’s x, y and z coordinates within its thread block. The launch
parameters defined in lines 35–36 set the block dimensions to 32, 8 and 2 and the grid dimensions to
16, 64 and 128 for x, y and z respectively. This means that in line 9 the built-in variables
blockDim.x and gridDim.x are set to 32 and 16 respectively. Thus threadIdx.x and
blockIdx.x will have ranges [0,31] and [0,16] and the desired coordinate x will have the
range [0,511] which is required to index the global arrays a and b. Similarly, y and z have ranges
of [0,511] and [0,255]. Within any particular thread block the threadIdx values will have
ranges of [0,31], [0,7] and [0,1] for x, y and z; note the x range corresponds to one

28 printf("a[%d][%d][%d] = %i and b[%d][%d][%d] = %f\n",
z, y, x, a[z][y][x], z, y, x, b[z][y][x]);

29 printf("for thread with 3D-rank %d 1D-rank %d
block rank in grid %d\n", thread_rank_in_grid,
thread_rank_in_block,block_rank_in_grid);

30 }
31 }

32 int main(int argc, char *argv[])
33 {
34 int id = (argc > 1) ? atoi(argv[1]) : 12345;
35 dim3 thread3d(32, 8, 2); // 32*8*2 = 512
36 dim3 block3d(16, 64,128); // 16*64*128 = 131072
37 grid3D<<<block3d,thread3d>>>(512,512,256,id);
38 return 0;
39 }
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complete warp of threads; this is a design choice not chance. Having decided to use an x range of
32 we are restricted to smaller ranges for y and z as the product of all three is the thread block size
which is limited by hardware to a maximum of 1024.

• Line 12: This is an out-of-range check on the calculated indices. This check is not strictly necessary
here as we have carefully crafted the launch parameters to exactly fit the array dimensions. In
general, this will not always be possible and it is good practice to always include range checks in
kernel code.

• Lines 13–19: Calculate some values derived from the launch parameters. Most of these values
would not be needed in a real-world problem, but we want to print them to illustrate the detail of 3D
addressing in kernels.
○ Lines 13–15: The 3D array, thread block and grid sizes are simply calculated as the product of
their dimensions.

○ Line 16: Similarly the total number of threads is the product of the thread block size
block_size and the number of thread blocks grid_size.

○ Line 17: The rank of the thread within its 3D thread block is calculated using the standard 3D
addressing rank formula:

3D Rank Formula
rank = (z*dim_y + y)*dim_x + x

for a 3D array of dimensions (dim_x, dim_y, dim_z) laid out sequentially in memory with
the x values adjacent, the y values are separated by stride of dim_x and the z values are
separated by a stride of dim_x*dim_y. We will use versions of this formula very often in our
examples, often encapsulated in a lambda function.

○ Line 18: Here we also use the rank formula to calculate the rank of the thread block within the grid
of thread blocks.

○ Line 19: Here we use the 2D version of the rank formula to calculate the rank of the thread within
the entire thread grid.

○ Lines 21–22: Here we actually do some real work storing values into the array a and b using
indices derived from the threads position in the 3D thread grid.

○ Lines 23–29: Here, for one thread, chosen by the user, we print some of the calculated
quantities.

• Lines 32–39: Here is the complete short main routine. Basically, we get a user settable value for id
in line 34, set the kernel launch parameters in lines 35–36 and launch the kernel in line 37.

The results of running Example 2.3 are shown in the box below. There are 2 cases
shown.

• Case id=511: This is the last thread in the first block which spans the range: [0-31,0-7,
0-1] and the last point in this range is (31,7,1) which is shown correctly as the index
[1][7][31] in the figure.

• Case id=1234567: To understand this we need to realise that a set of 16 blocks will span
the complete x range for eight consecutive y and two consecutive z values. Hence the first
1024 blocks will span the range [0-511,0-511,0-1] which is two complete x-y
slices of the array, The next 1024 blocks will span the slices with z in range [2-3] and so
on. Since 1234567 = 512*2411+135 we have picked the 135th thread in the 2412th
block. The first 4 x-y slices account for 2048 blocks so our pick is in the 364th block in the
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4–5 slice pair. Next since 364 = 22*16 + 12 we conclude that our thread is in the 12th
block in the set of 16 blocks that spans the index range [0-511,168-175,5-6]. This
12th block spans [352-383,176-183,5-6] and since the 135th thread is offset by
[7,4,0] from this position we find an index set of [359,180,5] or a C/C++ 3D
vector index address of [4][180][359].

Case 1 Last thread in first thread block:

D:\ > grid3D.exe 511

array size 512 x 512 x 256 = 67108864

thread block 32 x 8 x 2 = 512

thread grid 16 x 64 x 128 = 131072

total number of threads in grid 67108864

a[1][7][31] = 511 and b[1][7][31] = 22.605309

rank_in_block = 511 rank_in_grid = 511 rank of block_rank_in_grid = 0

Case 2 Thread 135 in block 2411

D:\ grid3d.exe 1234567

array size 512 x 512 x 256 = 67108864

thread block 32 x 8 x 2 = 512

thread grid 16 x 64 x 128 = 131072

total number of threads in grid 67108864

a[4][180][359] = 1234567 and b[4][180][359] = 1111.110718

rank_in_block = 135 rank_in_grid = 1234567 rank of
block_rank_in_grid = 2411

Results from running grid3D

As our second case illustrates 3D thread blocks are somewhat complicated to visualise but
their unique selling point is that they group threads spanning 3D subregions of the array into
a single SM unit where the threads can cooperate. In many volume processing applications,
for example, automatic anatomical segmentation of 3D MRI scans, this is a key advantage.
In practice, addressing such a subregion directly from the GPU main memory is often
inefficient due to the large strides between successive y and z values. In such cases caching
a 3D subregion in shared memory on the SM is an important optimisation.

However, if threads in your kernel only process individual elements of the array with little
collaboration between threads then 1D thread-linear address is simpler to implement and
offers more scope for tuning the launch configuration. Example 2.4 shows a version of the
grid3D kernel with 1D thread-linear addressing.

Example 2.4 grid3D_linear thread-linear processing of 3D array

01 #include "cuda_runtime.h"
02 #include "device_launch_parameters.h"

03 #include <stdio.h>
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04 #include <stdlib.h>

05 __device__ int a[256][512][512]; // file scope
06 __device__ float b[256][512][512]; // file scope

07 __global__ void grid3D_linear(int nx, int ny, int nz, int id)
08 {
09 int tid = blockIdx.x*blockDim.x+threadIdx.x;

10 int array_size = nx*ny*nz;
11 int total_threads = gridDim.x*blockDim.x;
12 int tid_start = tid;
13 int pass = 0;

14 while (tid < array_size){ // linear tid => (x, y, z)
15 int x = tid%nx; // tid modulo nx
16 int y = (tid/nx)%ny; // tid/nx modulo ny
17 int z = tid/(nx*ny); // tid/(x-y slice size)
18 // do some work here
19 a[z][y][x] = tid;
20 b[z][y][x] = sqrtf((float)a[z][y][x]);
21 if(tid == id) {
22 printf("array size %3d x %3d x %3d = %d\n",

nx,ny,nz,array_size);
23 printf("thread block %3d\n",blockDim.x);
24 printf("thread grid %3d\n",gridDim.x);
25 printf("total number of threads in grid %d\n",

total_threads);
26 printf("a[%d][%d][%d] = %i and b[%d][%d][%d] = %f\n",

z,y,x,a[z][y][x],z,y,x,b[z][y][x]);
27 printf("rank_in_block = %d rank_in_grid = %d

pass %d tid offset %d\n", threadIdx.x,
tid_start, pass, tid-tid_start);

28 }
29 tid += gridDim.x*blockDim.x;
30 pass++;
31 } // end while
32 }

33 int main(int argc, char *argv[])
34 {
35 int id = (argc > 1) ? atoi(argv[1]) : 12345;
36 int blocks = (argc > 2) ? atoi(argv[2]) : 288;
37 int threads = (argc > 3) ? atoi(argv[3]) : 256;
38 grid3D_linear<<<blocks,threads>>>(512,512,256,id);
39 return 0;
40 }
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D:\ > grid3d_linear.exe 1234567 288 256
array size 512 x 512 x 256 = 67108864
thread block 256
thread grid 288
total number of threads in grid 73728
a[4][363][135] = 1234567 and b[4][363][135] = 1111.110718
rank_in_block = 135 rank_in_grid = 54919 rank of

block_rank_in_grid = 214 pass 16

Results from example 2.4 using the grid3D_linear kernel to process 3D arrays with thread-linear-
addressing. The displayed array element has different 3D indices as compared to example 2.2 even
though its linear index is the same as used in that example.

Description of Example 2.4

• Lines 1–8: These lines are unchanged from Example 2.3 except we have renamed the kernel.
• Line 9: The variable tid is set to the current thread’s rank in the grid of threads blocks using the
standard formula for 1D thread and grid-blocks.

• Lines 10–13: We set some variables used in the later print statements here. Note the formula for the
total_threads is now the simple 1D case.

• Lines 14–31: These lines are the while loop used for thread-linear addressing.
• Lines 15–17: These lines show how to convert a thread-linear address into 3D coordinates with x the
most rapidly varying coordinate and z the least rapidly varying. Note the division and modulus (%)
operators are expensive and could be replaced by masking and shifting operations if nx and ny are
known powers of 2. This gives better performance at the price of a less general kernel. For the case
where both nx and ny are 512 we could use:

int x = tid & 0x01ff; // x = bits 0-8
int y = (tid >> 9) & 0x01ff; // y = bits 9-17
int z = tid >> 18; // z = bits 18 and above

Calculation of 3D coordinates by extraction of bit fields from thread-linear address. The two 9-bit
masks are for case where both nx and ny are equal to 512.

The formulae used to convert between a 3D (x,y,z) index triad and a linear index are shown in the
box. Lines 15–17 here are an example of this:

Relations Between Linear and 3D indices
index = (z*ny+y)*nx+x

x = index % nx
y = (index / nx) % ny
z = index / (nx*ny)
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• Lines 19–28: This is similar to the previous example except we are using the variable name tid
instead of thread_rank_in_grid.

• Line 29: Here we increment tid using a stride equal to the length of the entire thread-grid
• Line 30: Here we increment a counter pass and continue to the next pass of the while loop. The
variable pass is only used as part of the information printed. The actual linear address being used
by a given tid within the while loop is rank_in_grid+pass*total_threads.

• Lines 33–40: The main routine now accepts two additional user arguments blocks and
threads, which define the kernel launch parameters.

The results for the thread with a linear index of 1234567, the same value as used in Example 2.2,
shows that this linear index corresponds to a 3D element [4][363][135] whereas in Example 2.2 using
3D grid and thread blocks it corresponded to the element [4][180][359]. Neither result is “wrong”. The
difference merely reflects the different order in which elements of the arrays are encountered.

Next we return to the CUDA topic of occupancy.

