
INVARIANT SCALAR-FLAT KÄHLER METRICS ON
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Abstract. Let G be a simply-connected semisimple compact Lie group, X a simply-connected compact

Kähler manifold homogeneous under G, and L a negative holomorphic line bundle over X. We prove

that all G-invariant Kähler metrics on the total space of L arise from the Calabi ansatz. Using this, we

show that there exists a unique G-invariant scalar-flat Kähler metric in each G-invariant Kähler class

of L. The G-invariant scalar-flat Kähler metrics are automatically asymptotically conical.

1. Introduction

During the past few decades, many works arise on the explicit construction of scalar-flat Kähler

metrics on noncompact manifolds, usually with certain symmetry conditions. The prototypical example

goes back to a seminal work by E. Calabi [10], who constructed complete Ricci-flat metrics on the

canonical bundle of CPn. In complex dimension two, Calabi’s construction produces the Eguchi-

Hanson instanton [17] on the total space of O(−2). As a generalization of Eguchi-Hanson, LeBrun

[25] constructed a family of ALE scalar-flat Kähler metrics in the total space of O(−n) with U(2)

symmetry. Some other works arise to construct families of Ricci-flat Kähler metrics on open manifolds,

in some sense, extending the Calabi’s construction, for instance, Stenzel [34], Dancer-Wang [15], Wang

[38].

There are some essential existence theorems for complete Ricci-flat Kähler metrics on open manifolds.

Following Yau’s solution of the Calabi conjecture [40], the analytic approach to the construction of

complete Calabi-Yau metrics on noncompact manifolds was initiated by the seminal works of Tian-

Yau [36, 37]. The work by Conlon-Hein [13] establishes the existence results for AC Ricci-flat Kähler

metrics. Recently, initiated by Li [28], many nontrivial Calabi-Yau metrics has been constructed in Cn
with Euclidean volume growth by Conlon-Rochon [14], Székelyhidi [35], Apostolov-Cifarelli [3].

For the scalar-flat case, LeBrun [26] adapted the Gibbons-Hawking ansatz in hyperbolic model

to construct scalar-flat Kähler metrics with S1 symmetry. Joyce [23] extended LeBrun’s hyperbolic

ansatz to toric manifolds and Calderbank-Singer [11] applied Joyce’s construction to toric resolutions

of C2/Γ with cyclic quotient singularities and constructed a family of T 2-invariant ALE scalar-flat

Kähler metrics. Based on Donaldson’s reformulation of Joyce construction in [16], Abreu-Sena-Dias

[1] constructed complete scalar-flat toric Kähler metrics on symplectic toric 4-manifolds which are

asymptotic to generalized Taub-NUT metrics.

Lock-Viaclovsky [29] constructed scalar-flat Kähler metrics on the minimal resolutions of C2/Γ,

where Γ is a finite subgroup of U(2) with no reflections. The existence of ALE scalar-flat Kähler

metrics in small deformations of resolutions of C2/Γ also has been investigated by Honda [19] [20],

Lock-Viaclovsky [29] and Han-Viaclovsky [18].

In the cases of complex toric surface, the uniqueness of ALE scalar-flat Kähler metrics have been

obtained by Sena-Dias [32], together with work by Wright [39]. However, the general uniqueness of

ALE scalar-flat Kähler metric still remains completely open (unlike in the compact case [5, 12], or in

the case with cusps [4] or with conical singularities [27]). This paper is concerned with a generalization

of LeBrun’s existence results to a class of spaces with strong symmetry in all dimensions and proves
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the uniqueness of scalar-flat Kähler metrics in each Kähler class on these spaces under a symmetry

assumption.

A compact homogeneous Kähler manifold is a compact Kähler manifold (X,ω) on which the identity

component of the bi-holomorphic isometry group acts transitively. The classification of this type of

spaces has been known for a long time. By [6], every compact, simply-connected homogeneous Kähler

manifold is isomorphic, in the sense of homogeneous complex manifolds, to an orbit of the adjoint

representation of some compact semisimple Lie group endowed with a canonical complex structure.

