Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T12:47:09.065Z Has data issue: false hasContentIssue false

Role of particle gradation of clay–sand mixtures on the interfacial adhesion performance of polymer coatings

Published online by Cambridge University Press:  14 March 2024

Nidhi Murali
Affiliation:
Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India
Jing Li
Affiliation:
Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
Anvi Agarwal
Affiliation:
Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India
Patrick Berthault
Affiliation:
Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
Pijush Ghosh*
Affiliation:
Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India
*
Corresponding author: Pijush Ghosh; Email: pijush@iitm.ac.in

Abstract

The interface performance between clay–sand mixtures and concrete structures is governed by the mixture's composition and its physical properties. Moisture content and particle-size distribution play important roles in deciding the mixture's arrangement of soil particles, porosity, hydraulic conductivity and behaviour under various mechanical loadings. Application of a polymer interfacial coating can improve the bond performance between soils and concrete mainly via interfacial friction/mechanical interlocking. The present work analyses the development of interfacial strength between clay–sand mixtures and a polymer coating with changes in particle gradation. The multi-scale mechanisms at the interface are investigated, giving primary attention to soil porosity. A 50:50 clay–sand mixture exhibited a greater interfacial adhesive performance compared to other soil mixtures. In addition, the moisture-controlled pores and gradation-controlled pores demonstrated differences in macroscale interfacial strength. Both mercury intrusion porosimetry (MIP) and 129Xe nuclear magnetic resonance (NMR) were utilized to detect the pore structure of the mixtures. 129Xe-NMR revealed the pore distribution of the mixtures as ranging from macropores to nanopores, and MIP complemented the pore information by determining the critical pore entry diameter in the macropore regime. Mesopores dominated with increasing fine sand content until a threshold value was reached; thereafter, merging of pores occurred and macropores dominated.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agus, S.S., Schanz, T. & Fredlund, D.G. (2010) Measurements of suction versus water content for bentonite–sand mixtures. Canadian Geotechnical Journal, 47, 583594.CrossRefGoogle Scholar
Bentz, D.P., De la Varga, I., Muñoz, J.F., Spragg, R.P., Graybeal, B.A., Hussey, D.S. et al. (2018) Influence of substrate moisture state and roughness on interface microstructure and bond strength: slant shear vs. pull-off testing. Cement and Concrete Composites, 87, 6372.CrossRefGoogle ScholarPubMed
Bonardet, J.L., Fraissard, J., Gédéon, A. & Springuel-Huet, M.A. (1999) Nuclear magnetic resonance of physisorbed 129Xe used as a probe to investigate porous solids. Catalysis Reviews – Science and Engineering, 41, 115225.CrossRefGoogle Scholar
Briceño, C., Azenha, M., Vasconcelos, G. & Lourenço, P.B. (2024) Influence of conditioning of clay bricks over shear strength of brick masonry. Journal of Building Engineering, 82, 108138.CrossRefGoogle Scholar
Cabalar, A.F. & Hasan, R.A. (2013) Compressional behaviour of various size/shape sand–clay mixtures with different pore fluids. Engineering Geology, 164, 3649.CrossRefGoogle Scholar
Carrero-González, B., Carrero-González, B., de la Cruz, M.T. & Casermeiro, M.Á. (2012) Application of magnetic resonance techniques to evaluate soil compaction after grazing. Journal of Soil Science and Plant Nutrition, 12, 165182.CrossRefGoogle Scholar
Chen, K. & Liang, F. (2024) Experimental investigation on the dynamic shear behavior of the unsaturated soil–concrete interface under cyclic loading. Soil Dynamics and Earthquake Engineering, 176, 108325.CrossRefGoogle Scholar