2.4 Latency Hiding and Occupancy

When a new kernel begins execution, a 32-thread warp will begin execution on each of the
warp-engines on the GPU. These warps become active-warps and will remain resident until
all warps in their thread block are complete. A likely early step will be loading an item of
data from global memory but loading this data from global memory has a latency of several
hundred clock-cycles. Thus, the active threads have to wait for their data to arrive before
they can proceed – while waiting they are termed stalled threads. In fact, the hardware is
quite sophisticated and the threads will not stall until an instruction that actually uses the
pending data is reached. This means that a programmer can hide some of the latency by
doing work independent of the data between requesting that data and using it. While useful,
there may be limited scope for this in practice, and writing instructions in an unnatural order
makes code harder to debug and maintain – probably it’s best to rely on the compiler to do
this job for you.
A key feature of the GPU design is that each warp engine can process several active

warps in an interleaved fashion, if one of its active warps stalls, a warp-engine will switch
to another active warp capable of running with no loss of cycles. Efficient switching
between warps is possible because each thread in an active warp maintains its own state
and set of registers. This is in dramatic contrast to the standard CPU architecture where a
single set of registers is shared by all active threads making task switching an expensive
operation. Thus, a warp-engine can continue executing instructions until all its active-
warps have stalled waiting for memory access. Such a multiple stall may occur once at the
start of a kernel but, provided each thread does “enough” computation between each global
memory access, any further stalls are avoided. Note, enough computation is the number of
instructions that could be executed in the time taken for a “typical” memory access. This
can be several hundred instructions on a modern GPU. Latency hiding is illustrated in
Figure 2.1.
Figure 2.1 shows four thread blocks, T1–T4. On the left they each run briefly and then

stall waiting for a memory access. The access requests are shown as vertical arrows. The
dispatch of the requested data is shown by the slanted dashed lines. Most of the latency
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from T1’s first memory request is hidden by the initial running of T2–T4. After a small
amount of additional idle time T1’s data arrives in L1 cache and T1 resumes execution
using this data, T1 then stalls again with a second memory access shown as the grey
vertical line. However, now there is no further idle time as data will now reach the L1
cache before it is needed.

On the Pascal architecture each SM has four warp-engines each capable of running up to
16 active warps, or equivalently 64 warps or 2048 threads on the SM. Thus, if the global
memory latency is 400 cycles, each thread would need to do only 25 cycles worth of
computation between memory accesses to fully hide this latency. This is a best-case situation
because the kernel launch configuration may restrict the maximum number of active warps
to less than 16. The occupancy of a kernel is defined as:

occupancy ¼ Actual number of active warps

Maximum number of active warps
:

The factors which may limit occupancy are the thread block size, the number of thread
blocks, the number of registers used by each thread and the amount of shared memory used
by a thread block. The number of thread blocks should be an integer multiple of the number
of SMs in the GPU sufficient to give 2048 threads per block. There are also limits of 64K
32-bit registers and 64 KB of shared memory per SM. These limits are illustrated in
Table 2.2 for a Pascal GPU with 20 SMs. Note, the number of registers allocated to each
thread is determined by the compiler and depends on the complexity of the code. For full
occupancy, the hardware has sufficient registers for 32 registers per thread. This value can be
inspected and/or overridden by using NVCC compiler switches --maxrregcount and
--resource-usage.

Table 2.2 Kernel launch configurations for maximum occupancy

Thread
Block Size

Blocks
per SM

Blocks per Grid if
GPU has 20 SMs

Registers per
Thread

Bytes of shared memory
per Thread Block

32 64 1280 32 1 KB
64 32 640 32 2 KB

128 16 320 32 4 KB
256 8 160 32 8 KB
512 4 80 32 16 KB

1024 2 40 32 32 KB

Figure 2.1 Latency hiding on GPUs
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Full occupancy is more important for memory bound kernels than it is for compute bound
kernels but it is always a good idea to keep your kernel code compact and straightforward as
this will allow the compiler to allocate registers more effectively. It is also a good idea to split
long calculations into stages and use separate kernels for each stage. Remember that the
contents of GPU global memory is preserved between kernel launches.
It is now time to move on to more interesting GPU code where threads have to actively

cooperate to perform a calculation.

2.5 Parallel Patterns

Parallel programming for GPUs running vast numbers of threads does require some rethink-
ing of your approach to coding. Methods that work well in single CPUs or codes running a
small number of independent threads may need to be rethought.

2.5.1 Avoid If Statements

One big difference is that branch statements are problematic in CUDA code, for example
consider a CUDA kernel containing the following code:

if (flag == 0) function1(a1,a2,...);
else function2(b1,b2,...);

If all the 32 threads in a particular warp have flag=0, then all threads will call
function1 and there is very little performance loss, the same is true if none of the
32 threads have flag set to zero. However, if even just one of these threads has flag set to
a non-zero value while the other 31 threads have flag=0 then we get a so-called branch-
divergence. The system handles this by serializing the calls to the two functions, that is, the
subset of threads in the warp with flag=0 execute the call to function1 while the threads
having flag non-zero stay idle. Then, when the function has returned for all active threads,
the else clause calling function2 is executed by the previously idle threads while
previously active threads are now idle.7

CUDA Coding tip

• Avoid diverging if statements
• But only within 32-thread warps
• Modest conditional execution, e.g.:

if(flag==0) x= x+1;

is less harmful.

If the functions concerned are modest and require only a small fraction of the kernel’s
execution time, no great harm is done, but otherwise there can be up to a factor two drop in
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performance. If the called functions also have branch divergences the performance penalty is
even worse.

If you have not encountered parallel programming on GPUs before, the need to remove all
if statements from your code may seem like a deal breaker – but as we shall see in our
examples this can be achieved quite straightforwardly in many cases. I also have to confess
that I enjoy the intellectual challenge of designing good GPU code.

2.6 Parallel Reduce

The parallel reduce operation, mentioned in Chapter 1, is a good place to begin our discussion
of parallel coding patterns. This is a good example of the more general problem of performing
the same operation on a large set of numbers. Reduce itself involves finding the arithmetic sum
of the numbers, but other operations such as max or min would require similar code.

As a specific case, consider the problem of summing N floating point numbers stored in
the GPUs global memory. The first point to recognise is that each data item just requires a
single add; thus we will be limited by memory access speed not arithmetic performance. This
is the exact opposite to the situation in Example 1.3. We want to use as many threads as
possible in order to hide memory latency efficiency so our basic algorithm is as shown in the
box and illustrated in Figure 2.2.

Reduce Algorithm 1: Parallel sum of N numbers

• Use N/2 threads to get N/2 pairwise sums
• Set N = N/2 and iterate till N=1

Figure 2.2 Pairwise reduction for the last 16 elements of x
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The GPU implementation of this algorithm is shown in Example 2.5. The host code which
initialises the data and manages most of the calculation is also shown and discussed in
this example.

Description of Example 2.5

• Lines 1–3: All the necessary includes are here. The file cx.h is part of our example set and contains
all the standard includes and some helpful definitions; it is fully described in Appendix G. The
header cxtimers.h defines a portable C++ based timer object.

• Lines 4–8: Show the reduce0 kernel which is very simple; each thread finds its rank, tid, in the
grid and, making the tacit assumption that tid is in the range 0 to m-1, adds the appropriate
element from the top half of the array to the bottom half. At this point, it is worth pausing to admire
the simplicity of the kernel code. We have been able to directly express the idea for implementing a
parallel reduction with a 2-line kernel. The method is illustrated in Figure 2.2 and shows the last few
steps. Another thing to think about when looking at kernel code is the sheer power of the GPU; line
7 which does the additions will be executed in parallel by all the cores on the GPU, potentially
delivering one or more operations for each core on each clock-cycle. My RTX 2070 GPU has
2304 cores running at about 1.1 GHz and can deliver several 1012 operations per second.

• Line 11: Here we set the array size N to a user supplied value or a default of 224.
• Lines 12–13: Here we allocate thrust host and device vectors x and dev_x to hold the data.
• Lines 15–17: These lines initialise a C++ random number generator and use it to fill x. The use of
generators from <random> is much preferred over the deprecated rand() function from ancient C.

Example 2.5 reduce0 kernel and associated host code

01 #include "cx.h"
02 #include "cxtimers.h"
03 #include <random>

04 __global__ void reduce0(float *x, int m)
05 {
06 int tid = blockDim.x*blockIdx.x+threadIdx.x;
07 x[tid] += x[tid+m];
08 }

09 int main(int argc, char *argv[])
10 {
11 int N = (argc >1) ? atoi(argv[1]) : 1 << 24; // 224

12 thrust::host_vector<float> x(N);
13 thrust::device_vector<float> dev_x(N);

14 // initialise x with random numbers and copy to dx
15 std::default_random_engine gen(12345678);
16 std::uniform_real_distribution<float> fran(0.0,1.0);
17 for(int k = 0; k<N; k++) x[k] = fran(gen);
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• Line 18: The contents of x are copied from the host to dev_x on the GPU. The details of the
transfer are handled by thrust.

• Lines 19–22: A timed loop to perform the reduction on the host using a simple for loop.
• Lines 24–31: Implement the GPU-based parallel iteration of Algorithm 1. For each pass through the
for loop the reduce0 kernel called in line 28 causes the top half of the array dev_x to be
“folded” down to an array of size m by adding the top m elements to the bottom m elements. The last
pass through the loop has m=1 and leaves the final sum in dev_x[0]; this value is copied back to
the host in line 35. Lines 28–29: Within the for loop the kernel launch parameters blocks and
threads are set so that the total number of threads in the grid is exactly m. This code will fail if
N is not a power of 2 due to rounding down errors at one or more steps in the process.

In CUDA programs a kernel launch such as that used in line 28 will not block the host which will
proceed to the next line of the host program without waiting for the kernel call to finish. In this case
that means all the kernel calls (23 in all for N=224) will be rapidly queued to run successively on the
GPU. In principle the host can do other CPU work while these kernels are running on the GPU. In this
case we just want to measure the duration of the reduction operation so before making the time
measurement we must use a cudaDeviceSynchronize call in line 30 which causes the host to

18 dx = x; // H2D copy (N words)

19 cx::timer tim;
20 double host_sum = 0.0; // host reduce!
21 for(int k = 0; k<N; k++) host_sum += x[k];
22 double t1 = tim.lap_ms();

23 // simple GPU reduce for N = power of 2
24 tim.reset();
25 for(int m = N/2; m>0; m /= 2) {
26 int threads = std::min(256,m);
27 int blocks = std::max(m/256,1);
28 reduce0<<<blocks, threads>>>(dev_x.data().get(), m);
29 }
30 cudaDeviceSynchronize();
31 double t2 = tim.lap_ms();

32 double gpu_sum = dev_x[0]; // D2H copy (1 word)
33 printf("sum of %d random numbers: host %.1f %.3f ms,

GPU %.1f %.3f \n", N, host_sum, t1, gpu_sum, t2);
34 return 0;
35 }

D:\ > reduce0.exe
sum of 16777216 random numbers: host 8388314.9 14.012 ms

GPU 8388315.0 0.535 ms
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wait for all pending GPU operations to complete before continuing. This kind of synchronisation issue
often occurs in parallel code.

• Lines 32–33: Here we copy the final sum in the dev_x[0] back to the host, again using thrust, and
print results.