Then, the classification of compact homogeneous Kähler manifolds reduces to classifying the orbit

space of adjoint representation. In general, each compact homogeneous Kähler manifold is the product

of a flat complex torus and a compact simply-connected homogeneous Kähler manifold. In this paper,

we are only interested in the compact homogeneous Kähler manifolds without torus part, which we call

generalized flag varieties.

Theorem A. Let X be a generalized flag variety and L a negative homogeneous line bundle over X

with p : L→ X, the natural projection. Then, all invariant Kähler metrics ω on L can be written as

ω = p∗ωX + ddcϕ(r2),

where ωX is an invariant Kähler form on X and ϕ(r) ∈ C∞(R≥0).

Based on Theorem A, we have identified the G-invariant Kähler metrics in a given Kähler class on L

with a class of single variable function. To determine the complete scalar-flat Kähler metrics in a given

Kähler class, the method of momentum construction developed in Hwang-Singer [22] is applied, which

reduces the problem to solving a second order ODE. In conclusion, we have the following theorem,

Theorem B. Let X be a generalized flag variety and L a negative homogeneous line bundle over

X. Then, in each Kähler class on L there exists a unique G-invariant scalar-flat Kähler metric. In

particular, this metric is an asymptotically conical Kähler metric.

The author would like to thank Professor Hans-Joachim Hein and Professor Bianca Santoro for

suggesting the problem, and for constant support, many helpful comments, as well as much enlightening

conversation. This work is completed while the author is supported by graduate assistant fellowship

in Graduate Center, CUNY.

2. Geometry of compact homogeneous Kähler manifolds

In this section, we recall the geometry of compact homogeneous Kähler manifolds. In Section

2.1, 2.2 we discuss the classification of simply-connected compact homogeneous Kähler manifolds and

holomorphic line bundles over these manifolds. Section 2.3 dedicates to classify all G-invariant Kähler

forms on generalized flag varieties.

Here, we introduce some basic notations, see [24] for more details. Let X be a simply-connected

compact homogeneous Kähler manifold and G, the universal covering of the compact semisimple Lie

group acts on X. At a distinguished point p ∈ X, let R be the isotropy group of p and S, the identity

component of the center of R. GC denotes the complexification of G. Let T be a fixed maximal torus

of G. The corresponding Lie algebra of S, T , R, G are denoted by s, t, r, g and sC, tC, rC, gC, the

complexification of Lie algebras. We write ∆ to be the root system of gC with respect to tC and ∆+,

Π, the fixed positive root system and simple root system. For each root α ∈ ∆, gα denotes the eigen-

space of α. Since G is a compact semisimple Lie, the negative Killing form, denoted by (·, ·), defines a

G-invariant inner product in g.
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2.1. Classification of compact homogeneous Kähler manifolds. According to [30], it was proved

that the centralizer of S in G is R. So the maximal tori containing S must be contained in R. In the

following, we fix a maximal torus T with S ⊂ T ⊂ R.

Notice that gC admits a root space decomposition,

gC = tC ⊕
∑
α∈∆+

(gα ⊕ g−α).

We introduce a normalized adapted basis {Xα, Yα} of each pair of root spaces gα⊕ g−α, which satisfies

the following:

(a) Let gα and g−α denote the complex eigen-spaces corresponding to the roots α and −α. Then

Xα − iYα = Eα ∈ gα and Xα + iYα = E−α ∈ g−α. (2.1)

(b) Xα and Yα are normalized in the sense that,

[Xα, Yα] = −Hα, (2.2)

where Hα satisfies β(Hα) = (β, α)/2i for each root β. Consider the inner product induced by

the negative Killing form. One can easily check that |Xα|2 = |Yα|2 = 1/2. This normalization

will be applied in Section 3.1 to calculate the differential of invariant 1-forms.