Cuthbertson, A.J.S., Samsami, F. & Dong, P. (2018) Model studies for flocculation of sand–clay mixtures. Coastal Engineering, 132, 1332.CrossRefGoogle Scholar
Di Donna, A., Ferrari, A. & Laloui, L. (2016) Experimental investigations of the soil–concrete interface: physical mechanisms, cyclic mobilisation and behaviour at different temperatures. Canadian Geotechnical Journal, 53, 659672.CrossRefGoogle Scholar
Duan, P., Shui, Z., Chen, W. & Shen, C. (2013) Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete. Construction and Building Materials, 44, 16.CrossRefGoogle Scholar
Feng, D., Li, X., Wang, X., Li, J., Sun, F., Sun, Z. et al. (2018) Water adsorption and its impact on the pore structure characteristics of shale clay. Applied Clay Science, 155, 126138.CrossRefGoogle Scholar
Filimonova, S., Nossov, A., Dümig, A., Gédéon, A., Kögel-Knabner, I. & Knicker, H. (2011) Evaluating pore structures of soil components with a combination of ‘conventional’ and hyperpolarised 129Xe NMR studies. Geoderma, 162, 96106.CrossRefGoogle Scholar
Goebel, M.-O., Bachmann, J., Woche, S.K., Fischer, W.R. & Horton, R. (2004) Water potential and aggregate size effects on contact angle and surface energy. Soil Science Society of America Journal, 68, 383393.CrossRefGoogle Scholar
Gujar, P., Alex, A., Santhanam, M. & Ghosh, P. (2021) Evaluation of interfacial strength between hydrating cement paste and epoxy coating. Construction and Building Materials, 279, 122511.CrossRefGoogle Scholar
Gujar, P., Murali, N., Ilango, N.K., Santhanam, M. & Ghosh, P. (2023) Engineering interfacial strength of polymer coated hydrating cement paste by tuning calcium characteristics. Materials and Structures/Materiaux et Constructions, 56, 65.Google Scholar
Havens, J.H. & Goodwin, WA. (1951) Clay Mineralogy and Soil Stabilization. Kentucky Transportation Center Research Report, 1346. Retrieved from https://uknowledge.uky.edu/ktc_researchreports/1346Google Scholar
Hölck, O., Bauer, J., Wittler, O., Michel, B. & Wunderle, B. (2012) Comparative characterization of chip to epoxy interfaces by molecular modeling and contact angle determination. Microelectronics Reliability, 52, 12851290.CrossRefGoogle Scholar
Horpibulsuk, S., Rachan, R., Chinkulkijniwat, A., Raksachon, Y. & Suddeepong, A. (2010) Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Construction and Building Materials, 24, 20112021.CrossRefGoogle Scholar
Hou, Y., Wang, B., Huang, L., Xu, J., Liu, D. & Jiahua, Z. (2021) Microstructure and macromechanical properties of retaining structure of near-water reinforced soil under dry–wet cycle. Mathematical Problems in Engineering, 2021, 6691278.CrossRefGoogle Scholar
Hu, H., Xing, Y. & Li, X. (2018) Molecular modeling on transportation of CO2 in montmorillonite: diffusion and permeation. Applied Clay Science, 156, 2027.CrossRefGoogle Scholar
Ilango, N.K., Gujar, P., Nagesh, A.K., Alex, A. & Ghosh, P. (2021) Interfacial adhesion mechanism between organic polymer coating and hydrating cement paste. Cement and Concrete Composites, 115, 103856.CrossRefGoogle Scholar
Jiao, W., Zhou, D. & Wang, Y. (2021) Effects of clay content on pore structure characteristics of marine soft soil. Water (Switzerland), 13, 119.Google Scholar
Khajeh, A., Jamshidi Chenari, R., Payan, M. & MolaAbasi, H. (2023) Assessing the effect of lime-zeolite on geotechnical properties and microstructure of reconstituted clay used as a subgrade soil. Physics and Chemistry of the Earth, Parts A/B/C, 132, 103501.CrossRefGoogle Scholar
Kokunešoski, M., Šaponjić, A., Stanković, M., Majstorović, J., Egelja, A., Ilić, S. & Matović, B. (2016) Effect of boric acid on the porosity of clay and diatomite monoliths. Ceramics International, 42, 63836390.CrossRefGoogle Scholar