The bottom line shows the results obtained running this program with the default value of 224 for the
number of values to be summed. Note the kernel execution time of 0.535 ms is too short a single
measurement to be reliable. The values shown in these reduce examples were in fact obtained as
averages of 10,000 runs using a for loop around kernel calls. An alternative method would be to use
the Nsight Compute profiling tool, but our simple host-based method using cx::timer is a good
starting point.

An interesting feature of the results obtained is that the host calculation uses a 64-bit
double variable to accumulate the sum of the x values but the GPU does not. However, the
results differ by only 1.1 parts in 10‒8 – this is about the best that can be expected from a
32-bit floating point calculation; rounding errors have not accumulated in the GPU calcula-
tion. On the other hand, if we change the variable host_sum (line 23 of the host calculation
in Example 2.4) to a float instead of a double the accuracy of the host calculation falls to
only about 3 parts in 10‒5 thus rounding errors do accumulate in the host calculation. This
difference is due to the fact that the GPU accumulates many intermediate partial sums and
thus tends to be always adding numbers of similar sizes. Although this improvement is data
dependent, this is encouraging to see, as we plan to use 32-bit floats in our GPU calculations
whenever possible.
While accurate, our kernel is very inefficient and unlike the compute bound problem in

Chapter 1, reduction is a memory bound problem and the reduce0 kernel does not handle
this well.
Firstly, the only calculation done by each thread is a single addition, and secondly the

statement:

x[tid] += x[tid+m],

triggers three global memory operations, namely loading both the values stored in x[tid]
and x[tid+m] into GPU registers and then storing the sum of these values back into
x[tid]. If we could accumulate partial sums in local registers, that would reduce the
number of global memory accesses needed for each addition down to one, which offers a
speed-up by a potential factor of three.
Secondly, the host calls the kernel iteratively, halving the array size at each step to

complete the reduction process, leaving the final sum in the first array element. The effect
of this is to double the number of times the x[tid] += x[tid+m] statement is
performed. If we could instead perform the iteration inside the kernel that could also reduce
the number of memory accesses required.
Finally, the kernel of Example 2.5 is not general enough, the array size must be a power of

2 and the host has to make multiple calls to the kernel using a carefully crafted sequence of
launch parameters. A better solution is to use thread-linear addressing, with user defined
values of blocks and threads to get something like Example 2.6:
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Example 2.6 reduce1 kernel using thread-linear addressing

04 __global__ void reduce1(float *x, int N)
05 {
06 int tid = blockDim.x*blockIdx.x+threadIdx.x;
06.1 float tsum = 0.0f;
06.2 for(int k=tid; k<N; k += gridDim.x*blockDim.x)

tsum += x[k];

07 x[tid] = tsum; // store partial sums in first
08 } // gridDim.x*blockDim.x elements of x

. . .
24 tim.reset();
25 reduce1<<< blocks, threads >>>(dx.data().get(),N);
26 reduce1<<< 1, threads >>>(dx.data().get(),blocks*threads);
27 reduce1<<< 1,1 >>>(dx.data().get(),threads);
30 cudaDeviceSynchronize();
31 double t2 = tim.lap_ms();
32 double gpu_sum = dx[0]; //D2H copy (1 word)

D:\ > reduce1.exe
sum of 16777216 numbers: host 8388889.0 14.012 ms

GPU 8388315.5 0.267 ms

Description of Example 2.6

• Lines 5–10: This is the reduce1 kernel, now 4 lines long. We use thread-linear addressing to sum all
the N values contained in x into lower block*threads elements. Each thread accumulates its
own partial sum in its copy of the register variable tsum and then stores the final result in x[tid]
where tid is the thread’s unique rank in the grid. In this example we have used a for loop instead
of a while clause to keep the code compact.

Note line 7, where we change the value of an element of x, requires thought. Not all threads actually
run at the same time so using the same array for a kernel’s input and output is always potentially
dangerous. Can we be sure no thread other than tid needs the original value in x[tid]? If the answer
is no, then the kernel would have a race condition and the results would be undefined. In the present
case we can be sure because every thread uses a separate disjoint subset of the elements of x. If in doubt
you should use different arrays for kernel input and output.

• Lines 28–30: Replace the for loop in lines 28–32 of the original. Now we make three calls to
reduce1, the first uses the full thread-grid defined by the user set variables blocks and
threads. After this call the lower blocks*threads elements of x contain partial sums. The second
kernel call uses just 1 thread block of size threads, after this call the partial sums are in the first
threads elements of x. The third call uses just 1 thread to sum threads elements of dx and leave
to total sum in the first element. Clearly the last two kernel calls do not make efficient use of the GPU.

The bottom line shows the time required for the reduce1 kernel; the host time is unchanged but the
GPU time is about half that required for reduce0.

44 Thinking and Coding in Parallel

https://doi.org/10.1017/9781108855273.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108855273.003


The reduce1 is about twice as fast as reduce0 which is not a bad start but we can do
more. Our reduce1 kernel is also much more user friendly, it can cope with any value of
the input array size N and the user is free to tune the launch configuration parameters
blocks and threads.
Notice that in the last reduce step, line 27 of Example 2.6, we used a single thread running

alone to sum threads values stored in x. We can do better than this by getting the threads
in each thread block to cooperate with each other.
A key feature of NVIDIA GPUs is shared memory which allows the threads within a thread

block to cooperate efficiently. A thread block running on the GPU can reserve an allocation of
shared memory, and all threads in the thread block can then read from and write to that
memory. Threads in different thread blocks of a kernel get different allocations of shared-
memory and cannot read or write to each other’s allocations. Each SM unit has a pool of
shared memory which is divided between all the currently resident thread blocks that request
shared memory. Of course, device global memory is also visible to all threads on all thread
blocks but accessing shared memory is much faster and can be as fast as using registers.
NVIDIA GPUs have at least 48 KB of shared memory per SM unit and more recently

64K. The precise amount depends on the CC level and is summarised in Table 2.3. It is clear
from the table that at the thread level shared memory is a scarce resource; there is enough for
only 8 or 16 4-byte words per thread. If more is required one can try using more shared
memory per thread at the expense of lower occupancy. The runtime system will automatic-
ally run fewer kernels per SM if necessary. If a kernel requests more shared memory than the
total available on an SM then the kernel launch will fail. Shared memory featured very
prominently in early CUDA tutorials and books because these GPUs had little or no caching
capability for global memory accesses. More recent GPUs have good L1 and L2 caching
and in particular L1 caching can sometimes work well as an alternative to using shared
memory. Interestingly devices with CC 7.0 and above have a single fast memory resource
that can be shared between L1 and shared memory partitions in different proportions for
different kernels.
In our next Example 2.7 we use shared memory to enable the threads in each thread

block to sum their individual accumulated totals and then write a single word with the block-
sum to external memory. The scheme of Figure 2.2 is again used for this intra-
block reduction.

Table 2.3 Features of GPU generations from Kepler to Ampere

GPU Generation Kepler Maxwell Pascal Volta Turing Ampere

Compute Capability 3.5 3.7 5.0 5.2 5.3 6.0 6.1 6.2 7.0 7.5 8.0
Shared Mem per SM
(KB)

48 112 64 96 64 64 96 64 96 64 164

Max Resident
Threads per SM

2048 1024 2048

Shared Mem per
Thread (bytes)

24 56 32 48 32 32 48 32 48 64 82

4-byte Registers per
Thread

32 64 32 32 32 32 32 32 32 64 32
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Example 2.7 reduce2 kernel showing use of shared memory

01 __global__ void reduce2(float *y, float *x, int N)
02 {
03 extern __shared__ float tsum[]; // Dynamic Shared Mem

04 int id = threadIdx.x;
05 int tid = blockDim.x*blockIdx.x+threadIdx.x;
06 int stride = gridDim.x*blockDim.x;
07 tsum[id] = 0.0f;
08 for(int k=tid;k<N;k+=stride) tsum[id] += x[k];
09 __syncthreads();

// power of 2 reduction loop
10 for(int k=blockDim.x/2; k>0; k /= 2){
11 if(id<k) tsum[id] += tsum[id+k];
12 __syncthreads();
13 }

// store one value per thread block
14 if(id==0) y[blockIdx.x] = tsum[0];
15 }

16 int main(int argc, char *argv[])
17 {
18 int N = (argc > 1) ? atoi(argv[1]) : 1 << 24;
19 int blocks = (argc > 2) ? atoi(argv[2]) : 256;
20 int threads = (argc > 3) ? atoi(argv[3]) : 256;
21 thrust::host_vector<float> x(N);
23 thrust::device_vector<float> dx(N);
23 thrust::device_vector<float> dy(blocks);

24 // initialise x with random numbers
25 std::default_random_engine gen(12345678);
26 std::uniform_real_distribution<float> fran(0.0,1.0);
27 for(int k = 0; k<N; k++) x[k] = fran(gen);
28 dx = x; // H2D copy (N words)

29 cx::timer tim;
30 double host_sum = 0.0; // host reduce!
31 for(int k = 0; k<N; k++) host_sum += x[k];
32 double t1 = tim.lap_ms();

33 // simple GPU reduce for any value of N
34 tim.reset();
35 reduce2<<<blocks,threads,threads*sizeof(float)>>>

(dy.data().get(),dx.data().get(),N);
36 reduce2<<<1, blocks, blocks*sizeof(float)>>>

(dx.data().get(),dy.data().get(),blocks);
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Description of Example 2.7

• Lines 1–9: This is the reduce2 kernel which uses shared memory.
• Line 1: This kernel uses y as an output array and x as the input array with N elements. The previous
reduce1 kernel used x for both input and output.

• Line 3: Herewe declare thefloat arraytsum to be a shared memory array of size determined by the host
at kernel launch time. Shared memory is on-chip and very fast. Each SM has its own block of shared
memory which has to be shared by all the active thread blocks on that SM. All threads in any given
thread block share tsum and can read or write to any of its elements. Inter-block communication is not
possible using tsum because each thread block has a separate allocation for its tsum. For this kernel,
an array size of blockDim.x is assumed for y and it is up to the host code to ensure that the correct
amount has been reserved. Incorrectly specified kernel launches could cause hard-to-find bugs.

• Lines 4–6: To prepare for thread-linear addressing we set id to the rank of the current thread in its
thread block, tid to the rank of the current thread in the whole grid and stride to the number of
threads in the whole grid.

• Line 7: Each thread “owns” one element of tsum, tsum[id] for this part of the calculation. Here
we set the element to zero.

• Line 8: Here each thread sums the subset of elements of x corresponding to x[id+n*stride] for
all valid integers n ≥ 0. Although there is a large stride between successive elements, this is a
parallel calculation and adjacent threads will simultaneously be reading adjacent elements of x so
this arrangement is maximally efficient for reading GPU main memory. Note that for large arrays,
most of the kernel’s execution time is used on this statement and very little calculation is done per
memory access.