Then the compact real sub-algebra g can be decomposed as follows:

g = t⊕
∑
α∈∆+

R〈Xα, Yα〉. (2.3)

Next, we classify simply connected compact homogeneous Kähler manifolds by the structure of root

system. Consider a parabolic subgroup P of GC. Then P is determined by a subset of the simple

root system. Let (∆+)′ ⊂ ∆+ be the subset of positive roots generated by Π′. The corresponding Lie

algebra p can be decomposed as

p = tC ⊕
∑
α∈∆+

gα ⊕
∑

α∈(∆+)′

g−α = b⊕
∑

α∈(∆+)′

g−α, (2.4)

where b is the Lie algebra of the Borel subgroup. The generalized flag variety with data (G,Π,Π′) is

defined to be the complex manifold X = GC/P .

Assuming that X = GC/P , we show that X is simply-connected compact homogeneous Kähler

manifold. Consider the maximal compact subgroup G of GC. Then G acts transitively on X with

stabilizer group R = G ∩ P . The Lie algebra of the stabilizer group R is

r = t⊕
∑

α∈(∆+)′

R〈Xα, Yα〉. (2.5)

Then, topologically, X ∼= G/R, and its complex structure can also be described as follows. Let

D+ := ∆+ \ (∆+)′. (2.6)

Then D+ is a closed subset of the root system in the sense that for any α, β ∈ D+, if α+ β is a root,

then α+ β ∈ D+. The tangent space of X at a distinguished point p can be identified with

TpX =
∑
α∈D+

R〈Xα, Yα〉. (2.7)

We also call {Xα, Yα : α ∈ D+} a normalized adapted basis of X. There exists a natural R-invariant

almost complex structure J on TpX given by

J(Xα) = Yα, J(Yα) = −Xα.
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Because J is R-invariant, it extends to a G-invariant almost complex structure on the whole tangent

bundle TX. The complexified tangent space at p splits into

T (1,0)
p X =

∑
α∈D+

gα, T (0,1)
p X =

∑
α∈D+

g−α. (2.8)

One can check that J is an integrable almost complex structure because D+ is closed (see [7, Section

12]), and the complex manifold (X,J) is G-equivariantly biholomorphic to GC/P .

Generalized flag varieties are simply-connected and the proof of this fact will be given in Remark 2.2.

There exist Kähler forms on (X, J), as discussed in section 2.3. Hence, each generalized flag variety is

a simply-connected compact homogeneous Kähler manifold of G.

Conversely, given a simply-connected compact homogeneous Kähler manifold X that admits a tran-

sitive holomorphic action by a simply-connected compact semisimple Lie group G with data (R, T, S)

and a point p ∈ X as above, let ∆(t, r) denote the root system of rC with respect to tC. This can be

viewed as a subset of ∆. Define

D := ∆ \∆(t, r).

The invariant complex structure J on X determines the set of positive roots D+ as follows. Since the

complexified tangent space of X is identified with

TC
p X =

∑
γ∈D

gγ ,

the R-invariance of J implies that J preserves each root space. Then D+ is defined to be

D+ := {γ ∈ D : Jv = iv for all v ∈ gγ}.

The closedness of D+ follows from the integrability of J . In addition, we can choose a simple root

system Π′ in ∆(t, r). Then D+ and the positive roots, ∆+(t, r), generated by Π′ determine a positive

root system ∆+(t, r) in ∆(t, g), i.e.,

∆+(t, g) = D+ ∪∆+(t, r).

The set Π′ can be extended to a simple root system, Π, of ∆(t, g) such that Π generates the positive

roots ∆+(t, g). More details on root systems can be found in [7, Sections 13.6–13.7]. Based on this

discussion, the Lie algebra r can be written in terms of the simple root set Π′ as in (2.5). Thus, X can

be identified with the generalized flag variety associated with the data (G,Π,Π′).

The notion of a generalized flag variety is actually independent of the choice of a simple root system.

By [2, Section 5.13], the different simple root systems are identified by the action of the Weyl group,

and then the associated generalized flag varieties are isomorphic via conjugation by an element of G.

Hence, without loss of generality, we can fix a simple root system Π at the beginning, and then each

generalized flag variety of G is classified in terms of a subset of Π.

In conclusion, we have proved the following theorem, which should be well-known to experts.