Li, J., Mailhiot, S., Sreenivasan, H., Kantola, A.M., Telkki, V.-V. & Kinnunen, P. (2022) 129Xe NMR analysis reveals efficient gas transport between inborn micro-, meso- and macropores in geopolymers. Cement and Concrete Research, 155, 106779.CrossRefGoogle Scholar
Lubelli, B., de Winter, D.A.M., Post, J.A., van Hees, R.P.J. & Drury, M.R. (2013) Cryo-FIB-SEM and MIP study of porosity and pore size distribution of bentonite and kaolin at different moisture contents. Applied Clay Science, 80–81, 358365.CrossRefGoogle Scholar
Luo, Q., Li, Y., Zhang, Z., Peng, X. & Geng, G. (2022) Influence of substrate moisture on the interfacial bonding between calcium silicate hydrate and epoxy. Construction and Building Materials, 320, 126252.CrossRefGoogle Scholar
Miller, E.A. & Sowers, G. (1958) The strength characteristics of soil–aggregate mixtures & discussion. Highway Research Board Bulletin, 183, 1632.Google Scholar
Murali, N., Gujar, P. & Ghosh, P. (2022) Performance of clay–epoxy interface at different points on proctor curve. Applied Clay Science, 226, 106553.CrossRefGoogle Scholar
Orts, W.J., Roa-Espinosa, A., Sojka, R.E., Glenn, G.M., Imam, S.H., Erlacher, K. & Pedersen, J.S. (2007) Use of synthetic polymers and biopolymers for soil stabilization in agricultural, construction, and military applications. Journal of Materials in Civil Engineering, 19, 5866.CrossRefGoogle Scholar
Pan, J., Wang, B., Wang, Q., Ling, X., Fang, R., Liu, J. & Wang, Z. (2023) Thickness of the shear band of silty clay–concrete interface based on the particle image velocimetry technique. Construction and Building Materials, 388, 131712.CrossRefGoogle Scholar
Shafizadeh, A., Gimmi, T., Van Loon, L.R., Kaestner, A.P., Mäder, U.K. & Churakov, S.V. (2020) Time-resolved porosity changes at cement–clay interfaces derived from neutron imaging. Cement and Concrete Research, 127, 105924.CrossRefGoogle Scholar
Soltani-Jigheh, H., Bagheri, M. & Amani-Ghadim, A.R. (2019) Use of hydrophilic polymeric stabilizer to improve strength and durability of fine-grained soils. Cold Regions Science and Technology, 157, 187195.CrossRefGoogle Scholar
Tam, L., Ntjam Minkeng, M.A., Lau, D., Mansour, W. & Wu, C. (2023) Molecular interfacial shearing creep behavior of carbon fiber/epoxy matrix interface under moisture condition. Engineering Fracture Mechanics, 282, 109177.CrossRefGoogle Scholar
Tripathi, K.K. & Viswanadham, B.V.S. (2012) Evaluation of the permeability behaviour of sand–bentonite mixtures through laboratory tests. Indian Geotechnical Journal, 42, 267277.Google Scholar
Tsiao, C.-J., Carrado, K.A. & Botto, R.E. (1998) Investigation of the microporous structure of clays and pillared clays by 129Xe NMR. Microporous and Mesoporous Materials, 21, 4551.CrossRefGoogle Scholar
Vallejo, L. E. & Mawby, R. (2000) Porosity influence on the shear strength of granular material–clay mixtures. Engineering Geology, 58, 125136.CrossRefGoogle Scholar
Wang, Y.B., Zhao, C. & Wu, Y. (2020) Study on the effects of grouting and roughness on the shear behavior of cohesive soil–concrete interfaces. Materials, 13, 3034.Google Scholar
Watabe, Y., Yamada, K. & Saitoh, K. (2011) Hydraulic conductivity and compressibility of mixtures of Nagoya clay with sand or bentonite. Geotechnique, 61, 211219.CrossRefGoogle Scholar
Wu, Y., Zhang, X., Zhao, C. & Zhao, C. (2023) Effects of soil unloading and grouting on the vertical bearing mechanism for compressive piles. Ocean Engineering, 271, 113754.CrossRefGoogle Scholar
Xia, W., Wang, Q., Yu, Q., Yao, M., Sun, D., Liu, J. & Wang, Z. (2023) Experimental investigation of the mechanical properties of hydrophobic polymer-modified soil subjected to freeze–thaw cycles. Acta Geotechnica, 18, 36233642.CrossRefGoogle Scholar
Zhu, H., Li, S., Hu, Z., Ju, Y., Pan, Y., Yang, M. et al. (2023) Microstructural observations of clay-hosted pores in black shales: implications for porosity preservation and petrophysical variability. Clay Minerals, 58, 310323.CrossRefGoogle Scholar