• Line 9: The next step of the algorithm requires threads to read elements of tsum that have been
updated by different threads in the thread block. Technically that’s fine – this is what shared memory
is for. However, not all threads in the thread block run at the same time and we must be sure that all
threads in the thread block have completed line 8 before any of the threads proceed. The CUDA
function __syncthreads() does exactly this; it acts as a barrier, all (non-exited) threads in the
thread block must reach line 9 before any of them can proceed. Note that __syncthreads only
synchronises threads in a single thread block. This is in contrast to the host function
cudaDeviceSynchronize()which ensures that all pending CUDA kernels and memory transfers
have completed before allowing the host to continue. If you want to ensure that all threads in all thread
blocks have reached a particular point in a kernel then in most cases your only option is to split the
kernel into two separate kernels and use cudaDeviceSynchronize() between their launches.8

37 cudaDeviceSynchronize();
38 double t2 = tim.lap_ms();
39 double gpu_sum = dx[0]; // D2H copy (1 word)
40 printf("sum of %d numbers: host %.1f %.3f ms
41 GPU %.1f %.3f ms\n",N,host_sum,t1,gpu_sum,t2);
42 return 0;
43 }

D:\ > reduce2.exe 16777216 256 256
sum of 16777216 numbers: host 8388314.9 14.012 ms

GPU 8388314.5 0.202 ms
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• Lines 10–13: This is the implementation of the power of 2 reduction scheme of Figure 2.2 implemented to
sum the values in tsum on a thread block. This section of code assumes that blockDim.x is a power
of 2. Note that the number of active threads reduces by a factor of 2 on each pass through the for loop.
Older tutorials tend to dwell on further optimisation of this loop by explicitly unrolling and exploiting
synchronicity within 32-thread warps. This will be discussed in the next chapter on cooperative groups.
For now, note further optimisation of this loop is only important for smaller datasets.

• Line 14: The final block sum accumulated in tsum[0] is stored in the output array y using
blockIdx.x as an index.

• Lines 16–45: This is the main routine; much of it is similar to the previous example and here we will
just mention differences.

• Lines 18–20: Here we give the user the option to set the array size N and the launch parameters
blocks and threads. Note blocks needs to be a power of 2 for the reduce2 kernel to
work properly.

• Line 23: We now allocate a device array dy having dimension blocks. This new array will hold
the individual block wide reduction sums.

• Line 35: Here we call the reduce2 kernel for the first time to process the whole dx array with the
block sums being stored in the output array dy. Note the third kernel argument requesting a shared
memory allocation of threads 4-byte floats for each active thread block. A large value here may
result in reduced occupancy.

• Line 36: Here we call reduce2 again but with the array arguments swapped round. This has the result
of causing the values stored in y by the previous kernel call, to themselves be summed with the total
placed in x[0]. This requires a launch configuration of a single thread block of size blocks threads.

The result at the end of the listing shows that reduce2 is about 2.65 times faster than reduce0.

Aworthwhile optimisation of the reduce2 kernel would be to drop the restriction that blocks
must be a power of 2. This is because in many GPUs the number of SM units is not a power of 2.
For example,myGPUhas 36SMs so to keep all SMs equally busy it is better to use 288 rather than
256 for the number of user set value of blocks. We can do this by replacing blockDim.x in
line 10 of the reduce2 kernel by the smallest power of 2 greater than or equal to blocks. For
blocks = 288 this would be 512. The effect of doing this is that in the first pass when k=256,
threads with rank 0 to 31 will add values from tsum[256] to tsum[287] to their tsum
values. We also have to add an out-of-range check to prevent threads 32-255 from attempting
out-of-range additions. The modified reduce3 kernel is shown in Example 2.8.

Example 2.8 reduce3 kernel permitting non-power of two thread blocks

01 __global__ void reduce3(float *y,float *x,int N)
02 {
03 extern __shared__ float tsum[];

04 int id = threadIdx.x;
05 int tid = blockDim.x*blockIdx.x+threadIdx.x;
06 int stride = gridDim.x*blockDim.x;
07 tsum[id] = 0.0f;
08 for(int k=tid;k<N;k+=stride) tsum[id] += x[k];
09 __syncthreads();
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// next higher power of 2
10.1 int block2 = cx::pow2ceil(blockDim.x);

// power of 2 reduction loop
10.2 for(int k=block2/2; k>0; k >>= 1){
11 if(id<k && id+k < blockDim.x) tsum[id] += tsum[id+k];
12 __syncthreads();
13 }

// store one value per block
14 if(id==0) y[blockIdx.x] = tsum[0];
15 }

D:\ >reduce3.exe 16777216 288 256
sum of 16777216 numbers: host 8388314.9 14.012 ms

GPU 8388314.5 0.196 ms

Description of Example 2.8

In this example the kernel and main routine (not shown) are the same as in Example 2.7 except for
lines 10 and 11 of the kernel.

• Line 10.1: Here we add a new variable block2 which is set the value of blockDim.x rounded up to
the lowest power of 2 greater than or equal to blockDim.x. We use the cx utility function pow2ceil
for this. That function is implemented using the NVIDIA intrinsic function __clz(int n) which
returns the number of the most significant non-zero bit in n. This is a device-only function.

• Line 10.2: This is the same as line 10 in reduce2 except we use the rounded up block2/2 as the
starting value of k.

• Line 11: This corresponds to line 11 of reduce2 with an added out-of-range check on id+k.

In the last line we see that launching this kernel with exactly 8 thread blocks per SM gives a speed-up
of 2.73 compared to reduce0, slightly better than reduce2.

The reduce3 kernel is about 70 times faster than the single core host version. While this
is not quite as spectacular as our Chapter 1 result for a CPU bound calculation, reduction is a
memory bandwidth bound calculation with just one add per read of 4-bytes of memory so we
expect reduced performance. Given that the GPU memory bandwidth is only about 10 times
that of the CPU the factor 70 improvement shows that other GPU features including the
latency hiding are helping speed up this memory bound problem. The last trick to try is
explicitly unrolling the loop in lines 10–13.

Example 2.9 reduce4 kernel with explicit loop unrolling

01 __global__ void reduce4(float * y, float * x,int N)
02 {
03 extern __shared__ float tsum[];

04 int id = threadIdx.x;
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05 int tid = blockDim.x*blockIdx.x+threadIdx.x;
06 int stride = gridDim.x*blockDim.x;
07 tsum[id] = 0.0f;
08 for(int k=tid;k<N;k+=stride) tsum[id] += x[k];
09 __syncthreads();

10 if(id<256 && id+256 < blockDim.x)
tsum[id] += tsum[id+256]; __syncthreads();

11 if(id<128) tsum[id] += tsum[id+128]; __syncthreads();
12 if(id< 64) tsum[id] += tsum[id+ 64]; __syncthreads();
13 if(id< 32) tsum[id] += tsum[id+ 32]; __syncthreads();

14 // only warp 0 array elements used from here
15 if(id< 16) tsum[id] += tsum[id+16]; __syncwarp();
16 if(id< 8) tsum[id] += tsum[id+ 8]; __syncwarp();
17 if(id< 4) tsum[id] += tsum[id+ 4]; __syncwarp();
18 if(id< 2) tsum[id] += tsum[id+ 2]; __syncwarp();
19 if(id==0) y[blockIdx.x] = tsum[0]+tsum[1];
20 }

D:\ >reduce4.exe 16777216 288 256
sum of 16777216 numbers: host 8388314.9 14.012 ms

GPU 8388314.5 0.195 ms

Description of Example 2.9

• Line 1–9: These are the same as in the previous example.
• Lines 10–19: These replace the for loop and last line of the previous example. Here we have unrolled
the loop on the explicit assumption that the number of threads per block, blockkDim.x, is in the
range [256,511]. In practice we used 256 threads and 288 blocks for the first call to reduce4 and
288 threads and 1 block for the second call to reduce4. This kernel could easily be generalised to
work with a larger range of thread block sizes, for example, by making the thread block size a template
parameter. You can find such generalisations in many tutorials; for example, the very early blog by
Mark Harris: “Optimizing Parallel Reduction in CUDA, November 2 2007” downloadable from
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf.

• Line 10: This is the first step in the parallel reduction chain; values in tsum[256-511] (if any)
are added to those in tsum[0-255]. This line is needed for second kernel call with
blockDim.x=288. The if statement is then necessary to avoid out of range errors for threads
32-255.

• Lines 11–13: These lines are the next three steps in the parallel reduction. No out-of-range checks
are needed here on the assumption blockDim.x is at least 256.

Note there is a__syncthreads after each step in lines 10–13. These calls are necessary to ensure that
all threads in the thread block have completed their addition before any of them proceed to the next step.

• Lines 15–19: These lines are the final five steps in the parallel reduction tree. In these lines only
the first 32 threads participate. These threads are all in the same warp so we can replace
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__syncthreads with the much faster __syncwarp. For devices of CC < 7 all threads in the
same warp act in strict lockstep so here it is possible to rely on implicit warp synchronisation and
omit the __syncwarp calls entirely. You will find this done in early (now deprecated) tutorials.
Even if you only have access to older devices, we strongly recommend that you always use
syncwarp where it would be necessary on newer devices to maintain code portability.

The result shown in the last line shows at best a tiny improvement compared to reduce3.

The performance difference between reduce3 and reduce4 is small but reduce4 has
introduced us to warp level programming. We will return to the reduce problem in the next
chapter and show how warp-based programming can be taken much further.
Next we will discuss shared memory in more detail and then explore another application,

namely matrix multiplication.

2.7 Shared Memory

Shared memory is a fast access memory pool of size typically 64 KB available on each SM.
Kernels can elect to use shared memory by declaring one or more array or scalar variables as
prefixed with the decoration __shared__.
Each thread block runningon anSMgets a separate allocation of the required size from the shared

memory pool. If a kernel has thread blocks requiring more than 32 KB (i.e. more than half the total
available) then only one thread block can run on the SM at once which severely reduces occupancy.
Thus, shared memory use is one of the factors to be considered when optimising occupancy.
As the name implies, shared memory is shared by all the threads in a thread block, i.e. any

part of it can be read or written by any thread in the thread block. Note that, while this is
extremely useful in many situations, the sharing is local – shared memory is not shared
between thread blocks. The contents of the shared memory belonging to a given thread block
are lost when that thread block exits.
Shared memory allocation can be either static or dynamic. For static shared memory

allocation the required sizes are declared in the kernel code using values known a compile
time, for example using:

__shared__ float data[256];

This is arguably the simplest method but lacks flexibility. Shared memory array sizes
typically depend on the number of threads in the thread block, thus if they are fixed at
compile time then so is the size of the thread block.
Dynamic shared memory allocation is an alternative where the kernel does not specify the

size of an array but declares an externally allocated shared pointer, for example:

extern __shared__ float *data; or equivalently extern __shared__
float data[];

In this case the actually required memory size is specified by the host at kernel launch time
using the value (in bytes) as third kernel launch third parameter. Since this value can be a
variable determined during program execution this method of memory allocation known as
dynamic. Examples 2.4 and 2.5 use this method.
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Static memory declarations are usually placed at the start of your kernel code, but this is
not mandatory; obviously like all variables, their declaration needs to precede their use.9

More than one shared array or variable can be declared in a single kernel, the static allocation
case is straightforward, for example:

__shared__ float sx[256];
__shared__ unsigned short su[256];

will work as expected creating separate arrays with a total memory requirement of
1024+512 bytes. However, the corresponding dynamic allocation in kernel code:

extern __shared__ float sx[];
extern __shared__ unsigned short su[];

will compile successfully without warnings but both arrays will start at the same address –
namely the starting address of the reserved block of shared memory that is allocated when
the kernel is runs. Although annoying and bug prone, this is the only possible thing the
compiler can do since it does not know the array sizes at compile time. Thus, during
execution, writing to either array will write to both, leading to kernel failure or (worse) hard
to find bugs. In order to fix this problem, we need to modify the kernel code so that only one
array is declared extern and all other arrays are declared as pointers with appropriately
calculated offsets from the extern array as shown in Example 2.10.