Theorem 2.1. Let X be a compact Kähler manifold. Assume that X is homogeneous under a simply-

connected compact semisimple Lie group G. Fix a system of simple roots Π of gC. Then X is G-

equivariantly biholomorphic to the generalized flag variety of type Π′ for some subset Π′ ⊂ Π, i.e.,

X ∼= GC/P, where P is the parabolic subgroup of GC determined by Π′.

Remark 2.2. In fact, all homogeneous manifolds discussed in this paper are simply-connected. More

precisely, let X be a compact Kähler manifold homogeneous under a simply-connected semisimple

compact Lie group G. Then X is simply-connected. This fact follows quickly from the fiber bundle

R ↪→ G → X. Let X = G/R and let S be the connected center of R. According to the statement

(∗), R is the union of all the maximal tori containing S, which implies that R is connected. The fiber
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bundle structure R ↪→ G→ X induces a long exact sequence of homotopy groups

· · · → π1(G)→ π1(X)→ π0(R)→ · · · ,

and this tells us that π1(X) = 0.

According to [8, Satz I], each compact homogeneous Kähler manifold is the product of a flat complex

torus and a simply-connected compact homogeneous Kähler manifold. Furthermore, the connected

component of the identity of the automorphism group of X is a semisimple Lie group [8, Satz 4]. In

conclusion, Theorem 2.1 classifies all compact homogeneous Kähler manifolds without torus part.

2.2. Classification of holomorphic line bundles. Consider a holomorphic line bundle L over X,

with π : L → X. The holomorphic line bundle is said to be GC-homogeneous (or in many articles

GC-linearizable) if there exists a GC-action on L such that the projection π is GC-equivariant and the

action is linear on fibers. In particular, we can construct GC-homogeneous line bundle as follows.

Given a 1-dimensional holomorphic representation χ : P → C∗, a GC-equivariant holomorphic line

bundle Lχ over X = GC/P can be constructed as follows:

Lχ = GC ×χ C = (GC × C)/∼, (2.9)

where (gh, v) ∼ (g, χ(h)v) for all g ∈ GC, h ∈ P , v ∈ C. This admits a natural GC-action given by

g · [(l, v)] = [(gl, v)] (2.10)

for all g ∈ GC, l ∈ GC, v ∈ C. Conversely, given a GC-equivariant holomorphic line bundle L over X,

the stabilizer group P at the distinguished point p ∈ X acts on the fiber Lp, inducing a holomorphic

character χ : P → C∗ such that L ∼= Lχ. In conclusion, there is a one-to-one correspondence between

the GC-homogeneous line bundles over X and the characters of P .

Let L be an arbitrary holomorphic line bundle over X. We claim that L is a GC-homogeneous

line bundle. To prove this claim, we need to borrow some results from algebraic geometry. Referring

to [21, Section 21.3], X is a projective variety. According to a well-known result from GAGA [33],

holomorphic line bundles over a projective variety are algebraic; in other words, the line bundle L is

algebraic over X. Moreover, since GC is a simply-connected semisimple Lie group, by [31, Proposition

1], the Picard group of GC is trivial. According to the key fact that PicGC = 0, we can construct a

character χ : P → C∗ such that L ∼= Lχ (see [31, Theorem 4 or Section 5] for details). Thus, we have

the following proposition:

Proposition 2.3. All holomorphic line bundles over X are GC-homogeneous.

Fixing a simple root system Π of G, let X ∼= GC/P , where the parabolic subgroup P is determined

by a subset of simple roots Π′ ⊂ Π as in (2.4). Let Π = {α1, . . . , αn} be ordered in such a way that

αi ∈ Π′ if and only if i = k+1, . . . , n. Let {ω1, . . . , ωn} be the set of fundamental weights corresponding

to Π, which are defined by

2(ωi, αj)

(αj , αj)
= δij (1 ≤ i, j ≤ n).