Example 2.10 shared_example kernel showing multiple array allocations

01 __global__ void shared_example(float *x,float *y,int m)
02 {
03 // notice order of declarations,
04 // longest variable type first
05 // shortest variable type last

// NB sx is a pointer to the start of the shared
06 extern __shared__ float sx[]; // memory pool

07 ushort* su = (ushort *)(&sx[blockDim.x]); // start after sx
08 char* sc = (char *)(&su[blockDim.x]); // start after su

09 int id = threadIdx.x;

10 sx[id] = 3.1459*x[id];
11 su[id] = id*id;
12 sc[id] = id%128;

// do useful work here
. . .

30 int threads = (argc >1) ? atoi(argv[1]) : 256;
31 int blocks = (size+threads-1)/threads;
32 int shared = threads*(sizeof(float) +

sizeof(ushort) + sizeof(char));
33 shared_example<<< blocks, threads, shared >>>

(dx_ptr,dy_ptr,size);

52 Thinking and Coding in Parallel

https://doi.org/10.1017/9781108855273.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108855273.003


Description of Example 2.10

The start of the kernel using three dynamic shared memory arrays is shown in lines 1–12 of this
example. Here we will assume that the required size of each array is the number of threads in the
thread block, i.e. threadDim.x for 1D thread grids.

• In line 6: A single dynamically allocated shared memory array sx of type float is declared. Note
that sx is just a C style pointer to an array of floats. We could have used “float *sx;” instead of
“float sx[]”

• Lines 7–8: Here pointers to two additional arrays, su and sc, are declared using pointer arithmetic
to calculate their offsets from the start of sx. In line 7 the su pointer is set to the address after
blockDim.x floating point elements of the array sx and then cast to the ushort pointer type.
Similarly, in line 8 the sc pointer is set to the address after blockDim.x ushort elements of the
array su and then cast to the char type.

• Lines 9–12: Here we demonstrate use of the arrays, the variable id is set to the current threads’s
rank in the thread block and then used normally to index the three arrays.

• Lines 30–33: These show a fragment of the corresponding host code containing the kernel.
○ Line 30: The launch parameter threads is set using an optional user supplied value.
○ Line 31: The parameter blocks is then set as usual. in lines 30–31.
○ Line 32: A third launch parameter shared is set in line 32. The value stored in shared is
calculated as the total number of bytes necessary for the three arrays.

○ Line 33: This shows the kernel launch using three parameters in the launch configuration.

One subtle detail of this example is that the calculation made in line 32 makes no
allowance for memory “gaps” between the arrays that might be needed for natural alignment
of each array on memory boundaries. However, because the declarations and assignments in
lines 5–8 of the kernel go from the longest variable type (4-byte floats) to the shortest
variable type (1-byte chars), natural alignment will be achieved for all three arrays without
the compiler needing to introduce gaps.10

Simple variables can also appear in dynamically allocated shared memory, but since
their size, namely sizeof(variable type), is known at compile time, static
allocation is the best choice. If the variable is intended to contain some parameter which
is read but not changed by the threads, then using constant memory might be a
better choice. Note that constant memory will be automatically used for most kernel
arguments.

2.8 Matrix Multiplication

Our next example is a naturally 2D problem – matrix multiplication. Matrix multiplication
has in fact been featured as an early example of the use of shared memory in all releases of
the CUDA SDK and our final version is closely based on the that SDK code. A matrix M is
simply a 2D rectangular array of numbers, if the matrixM has n rows and m columns we say
it is an n by m (or n �m) matrix andMij denotes the element in row i and column j. Note the
order of the suffices is significant, in general Mij and Mji are different values in different
positions in the matrix. In the special case whereMij ¼ Mji for all values of i and j the matrix
is symmetric and square meaning that its dimensions n and m are the same. Matrices are
multiplied using the formula:
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Formula for Matrix Multiplication

If A is n � m and B is m � p then C¼A3B is a n � p matrix with elements given by:

Cij ¼
Xm

k¼1

AjkBkj:

Note the number of columns of A must be equal to the number of rows of B

As mentioned above 2D arrays can be implemented in numerous ways, but the most
efficient method is to use a single contiguous memory block and address elements using the
2D version of the rank formula given above, namely:

2D linear addressing for matrices

The expression:
A[i*Ncols+j]

gives the element Aij of the matrix held in the 1D array A, Ncols is the number of columns in A.
The number of rows Nrows is not explicit here but the size of A must be at least
Nrows*Ncols. This notation is correct if A is either a thrust or std vector or a simple pointer.

In this scheme the column index j is the “hot” index, j and j+1 refer to adjacent memory
locations whereas i and i+1 refer to memory locations separated by a stride Ncols. In most
of our examples we will use thrust as a container class for both host and device arrays.

We are fully aware that C++ provides nice tools to create beautiful containers for vectors
and matrices with support for more elegant addressing schemes such as the Fortran like
A(i,j) or the C multidimensional A[i][j] style. Indeed we had intended to adopt one of
these wrappers when we began this project. However at the time of writing any attempt to
pass any object other than a bare pointer to a CUDA kernel prevents any optimisations based
on using __restrict and since our goal is fast code we will stick with the simple explicit
address calculation as shown in the box.11 Example 2.11 shows a straightforward imple-
mentation of matrix multiplication on the host.

Example 2.11 hostmult0 matrix multiplication on host CPU

01 #include "thrust/host_vector.h"
02 #include "cxtimers.h"
03 #include <random>

04 int hostmult0(float *C, float A, float * B, int Ay,
int Ax, int Bx)

05 {
06 // compute C=A*B for matrices (assumes Ax = By)
07 for(int i=0;i<Ay;i++) for(int j=0;j<Bx;j++){
08 C[i*Bx+j] = 0.0; // row.col dot product
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09 for(int k=0;k<Ax;k++)C[i*Bx+j] += A[i*Ax+k]*B[k*Bx+j];
10 }
11 return 0;
12 }

13 int main(int argc, char *argv[])
14 {
15 int Arow = (argc > 1) ? atoi(argv[1]) : 1024;
16 int Acol = (argc > 2) ? atoi(argv[2]) : Arow;
17 int Brow = Acol;
18 int Bcol = (argc > 3) ? atoi(argv[3]) : Brow;
19 int Crow = Arow;
20 int Ccol = Bcol;

21 thrust::host_vector<float> A(Arow*Acol);
22 thrust::host_vector<float> B(Brow*Bcol);
23 thrust::host_vector<float> C(Crow*Ccol);

24 // initialise A and B with random numbers
25 std::default_random_engine gen(12345678);
26 std::uniform_real_distribution<float> fran(0.0,1.0);
27 for(int k = 0; k<Arow*Acol; k++) A[k] = fran(gen);
28 for(int k = 0; k<Brow*Bcol; k++) B[k] = fran(gen);
29 cx::timer tim;

30 hostmult0(C.data(),A.data(),B.data(),Arow,Acol,Bcol);
31 double t1 = tim.lap_ms();
32 double flops = 2.0*(double)Arow*(double)Acol*

(double)Bcol;
33 double gflops= flops/(t1*1000000.0);
34 double gbytes = gflops*6.0; // 12 bytes per term
35 printf("A %d x %d B %d x %d host time %.3f ms

Gflops/sec %.3f\n",Arow,Acol,Brow,Bcol,t1,gflops);
36 return 0;
37 }

D:\ >hostmult0.exe
A 1024 x 1024 B 1024 x 1024 host time 2121.046 ms

GFlops 1.013 GBytes 6.076

Description of Example 2.11

• Line 1: Here we include the thrust host_vector header, std::vector could have been used
instead for this host only code.

• Lines 4–12: This is the host matrix multiply function hostmult0, it takes standard pointers to the
data for the matrices C, A and B as the first three arguments. The next three arguments define the
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sizes of all three matrices. Note we use y and x instead of row and col to denote the first and second
dimensions of the matrices. Thus, A is ay � ax, B is ax � bx and C is ay � bx, we infer the first
dimension of B and both dimensions of C from the properties of matrix multiplication.

• Lines 7: These for loops over i and j cover all the elements of the desired product C.
• Line 9: The inner loop over k implements the summation from the standard formula. You can think
of this summation as a dot product between the ith row of A and the jth column of B. Notice how the
array indices vary with the for loop index k. The factor A[i*Ax+k] behaves “nicely” because as
k increments, it addresses elements of Awhich are adjacent in memory, this is optimal for caching.
On the other hand, the factor B[k*Bx+j] addresses memory with a stride of Bx words between
successive values of k, which gives poor cache performance. This problem is inherent in matrix
multiplication and has no simple fix.

Notice also that a triple for loop is needed for matrix multiplication. If the matrices have
dimensions of 103 then a total of 2 � 109 arithmetic operations are required – multiplication
of big matrices is slow!
You might worry that the expressions like i*Bx+j used for the array indices add a significant

computational load for each step through the loop. In fact, this sort of index expression is so
common that compilers are very good at generating the best possible code for indexing such
arrays efficiently.

• Lines 13–36: This is the main routine:
○ Lines 15–20: Here we set the matrix sizes using optional user inputs for the dimensions of A
(Arow & Acol) and the number of columns of B (Bcol). The dimensions of C and number of
rows of B are set to be compatible with matrix multiplication.

○ Lines 21–23: Here we allocate thrust vectors to hold the matrices.
○ Lines 24–28: Here A and B are initialised with random numbers.
○ Lines 29–31: A timed call the hostmult0 to perform the multiplication.
○ Lines 32–35: Print some results, the performance in GFlops/sec assumes two operations per
iteration in line 9 and ignores all overheads.

The timing result in the last line shows that this calculation runs at about 1 GFlops/sec and is clearly
memory bound. The memory bandwidth achieved is about 6 GBytes/sec (8 bytes read and 4 bytes
written per term).

The performance of this code is quite poor but we can improve it significantly by adding
the C++11 __restrict keyword to the pointer argument declarations in line 9. This is
shown in Example 2.12 where only line 9 from Example 2.11 has been changed.

Example 2.12 hostmult1 showing use of restrict keyword

. . .
04 int hostmult1(float * __restrict C, float * __restrict A,

float * __restrict B, int Ay, int Ax, int Bx)
. . .