Here the inner product is the bilinear form induced by the Killing form of g. The lattice generated

by {ω1, . . . , ωn}, i.e., all vectors of the form
∑

ni∈Z niωi, is called the lattice of algebraically integral

weights. Since G is a simply-connected semisimple Lie group, the analytically integral weights coincide

with the algebraically integral weights (see [24, Chapter IV.7]). Thus, each algebraically integral weight

induces a character of the maximal torus T . Recall that s, s∗ denote the Lie algebra of S and its dual

space, respectively. More precisely,

s = {H ∈ t : α(H) = 0, ∀α ∈ ∆(t, r)}, s∗ = {β ∈ t∗ : (α, β) = 0, ∀α ∈ ∆(t, r)}.
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Then (sC)∗ = C〈ω1, . . . , ωk〉 and the intersection of the weight lattice with (sC)∗ is Z〈ω1, . . . , ωk〉. We

call the elements of this sublattice integral weights on X. Given such an element λ, there exists an

associated character χλ : SC → C∗ defined by

χλ(exp v) = expλ(v) (2.11)

for all v ∈ sC ⊂ tC. The character χλ can be extended to P in the following way. The Lie subalgebra

p can be decomposed as follows:

p = sC ⊕
∑
β∈D+

gβ︸ ︷︷ ︸
p1

⊕
∑
α∈Π′

C〈Hα〉 ⊕
∑
α∈Π′

(gα ⊕ g−α)︸ ︷︷ ︸
p2

= sC ⊕ n ⊕ p2,

where p1 is the solvable part of p, n is the nilpotent part of p1, and p2 is the semisimple part of p.

Each integral weight λ on X can be extended to a complex Lie algebra homomorphism σ : p → C by

defining the extension to be 0 on both n and p2. Then the corresponding holomorphic character χσ

extends χλ from SC to P . By abuse of notation, we will denote this extension by χλ. The following

proposition shows that all characters of P arise by extension in this way.

Proposition 2.4. For all holomorphic characters χ : P → C∗ there exists an integral weight λ on X

such that χ = χλ.

Proof. The character χ : P → C∗ induces a Lie algebra homomorphism σ : p→ C. It suffices to prove

that σ is trivial if restricted to n and p2. Notice that p1 is a solvable Lie algebra and n = [p1, p1]. The

restriction of σ to n must be trivial as C is an abelian Lie algebra. Since p2 is a semisimple Lie algebra,

for each root α ∈ D+ there exist Xα ∈ gα, X−α ∈ g−α and Hα = [Xα, X−α] such that

lα := C〈Hα, Xα, X−α〉 ∼= sl(2,C).

By the representation theory of sl(2,C), the only possible 1-dimensional representation of lα is trivial.

Since the restriction of σ to each lα is trivial, we conclude that σ|p2 = 0. �

Summarizing, we have now proved that every integral weight λ ∈ Z〈ω1, . . . , ωk〉 induces a character,

χλ : P → C∗, hence a homogeneous line bundle Lλ. Conversely, every holomorphic line bundle L is of

the form L ∼= Lλ for some λ ∈ Z〈ω1, . . . , ωk〉. Recall that an integral weight λ on X is called dominant

if λ =
∑k

i=1 niωi with ni > 0. By the Highest Weight Theorem, for each dominant integral weight

λ there exists a unique finite-dimensional irreducible complex representation V (λ) of G with highest

weight λ. The Bott-Borel-Weil Theorem [9, Section 7] states that the space of global sections of Lλ is

isomorphic to V (λ) as a G-module. Also by the Bott-Borel-Weil Theorem, the global sections of Lλ
induce an embedding X ↪→ P(V (λ)∗), so Lλ is very ample. In conclusion, we have the following.

Theorem 2.5. The Picard group of the compact homogeneous Kähler manifold X can be identified

with the sublattice Z〈ω1, . . . , ωk〉 of the lattice of integral weights. Under this identification, ample line

bundles correspond to dominant integral weights, and are automatically very ample.

Proof. Given the previous discussion, we only need to prove that if Lλ is ample, then the weight λ is

dominant. We will calculate the curvature form of Lλ in (3.9). The curvature form is positive if and

only if (λ, α) > 0 for all α ∈ D+, which implies that λ is dominant. �

2.3. Invariant Closed (1,1)-forms on X. In this section, we classify the G-invariant closed (1, 1)-

forms on X, which is needed for the proof of Theorem B.
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Throughout this section, let X be a compact homogeneous Kähler manifold with respect to (G,R).