D:\ > hostmult1.exe
A 1024 x 1024 B 1024 x 1024 host time 1468.845 ms

GFlops 1.462 GBytes 8.772
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We have improved the performance by 44% making this simple change! If you are not
familiar with the history of C/C++ this requires some explanation. When a function is
declared with a simple pointer argument, the compiler has no way of being certain that there
are no other pointers to the same memory location elsewhere in the code. This is called
pointer aliasing and in the early days of C when computer memory was a scarce resource,
people would deliberately use pointer aliasing to use the same piece of memory for different
purposes at different stages in the program. Needless to say, this practice often resulted in
hard-to-find bugs. On modern systems with 64-bit memory addressing pointer aliasing is
completely unnecessary yet the memory of old practice lingers on in modern compilers
which are still reluctant to fully optimise code involving simple pointers. Specifically, they
will tend to unnecessarily store intermediate results back to main memory rather than using
registers. Adding the restrict qualifier to a pointer declaration tells the compiler that the
pointer is not aliased and aggressive optimisation is safe.12

The CUDA NVCC compiler also supports restrict and the performance of many
kernels does indeed improve when it is used. Thus, we come to the conclusion shown in
the box:

Always use restrict with pointer arguments.

As mentioned above, in practice C++ compiler support for restrict is quite shallow; if the
restrict pointer is passed as a function argument wrapped in even a simple C++ class then
restrict has no effect. In fact, while restrict is officially part of modern C11, it is not part of
any C++ standard up to C++17. Fortunately, most recent C++ compilers including Visual
Studio and g++ do support restrict, albeit in a shallow form. Another issue is that while the
C standard uses restrict without decoration, C++ compilers may use _restrict or
__restrict instead.
At this point we should mention another qualifier, const; many books on C++ get very

excited about this. We discuss it in more detail in our C++ coding appendix. In principle use
of const can allow the compiler to further optimise code. In practice we find using const
does not usually give much or any performance gain; its use is actually more important as a
safeguard to prevent accidental overwriting of variables and to make a programmer’s
intentions clear. In the case of pointers there are four possibilities shown in Table 2.4.

Table 2.4 Possible combinations of const and restrict for pointer arguments

declaration cx wrapper effect

float * __restrict A r_Ptr<float> A pointer variable, data variable
const float * __restrict A cr_Ptr<float> A pointer variable, data constant
float * const __restrict A cvr_Ptr<float> A pointer constant, data variable
const float * const __restrict A ccr_Ptr<float> A pointer constant, data constant

Example
int hostmult1(r_Ptr<float> C, cr_Ptr<float> A, cr_Ptr<float> B, int Ay,
int Ax, int Bx)
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The middle column of the table shows templated wrappers defined in cx.h that can be
used to hide the gory details in the first column. An example of their use is shown in the
bottom row. These wrappers can be used in both host and kernel code and the first two will
be used in most of our examples from now on.

It is now time to look at a GPU version of matrix multiply; to get the best performance is
actually quite complicated but we will start with a simple approach as shown in Example 2.13.

Example 2.13 gpumult0 kernel simple matrix multiplication on the GPU

04 __global__ void gpumult0(float * C, const float * A,
const float * B, int Ay, int Ax, int Bx)

05 {
06 int tx = blockIdx.x*blockDim.x + threadIdx.x; // col j
07 int ty = blockIdx.y*blockDim.y + threadIdx.y; // row i
08 if(ty >= Ay || tx >= Bx) return;
09 C[ty*Bx+tx] = 0.0;
10 for(int k=0;k<Ax;k++) C[ty*Bx+tx] +=

A[ty*Bx+k]*B[k*Bx+tx];
11 }

. . .
13 int main(int argc, char *argv[])
14 {
15 int Arow = (argc > 1) ? atoi(argv[2]) : 1024;
16 int Acol = (argc > 2) ? atoi(argv[3]) : Arow;
17 int Brow = Acol;
18 int Bcol = (argc > 3) ? atoi(argv[4]) : Brow;
19 int Crow = Arow;
20 int Ccol = Bcol;
20.1 uint tilex = (argc > 4) ? atoi(argv[5]) : 32; // tile x
20.2 uint tiley = (argc > 5) ? atoi(argv[6]) : 8; // tile y

21 thrust::host_vector<float> A(Arow*Acol);
22 thrust::host_vector<float> B(Brow*Bcol);
23 thrust::host_vector<float> C(Crow*Ccol);
23.1 thrust::device_vector<float> dev_C(Crow*Ccol);
23.2 thrust::device_vector<float> dev_A(Arow*Acol);
23.3 thrust::device_vector<float> dev_B(Brow*Bcol);

24 // initialise A and B with random numbers
25 std::default_random_engine gen(12345678);
26 std::uniform_real_distribution<float> fran(0.0,1.0);
27 for(int k = 0; k<Arow*Acol; k++) A[k] = fran(gen);
28 for(int k = 0; k<Brow*Bcol; k++) B[k] = fran(gen);
28.1 dev_A = A; // H2D copy
28.2 dev_B = B; // H2D copy

28.3 dim3 threads ={tilex, tiley, 1};
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28.4 dim3 blocks ={(Bcol+threads.x-1)/threads.x,
(Arow+threads.y-1)/threads.y, 1};

29 cx::timer tim;
30 gpumult0<<<blocks,threads>>>(dev_C.data().get(),

dev_A.data().get(), dev_B.data().get(),
Arow, Acol, Bcol);

30.1 cudaDeviceSynchronize(); // wait for kernel
31 double t2 = tim.lap_ms();
31.1 C = dev_C; // D2H copy

32 double flops = 2.0*Arow*Acol*Bcol;
33 double gflops = flops/(t2*1000000.0);
34 double gbytes = gflops*6.0; // 12 bytes per term
35 printf("A %d x %d B %d x %d gpu time %.3f ms

GFlops %.3f GBytes %.3f\n",Arow,Acol,Brow,
Bcol,t2,gflops,gbytes);

36 return 0;
37 }

D:\ >gpumult0.exe 1024 1024 1024 32 32
A 1024 x 1024 B 1024 x 1024 gpu time 6.685 ms

GFlops 321.233 GBytes 1927.400

Description of Example 2.13

Much of the code in this example is identical to the host version shown in Example 2.11. Here we
comment on the differences.

• Lines 4–11: The GPU kernel gpumult0 replaces the previous hostmult0 function here. The
kernel is designed to use one thread to calculate one element of the matrix product. The kernel
expects to be called with a 2D grid of thread blocks with sufficient threads in the x and y dimensions
to span all the elements of C. As before x is the column index and y is the row index.

• Lines 6–7: Here we set tx and ty from the built-in variables to determine which element of C this
thread will calculate. These lines effectively replace the loops over i and j used in the host version,
we can think of the kernel as effectively calculating all the elements of C in parallel.

• Line 8: This is an out-of-range check on tx and ty. It is necessary because the dimensions of each
thread block may have been rounded up.

• Lines 9–10: Here we calculate one element of C using the standard formula. Notice the factor
B[k*Bx+tx] in line 10 still uses a memory stride of Bx words on successive passes through the
for loop over k. But now in this parallel kernel adjacent threads will use adjacent elements of
B because adjacent threads have adjacent values of tx. Thus L1 caching will be efficient for both
factors in the multiplication – this is an interesting example of how parallel CUDA code can provide
efficient memory access in situations where single threaded code struggles.

• Lines 20.1–20.2: We add two additional user settable parameters tilex and tiley which define
the x and y dimensions of the thread blocks used by the kernel launch. These are equivalent to the
threads and blocks parameters we use in many 1D examples.
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• Lines 23.1–23.3: Here we allocate device arrays to hold copies of the matrices A, B and C.
• Lines 28.1–28.2: Copy A and B to the device.
• Line 28.3: Set threads to a dim3 triad representing a 2D tile on the matrix C.
• Line 28.4: Set blocks as a dim3 with x and y dimensions sufficient for the thread block tiles in
threads to span the matrix C. Notice the integer rounding up for cases where the dimensions of C are
not exact multiples of tilex and tiley. The out-of-range test in line 8 is necessary for cases
where rounding up was needed. Rounding up and consequent testing in kernels are very common in
CUDA code written to process general cases where not everything is a power of 2.

• Lines 29–31: This timed loop is similar to that of Example 2.9 but performs a kernel launch instead
of a host function call. The use of cudaDeviceSynchronize is necessary for timing purposes.

• Line 31.1: Here we copy the result back to the host. Although C is not used in the code shown here,
it would obviously be used in real-world code. Indeed, we have used C to compare the results from
the host and GPU versions and find the calculated Cij agree to about 6 significant figures.

The timing result in the last line shows that there is an impressive speed-up of about 220 times
compared to the host calculation in Example 2.12.

If we change the gpumult0 declaration in line 4 to use restrict we get the gpumult1
kernel declaration shown in Example 2.14. This example shows two alternative methods of
declaring restrict arrays in kernel code; the first method just uses C++ keywords and is quite
verbose; the second method uses cx defined abbreviations for the same result. Note that
cr_Ptr and r_Ptr are defined with templated using statements in cx.h. We will use
the abbreviated versions in all our later examples.

Example 2.14 gpumult1 kernel using restrict keyword on array arguments

. . .
04 __global__ void gpumult1(float * __restrict C,

const float * __restrict A, const float * __restrict B,
int Ay, int Ax, int Bx)

or:
04 __global__ void gpumult1(r_Ptr<float> C, cr_Ptr<float> A,

cr_Ptr<float> B, int Ay, int Ax, int Bx)

D:\ > gpumult1.exe
A 1024 x 1024 B 1024 x 1024 gpu time 2.536 ms

GFlops 846.813 GBytes 5080.878

We can see that simply using restrict on our GPU matrix multiply code gives a dramatic
speed-up of more than a factor of 2.6 (compared to about 1.4 for host code). The effective
memory bandwidth is also much greater than the hardware limit of about 400 GBytes/sec
separately for read and write, demonstrating that memory caching is playing an important role.

Finally, if you really hate the explicit address calculations in line 10 of Example 2.13 they
can be hidden using a lambda function as shown in Example 2.15.
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Example 2.15 gpumult2 kernel using lambda function for 2D array indexing

04 __global__ void gpumult2(r_Ptr<float> C, cr_Ptr<float> A,
cr_Ptr<float> B, int Ay, int Ax, int Bx)

05 {
06 int j = blockIdx.x*blockDim.x + threadIdx.x; // col j
07 int i = blockIdx.y*blockDim.y + threadIdx.y; // row i
08 if(i >= Ay || j >= Bx) return;

// lambda function
09 auto idx = [&Bx](int i,int j){ return i*Bx+j; };

10 C[idx(i,j)] = 0.0;
11 for(int k=0;k<Ax;k++)

C[idx(i,j)]+= A[idx(i,k)]*B[idx(k,j)];
12 }

In Example 2.15 we have added a new line 9 which defines a local function idx that
performs the standard 2D address calculation needed for this function. The span needed step
to successive rows of B and columns of C is Bx, the number of columns of B and
(necessarily) also the number of rows of C. The value is captured by the lambda function
using the [&Bx] syntax to indicate that the variable Bx used in the body of the lambda
function is the same variable as used in the main body of the surrounding function.
Moreover, by prefixing & to Bx we indicate that the variable is to be used by reference with
no copy required. This should lead to the compiler generating code identical to Example
2.14, and indeed we find no performance difference between these two versions. Using a
lambda function in this way is modernising the old trick of using a macro; in this case:

#define idx(i,j) (i)*Bx+(j)

which achieves the same effect. However, we deeply deprecate the use of macros in this way
because even if the macro occurs inside a function its definition will persist throughout the
code which risks hard-to-find bugs and greatly complicates code where different 2D spans
are needed in different parts of the code. Note also the precautionary brackets around i and j
in the macro definition, these are need for correctness if say i is passed as i+1.

2.9 Tiled Matrix Multiplication

Matrix multiplication is often used to demonstrate the use of shared memory in many CUDA
tutorials and books. This is based on the observation that Aik and Bk j for fixed k are read from
main memory many times for each possible combination of the values of i and j. This was a
major problem on early GPUs which had poor memory caching and it is still an issue on
recent GPUs which have much better caching.
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To exploit shared memory, we can use each thread in a thread block to store different
elements of A and B in shared memory and then let all the threads in the block use all the
cached values to calculate contributions to the product. This is relatively straightforward
because matrix multiplication can be represented as a sum over products of 2D tiles defined
over the matrices as shown in the following equation:

TC
I ,J ¼

XMT

t¼1

TA
I , t � TB

t,J ,

where the Ts are rectangular tiles defined over the matrices and � represents matrix multipli-
cation between tiles. The summation index, t, represents a summation over contributing Mt

pairs of tiles; the matrix product implies further summations over the individual matrix
elements within the tiles. The idea is shown in Figure 2.3 where we use a set of 3 � 3 tiles to
perform the multiplication of 9 � 9 matrices.

Tiled matrix multiplication can be readily implemented in CUDA kernels by using a
16 � 16 or 32 � 32 thread blocks to represent a pair of tiles from A and B. Each thread
then first copies one element of its thread block’s allocated A and B tiles into shared
memory arrays. Once this process is complete, the same threads can then compute
the elements of the tiled matrix multiplication to obtain that tile-pair’s contribution to a tile in
C. In this way each element of A and B is only read once from external memory instead of 16 or
32 times. Our implementation is the gputiled kernel shown in Example 2.16. In Figure 2.3
the element c45 is shown calculated conventionally in the top row and by tiled matrix
multiplication in the bottom row.

Example 2.16 gputiled kernel: tiled matrix multiplication using shared memory

01 #include "cx.h"
02 #include "cxtimers.h"
03 #include <random>

. . .

Figure 2.3 Tiled matrix multiplication
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13 int main(int argc, char *argv[])
14 {

. . .
28.3 dim3 threads = {tilex,tilex,1}; // square
28.4 dim3 blocks = {(Bcol+threads.x-1)/threads.x,

(Arow+threads.y-1)/threads.y, 1};
. . .

29 cx::timer tim;
30 if(tilex == 8) gputiled< 8><<<blocks,threads>>>(

dev_C.data().get(),dev_A.data().get(),
dev_B.data().get(),Arow,Acol,Bcol);

30.1 else if(tilex == 16) gputiled<16><<<blocks,threads>>>(
dev_C.data().get(),dev_A.data().get(),
dev_B.data().get(),Arow,Acol,Bcol);

30.2 else if(tilex == 32) gputiled<32><<<blocks,threads>>>(
dev_C.data().get(),dev_A.data().get(),
dev_B.data().get(),Arow,Acol,Bcol);

30.3 cudaDeviceSynchronize();
31 double t3 = tim.lap_ms()

. . .
37 }

40 template <int TS> __global__ void gputiled(
float * __restrict C, float * __restrict A,
float * __restrict B, int Ay, int Ax, int Bx)

41 {
42 __shared__ float Atile[TS][TS]; // tile A e.g. [16][16]
43 __shared__ float Btile[TS][TS]; // tile B e.g. [16][16]
44 int tx = threadIdx.x; // tile col index j
45 int ty = threadIdx.y; // tile row index i
46 int ocx = blockDim.x*blockIdx.x; // tile x origin in C
47 int ocy = blockDim.y*blockIdx.y; // tile y origin in C

48 int ax = tx; // j or x in first tile on A
49 int ay = ocy+ty; // i or y in first tile on A and C
50 int bx = ocx+tx; // j or x in first tile on B and C
51 int by = ty; // i or y in first tile on B

52 float csum = 0.0f;
53 for(int t=0; t<gridDim.x; t++){
54 Atile[ty][tx] = A[ay*Ax+ax]; // copy A to shared mem
55 Btile[ty][tx] = B[by*Bx+bx]; // copy B to shared mem
56 __syncthreads();
57 for(int k=0;k<TS;k++) csum += Atile[ty][k]*Btile[k][tx];
58 __syncthreads();
59 ax += TS; // step A tiles along rows of A
60 by += TS; // step B tiles down cols of B
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61 }
62 C[ay*Bx+bx] = csum; // store complete result
63 }

D:\ > gputiled.exe 1024 1024 1024 32
A 1024 x 1024 B 1024 x 1024 gpu time 1.945 ms

GFlops 1104.284 GBytes 6625.701

Description of Example 2.13

The kernel is shown in full as here the changes are significant. For the main routine only changes from
Example 2.13 are shown.

• Line 28.3: We use tilex to set both dimensions of the 2D thread blocks used to represent tiles.
While it is possible to use non-square tiles, that would complicate the kernel code.

• Lines 29–31: As before this is the timed block that launches a kernel and waits for completion. The
kernel launch itself is now changed because the guptiled kernel is written to use the value of
tilex as a template parameter. Here we use a 3-way if-else tree to allow values of 32, 16 or 8 for
this parameter. The kernel argument list is the same as before.

• Line 40: This is the start of our new guptiled kernel; the arguments are as before and we are now
using the restrict keyword by default for all pointers. Note that this is a templated kernel; thus
the tile size parameter TS is known at compile time.

• Lines 42–43: We declare two statically allocated shared memory arrays to hold square tiles copied
from A and B to Atile and Btile.

• Lines 44–45: Here we set the position of the current thread in the local TS x TS tiles. This depends
only on the thread block dimensions.

• Lines 46–47: Here we set ocx and ocy to the origin of the target tile in C using grid-block
quantities. These values are the same for all threads in the thread block.

• Lines 48–51: In the first two lines we set ax and ay to the current thread’s position in A based on the
first tile to be used. Similarly, in the second pair of lines we set bx and by for matrix B. Notice that
as we step to different tiles along the rows of A and down the columns of B ay and bx are constant
whereas ax and by change. In fact ay and bx are the i and j values of the cij element being
evaluated by the current thread.

• Line 51: The local variable csum is used to accumulate the current thread’s cij value; here we set it
to zero.

• Lines 53–61: Each pass through this loop performs matrix multiplication on one pair of tiles from A
and B and accumulates the result in csum.
○ Lines 54–55: Here we copy the current tiles from A and B to shared memory. Each thread copies
one element from A and one from B to Atile and Btile and will later read TS values back
from these arrays.

○ Line 56: An essential syncthreads here; no thread in the block can safely proceed until all the
elements of Atile and Btile have been set.

○ Line 57: Matrix multiplication of Atile and Btile; each thread computes one element of
the product.

○ Line 58: A second essential syncthreads; no thread can proceed to the next pass through the
for loop until all threads have reached this point.
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○ Lines 59–60: Here we increment ax and by to point to the required position in the next tiles from
A and B.

• Line 62: Here we store the final result in C.

The result in the last line shows that gputiled delivers more than 1 TFlop/sec of processing. A tile
size of 32 � 32 works best on the RTX 2070 GPU used for this test.

We note that using shared memory as shown in Example 2.16 gives a significant
performance boost of about 250 GFlops/sec amounting to about 1.1 TFlops/sec overall.
Although not shown here, we did try running this example without using restrict in
kernel arguments and found only a small drop in performance. This is presumably because
we now read from A and B fewer times and hence the performance gain from using
restrict on the pointers to these arguments is less important.
There is one last trick we can try to squeeze a bit more performance from our code and that

is explicit loop unrolling:

Example 2.17 gputiled1 kernel showing explicit loop unrolling

. . .
52 float csum = 0.0f;
52.1 #pragma unroll 16

// step A tiles along rows of A
53 for(int t=0;t<gridDim.x;t++){

. . .

D:\ gputiled1.exe 1024 1024 1024 32
A 1024 x 1024 B 1024 x 1024 gpu time 1.765 ms

GFlops 1216.958 GBytes 7301.748

As shown in the last line of Example 2.17 we have gained another 100 GFlops/sec of
performance by using loop unrolling. The optimal depth of unrolling can only be found by
experiment; on our RTX 2070 the value 16 seems to give the best result. On other GPUs you
may find a different optimum. Tuning GPU code always involves some experimentation.
Note the NVCC compiler will often automatically perform loop unrolling and especially in
cases where the number of passes is known at compile time. For this reason, making the loop
counter a template parameter can be worthwhile. Here this is done for the inner loop over TS
but not for the outer loop over gridDim.x which is therefore not known at compile time.
Interestingly, we find that explicit unrolling over the outer loop helps but in experiments (not
shown) we found explicit unrolling over the inner loop does not help.

2.10 BLAS

Matrix multiplication is a classic problem in computational linear algebra and the results of
more than 50 years of development are encapsulated in the BLAS (basic linear algebra
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subprograms) function libraries that are available for all serious computing platforms. BLAS is
used by calling appropriate functions to perform the desired operations. Matrix multiplication
of float-4 matrices can be performed by calling the sgemm (single precision general matrix
multiplication) routine which implements the saxpy-like operation C ¼ αABþ βC for matri-
ces A, B and C. The good news is that BLAS is available for CUDA code. The NVIDIA
cuBLAS library is a set of host callable routines that run BLAS functions on the GPU using
vectors and matrices in GPU memory. In fact, although cuBLAS provides its own routines to
allocate and transfer arrays between host and GPU memories it is also perfectly possible to use
thrust (or any other method) to manage these arrays. Thus cuBLAS can be used in our matrix
multiply example with just a few modifications. Example 2.18 shows how BLAS routines can
be used in host code to replace the kernel calls used in our previous examples.