Fixing a distinguished point p ∈ X, let {Xα, Yα : α ∈ D+} be a normal adapted basis of TpX as defined

in (2.1), (2.2). Then, we write {ηα, ξα : α ∈ D+} for the dual basis of T ∗pX.

The results that we will discuss here mainly come from [6, Chapter 8]. A slight difference is that

we rewrite the results in more explicit way. Recall that tangent vectors at p can be identified with

infinitesimal transformation at p by elements in g. If A ∈ g, we define VA as a vector field on X by

VA(x) =
d

dt

∣∣∣
t=0

exp(tA)(x), for all x ∈ X..

We call VA the fundamental vector field related to A. Then, by quick calculation, the Lie bracket of

two fundamental vector fields is also fundamental as

[VA, VB] = −V[A,B]. (2.12)

The reason we introduce fundamental vector fields is to test invariant 2-forms on X. Recall that the

negative Killing form defines a G-invariant metric (·, ·) on g. Fixing an element S ∈ s, we can define

a 2-form, ωS(VA, VB) = (S, [A,B]). According to the standard calculation (see [6, Prop 8.66]), ωS is a

G-invariant, closed, real (1, 1)-form. It is observed that the only non-vanishing terms are

ωS(Xα, Yα) = (S, [Xα, Yα]) = (S,−Hα) =
i

2
α(S). (2.13)

The observation (2.13) indicates that we can write down ωS explicitly in terms of the covector basis

{ηα, ξα : α ∈ D+} at p ∈ X. Precisely,

ωS =
∑
α∈D+

CS(α)ηα ∧ ξα, CS(α) =
i

2
α(S) (2.14)

where CS can be viewed as a linear function of s∗ (generated by elements in D+).

Given a G-invariant closed real (1, 1) form, ω, in the following, we prove that ω can be written as in

(2.14) related to some S. Since ω is G-invariant, for each A,B,N ∈ g,

0 = (LVNω)(VA, VB) = VN (ω(VA, VB))− ω([VN , VA], VB)− ω(VA, [VN , VB])

In particular, by taking N to be an element in t and A,B to be elements of {Xα, Yα, α ∈ D+}, noting

that VN (ω(VA, VB)) = 0, we have

• For two different roots in D+, α, β, ω(Xα, Xβ) = ω(Xα, Yβ) = ω(Yα, Yβ) = 0.

• The only nonvanishing case are ω(Xα, Yα) = Cα, α ∈ D+.

It suffices to show that Cα, a function defined in D+, can extend linearly to s∗. Since 2-form ω and

inner product in g can be extended linearly to complex field, consider the following complex vectors

U = Xα − iYα, V = Xβ − iYβ, W = Xα+β + iYα+β, (2.15)

where α, β, α + β ∈ D+ and Xα,β,α+β, Yα,β,α+β are taking from the normal adapted basis as in (2.1),

(2.2). Viewing U , V , W as elements in g⊗ C, the G-invariant inner product satisfies,

(W, [U, V ]) = ([W,U ], V ).

Therefore, it is easy to check U, V,W satisfies the following ,

[U, V ] = λW, [V,W ] = λU, [W,U ] = λV

By closedness and G-invariance of ω, we have

dω(U, V,W ) = ω([U, V ],W ) + ω([V,W ], U) + ω([W,U ], V )

=− λ
(
ω(W,W ) + ω(U,U) + ω(V , V )

)
= 0. (2.16)
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Inserting (2.15) into (2.16), we have

ω(Xα+β, Yα+β) = ω(Xα, Yα) + ω(Xβ, Yβ),

hence, Cα+β = Cα + Cβ (∗). Noticing that C• defines a function on D+, the condition (∗) implies

that C• can be extended to a linear function on s∗ as D+ generates s∗. In other words, there exists an

element S ∈ s such that

Cα =
i

2
α(S)

In conclusion, we have the following proposition,

Proposition 2.6. For any S ∈ s, the 2-form ωS given by (2.14) is a G-invariant closed real (1, 1)-

form. Conversely, any G-invariant closed real (1, 1)-form, ω, can be related to a unique S ∈ s, i.e.

ω = ωS. The form ωS is positive if and only if CS(α) = i
2α(S) is positive for all α ∈ D+.

Proposition 2.6 implies a bijection from s to the space of G-invariant closed real (1, 1) forms on X,

S → ωS . There is a special element of the G-invariant closed real (1, 1)-forms, Kähler-Einstein form,

and the related element in s is given by SKE = 2
∑

α∈D+ Hα. So we can write ωKE explicitly at the

distinguished point p ∈ X with respect to the normal adapted basis. Indeed, set δ be the sum of all

positive roots in D+, then

ωKE =
1

2

∑
α∈D+

(α, δ)ηα ∧ ξα. (2.17)

3. Invariant ddC-lemmas on homogeneous line bundles

This section is dedicated to the proof of Theorem A. Section 3.1 discusses invariant 1-forms on the

unit circle bundle, M , of a homogeneous line bundle L over a compact homogeneous Kähler manifold

X. Section 3.2 calculates the differentials of the invariant 1-forms given in Section 3.1. Assuming that

L is negative, Section 3.3 proves an invariant ddC-lemma, and we also show that this ddC-lemma can

be false if L is not negative. Finally, Section 3.4 combines these results to prove Theorem A.

3.1. Invariant 1-forms on M . Let X be a homogeneous compact Kähler manifold as before, and

L = Lλ, a homogeneous line bundle over X corresponding an integral weight λ. Given the data (X,L),

in this subsection, we will determine all left-invariant 1-forms on the unit circle bundle M of X.

Recall the G-action on L defined by restricting the GC-action of (2.10) to G ⊂ GC. For each

homogeneous line bundle L, there is a natural G-invariant hermitian metric h induced by the standard

hermitian metric in C. In particular, according to construction of homogeneous line bundle in (2.9),

let q0 = (g, z) ∈ Lλ for (g, z) ∈ GC × C, then h(q0, q0) = |z|2. The hermitian metric h induces a

radian function r on L. Then, G acts transitively on each level set of r, an S1 bundle of X, denoted

as M(r). Away from zero level set, there is a canonical invariant vector field, ∂/∂r on L pointing in

radius direction. We shall find the set of all invariant vector fields on each level set M(r). Notice that,

in general, left-invariant vector fields on G are not well-defined over M(r), as the left action by the

stabilizer group on the tangent space at one point can be nontrivial. Let M = M(1) and let TM be the

space of all global G-invariant vector fields over M . TM contains at least one element, X0 = J(∂/∂r),

generating a circle action on each fiber. The other elements of TM strongly depend on the base manifold

X and the integral weight λ. According to (2.7), the tangent space at a distinguished point p ∈ X can

be identified with a subspace of g. Then, we can choose a normal adapted basis {Xα, Yα}α∈D+ as in

(2.1), (2.2).
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Based on the choice of {Hα, Xα, Yα} as in (2.1), (2.2), one can easily check the following Lie algebra

structure.

[Hα, Xα] = −|α|
2

2
Yα, [Hα, Yα] =

|α|2

2
Xα, [Xα, Yα] = −Hα.

Let q be a distinguished point in M with π(q) = p, then the tangent space at q can be identified with

R〈Xα, Yα, α ∈ D+〉 ⊕ RX0 in the following sense. Consider the G-equivariant bundle projections,

G
π̃ //

π !!