Example 2.18 Host code showing matrix multiplication using cuBLAS

. . .
05 #include "cublas_v2.h"

. . .
10 int main(int argc, char *argv[])
11 {

. . .
20 thrust::host_vector<float> A(Arow*Acol);
21 thrust::host_vector<float> B(Brow*Bcol);
22 thrust::host_vector<float> C(Crow*Ccol);
23 thrust::device_vector<float> dev_A(Arow*Acol);
24 thrust::device_vector<float> dev_B(Brow*Bcol);
25 thrust::device_vector<float> dev_C(Crow*Ccol);
26 thrust::device_vector<float> dev_D(Crow*Ccol);

27 // initialise A and B with random numbers, clear C
28 std::default_random_engine gen(12345678);
29 std::uniform_real_distribution<float> fran(0.0,1.0);
30 for(int k = 0; k<Arow*Acol; k++) A[k] = fran(gen);
31 for(int k = 0; k<Brow*Bcol; k++) B[k] = fran(gen);
32 for(int k = 0; k<Crow*Ccol; k++) C[k] = 0.0f;

33 dev_A = A; // H2D copy
34 dev_B = B; // H2D copy
35 dev_C = C; // clear

36 float alpha = 1.0f;
37 float beta = 1.0f;
38 cublasHandle_t handle; cublasCreate(&handle);

// enable tensor cores
39 cublasSetMathMode(handle,CUBLAS_TENSOR_OP_MATH);

40 cx::timer tim; // C = alpha*(A*B) + beta*C
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41 cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_T,
Crow, Ccol, Arow, alpha, dev_A.data().get(),
Acol, dev_B.data().get(), Bcol, &beta,
dev_C.data().get(), Crow);

42 beta = 0.0f;
// D = transpose(C) from C = alpha*A+beta*B

43 cublasSgeam(handle, CUBLAS_OP_T, CUBLAS_OP_T,
Crow, Ccol, &alpha, dev_C.data().get(),
Crow, &beta, dev_C.data().get(),
Crow, dev_D.data().get(), Ccol);

44 cudaDeviceSynchronize();
45 double t3 = tim.lap_ms()/(double)(nacc);

46 C = dev_D; // D2H copy
47 double flops = 2.0*(double)Arow*(double)Acol*(double)Bcol;
48 double gflops = flops/(t3*1000000.0);
49 double gbytes = gflops*6.0; // i.e 12 bytes per term
50 printf("A %d x %d B %d x %d gpu time %.3f ms

GFlops %.3f GBbytes %.3f\n", Arow, Acol, Brow,
Bcol, t3, gflops, gbytes);

51 return 0;
52 }

D:\ > blasmult.exe 1024
A 1024 x 1024 B 1024 x 1024 time 0.318 ms

GFlops 6747.1 GBytes 40482.8 (no TC)
A 1024 x 1024 B 1024 x 1024 time 0.242 ms

GFlops 8882.3 GBytes 53293.9 (with TC)

Description of Example 2.18

• Line 5: The include file cublas_v2.h is necessary to use the NVIDIA BLAS library. It is also
necessary to use the include file cublas.lib in the linking stage on Windows. An older version
cublas.h file is also supplied for backward compatibility but that version is now deprecated for
new code.

• Lines 12–18 (not shown): Set the sizes of the A, B and C matrices using optional user supplied
values as before.

• Lines 20–26: Create thrust containers for the matrices for the host and device. An additional device
matrix dev_D the same size as the result matrix C is created here. It will be needed to hold the
transpose of dev_C as explained below.

• Lines 27–35: Initialise the matrices A and B to random numbers and set C to zeros. (Clearing C is
technically unnecessary as this is thrust’s default allocation option, but we like to make our
intentions clear). The host vectors are then copied to the corresponding device vectors.

• Lines 36–37: The parameters alpha and beta are declared and set to one.
• In line 38: A cublasHandle_t object handle is created; this is a necessary first argument to
nearly all of the library functions. It is useful in multithreaded applications where separate threads
use different handles.
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• Line 39: Because we are using a GPU equipped with tensor cores (i.e. having a CC of 7.0 or above)
we tell cuBLAS to use them where possible. Although originally realised as a tool for mixed
precision operations on 2 and 4-byte floats, recent versions of cublas can also use tensor cores to
speed up pure 4-byte float calculations. In a test we see a speed-up of about 30% using 1024 �
1024 matrices and speed-ups of up to a factor of two using larger matrices.

• Lines 40–45: This is the timed loop where the matrix product is calculated. The BLAS library is
great for performance but the functions have a dreadful user interface essentially unchanged from
their early Fortran origins in the 1950s. Also, they keep to the Fortran convention of expecting
matrices in column major format (i.e. elements in the same column are stored in adjacent memory
locations). This means that default C/C++ style matrices, in row major format, are treated as if they
had been transposed. While this does not matter for simple operations such as addition, it does
matter for matrix multiplication. Fortunately, the matrix functions such as cublasSgemm (the
cuBLAS version of sgemm), used in line 41, have flag arguments specifying whether the input
matrices A and B should be transposed before use. This results in correct matrix multiplication but
the resulting matrix C is still left in column major format. We correct this in line 43 by calling the
cuBLAS function cublasSgeam to transpose C back to row major format.

• Line 41: The call the cubalsSgemm function has many arguments as follows:
1. The mandatory cuBLAS handle
2. Transpose A if CUBLAS_OP_T or not if CUBLAS_OP_N
3. Transpose B if CUBLAS_OP_T or not if CUBLAS_OP_N
4. The number of rows of A (after transposition if done) and C; we use Crow here.
5. The number of columns of B (after transposition if done) and C; we use Ccol here.
6. The number of columns of A (after transposition if done) and rows of B (after transposition if

done), we use Arow here. This is the index that is summed in matrix multiplication.
7. Pointer to the scaling factor alpha.
8. Pointer to the matrix A.
9. Leading dimension of array used to hold A; we use Acol here.
10. Pointer to the matrix B.
11. Leading dimension of the array used to hold B; we use Bcol here.
12. Pointer to the scaling factor beta.
13. A pointer to the matrix C.
14. Leading dimension of the array used to store C.

For square matrices all the dimensions are the same and the interface is relatively forgiving; in other
cases significant care is required to get everything correct. We have allowed for the transposition of A
and B in our choice for argument 6 but not arguments 9 and 11. We have tacitly assumed that C is in
column major format for our choice of arguments 5, 6 and 14.

• Line 42: Set beta to zero before calling cublasSgeam.

• Line 43: Here we use the cublasSgeam function which evaluates C ¼ αAþ βB to transpose C.
This function is an NVIDIA extension to the standard set of BLAS functions. By setting α ¼ 1 and
β ¼ 0 we cause A to be copied to C with optional transposition of A if requested. The arguments for
cublasSgeam are as follows:
1–5. Same as cublasSgemm.
6. Pointer to alpha.
7. Pointer to the matrix A; we use C here.
8. Leading dimension of array used to hold first matrix; we use Crow here.
9. Pointer to beta. Note beta is set to zero in line 42.
10. Pointer to the matrix B; we use C here.
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11. Leading dimension of array used to hold B matrix; we use Crow here.
12. Pointer to the matrix C; we use D here.
13. Leading dimension of array used to hold C matrix; we use Ccol here. (This would be Dcol in

cases where C and D had different sizes).
• Lines 44–52: These are similar to before.

The results at the end of the example show performances of 6.7 and 8.9 TFlops for the RTX2070 and
1024 � 1204 matrices. The latter result was obtained using the tensor core processors available on
devices of CC ≥ 7.0.

The performance of the cublasSgemm is a factor of 6 or more better than our best
kernel. Moreover, tensor cores, if available, can be used to give further impressive speed-ups
of ~30% or more. Thus, while matrix multiplication is an excellent and much used calcula-
tion for demonstrating the use of shared memory in CUDA kernels, if you really need lots of
fast matrix multiplication, use the NVIDA library not your own kernels. Similar advice
applies to other standard problems such as FFT for which NVIDIA also has a good library.
We discuss NVIDIA’s full range of libraries in Appendix F.
Figure 2.4 shows how the performance of our matrix multiply routines varies as a

function of matrix size. The peak performance for the largest matrix sizes is over
15 TFlops for cublasSgemm with tensor cores. The curve labelled kernel corresponds to
the gputiled1 kernel. The curves labelled blas and blas+TC correspond to the two BLAS
routines. Note the peak performance achieved by the TC version of cuBLAS for the largest
matrices is over 15 TFlops; this is an astonishing performance from a £400 PC card.
In Chapter 11 we show you how to write your own matrix multiply kernels using tensor

cores; the shared memory version achieves about 5.6 TFlops compared to the 8.9 achieved
by cuBLAS. This is actually not bad as the cuBLAS library routines will contain many

Figure 2.4 Performance of matrix multiplication on an RTX 2070 GPU
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detailed optimisations. The performance of this kernel is shown as the chap11 curve on
Figure 2.4.

The fact that fast libraries for standard calculations like matrix multiplication are available
does not mean that learning to write your own kernels in CUDA is unnecessary; there are
many situations where an out of the box solution is not readily available. For example,
simulation is very important in many areas. Models of your particular problem often have to
be hand-crafted and could gain enormously in speed if you are able to include code that
exploits the raw power of GPUs. We also note from Figure 2.4 that our matrix multiply
kernels are more competitive with cuBLAS for smaller matrices which might be useful when
many small matrix multiplications are required as part of a bigger program.

This concludes our second introductory chapter. In the next chapter we discuss warp level
programming which will provide important insights into how to get the best performance
from your GPU. The examples in Chapter 3 include further improvements to the
reduce kernels.

Endnotes Chapter 2

1 Flynn, Michael J. “Some computer organizations and their effectiveness.” IEEE transactions on com-
puters 100, no. 9 (1972): 948–960.

2 In practice the addition of floating-point numbers is not precisely commutative because the accumula-
tion of rounding errors can depend on the order in which the terms are added together. Once the sum
gets large, the contribution from subsequent small numbers is inaccurate or completely lost. This is a
particular issue for F32 where only about 7 significant figures are useful. Interestingly parallel reduction
techniques, where a number of partial sums are accumulated in parallel, are likely to be more robust than
a single serial evaluation.

3 I first encountered this approach to parallel programming when learning MPI in the mid-1990s and it
was a revelation. My previous encounters with trying to program multiple devices to run in parallel had
involved writing different programs for each device and hand tuning at the assembly level to make the
execution times identical on each device (MIMD) – a nightmare task compared to the common code
SIMD model of CUDA and MPI.

4 Specifically, the member functions the host and device vector class do not have __device__
definitions. Thrust was designed as a suite of host callable functions which ran on the GPU for speed.
Users of thrust were not expected to write their own kernels.

5 Our recommendation that threads should be a multiple of 32 is for performance reasons. Any value in
[1,1024] is allowed, it is just that values which are multiples of the warp size are more efficient. For
example, if you specified 48 then every thread block would be run with one full warp of 32 threads and
one ½ full warp of 16 threads leading to a 25% performance loss.

6 If you want your compiled code to run on different GPU models you can use the device query functions
in CUDA to find the value of Nsm at run time.

7 As a technical aside, we mention that the GPU hardware manages branch divergence at the warp-engine
level by maintaining a 32-bit active-thread bit mask for each active warp, the bits are turned on or off to
determine with threads execute in the currently scheduled instruction.

8 The Cooperative Groups feature does allow grid-wide synchronisation of all threads in a grid during
kernel execution but only if a number of restrictions are applied including having all thread blocks
resident on the device at once.

9 The modern C++ practice of declaring and initialising objects in the same statement (RAII) cannot be
applied to shared memory objects in CUDA kernels because the declaration is the same for all threads in
the kernel, but the initialisation is usually thread dependent.
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10 Actually, it should be second nature for you as a C++ programmer to always use longest first/shortest
last ordering in variable declarations for all your classes and structs as well as special cases like CUDA
dynamically declared arrays. This will achieve natural alignment for all your variables without the
compiler having to insert “hidden” padding.

11 Giving up on containers for kernel arguments means that we have to pass array dimensions explicitly as
separate arguments. This is a genuine loss and is a potential source of bugs. One advantage of containers
is that objects know their sizes.

12 Of course, if you use restrict it is your responsibility to ensure that aliasing does not occur – the
compiler still cannot actually check this.
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