M

π|M
��
X

with π̃(e) = q ∈ M . At the distinguished point q ∈ M with π(q) = p ∈ X, assume that the stabilizer

group at p ∈ X is R and the stabilizer group at q ∈M is R0. By G-action on L, g ∈ R0 if and only if,

g(q) = g(e, θ) = (e, χλ(g)θ),

which implies that R0 = kerχλ : R → S1 ⊂ C∗ These projections induce the mapping on tangent

spaces π̃∗ : g→ TqM by

N ∈ g 7→ d

dt

∣∣∣
t=0

π̃ ◦ exp(tN). (3.1)

Similarly, we can define the mapping π∗ : g → TpX. By abusing notation, we write Xα, Yα instead of

π̃∗(Xα), π̃∗(Yα) and π∗(Xα), π∗(Yα) as Xα, Yα. Notice that the left-invariant vector fields on G can

be identified with g. To determine the space of invariant vector fields, TM , on M1, we observe that for

any R0-invariant vector v ∈ TqM and g1(q) = g2(q), then g1 = g2r with r ∈ R0 and

(g1)∗(v) = (g2r)∗(v) = (g2)∗r∗(v) = (g2)∗(v),

So each R0-invariant vector of TqM determines a left-invariant vector fields on M . There is an one-

to-one correspondence between TM and the R0-invariant space of TqM . In particular, in the case that

X = G/T with T a maximal torus of G, we have the following proposition

Proposition 3.1. Let X be a compact Kähler manifold homogeneous under G with stabilizer group R,

let ∆ be the root system of (t, g). D+ is defined as in (2.6). Let M be the unit level of homogeneous

line bundle determined by an integral weight λ 6= 0. At a distinguished point q ∈M , the tangent space

TqM is generated by {Xα, Yα}α∈D+ and X0. Then, there are the following two possiblities for the space

of the left-invariant vector fields on M ,

(a) TM ∼= R〈X0〉
(b) TM ∼= R〈X0, Xα, Yα〉, for some α ∈ D+

The case (b) happens if and only if λ is proportional to α and α + β, α − β are not in ∆, for any

nontrivial β ∈ ∆(t, r). In particular, if the stabilizer group is a maximal torus, then the case (b) happens

if and only if λ is proportional to α.

Proof of Proposition 3.1. Let R0 be the stabilizer group at q ∈ M . Notice that R0 is the kernel of

character χλ : R → S1 ⊂ C related to the weight λ. Let V ∈ TqM be an invariant vector. According

to decomposition (2.7) of TqM , the vector V can be written as

V =
∑
α∈D+

Vα, Vα ∈ R〈Xα, Yα〉 and Vα 6= 0.

Notice that R0 preserves each R〈Xα, Yα〉. If a vector Vα = aXα + bYα ∈ E±α is invariant under R0

action, then, since J is R0 invariant, which means that J(aXα+ bYα) = aYα− bXα is also R0 invariant.
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Therefore, all vectors in the space generated by 〈aXα + bYα,−bXα + aYα〉 = 〈Xα, Yα〉 = R〈Xα, Yα〉 are

R0 invariant. So we only need to determine the set of all α ∈ ∆+ such that Xα, Yα are invariant under

R0 = kerχλ.

Let r0 = kerλ, it’s easy to see that r0 is the Lie algebra of the stabilizer group R0. Let T0 = R0 ∩ T
associated with Lie algebra t0 = r0 ∩ t. Since Xα, Yα is T0 invariant,

[H0, Xα] = 0 = [H0, Yα], for all H0 ∈ t0 (3.2)

Noting that

[H0, Xα] = −iα(H0)Yα, [H0, Yα] = iα(H0)Xα.

Hence, we have kerα = t0 = kerλ|t, hence λ is proportional to α.

Let Z ∈ r0, then Xα, Yα are R0 invariant if and only if

π̃∗[Z,Xα] = π̃∗[Z, Yα] = 0,

Notice that r0 = t0 ⊕
∑

β∈∆+(t,r) R〈Xβ, Yβ〉, where t0 is kernel of λ restricted in t. Then, Xα and Yα is

R0-invariant is equivalent to (3.2) and

π̃∗[Zβ, Xα] = π̃∗[Zβ, Yα] = 0, for all Zβ ∈ R〈Xβ, Yβ〉, β ∈ ∆+(t, r) (∗∗)

According to [24, Theorem 6.6] and the definition of π̃∗, (∗∗) is equivalent to α+β, α−β /∈ D+∪(−D+).

Indead, α+ β and α− β are not roots. Assume that

α+ β = γ ∈ ∆(t, r),

then, α = γ − β ∈ ∆(t, r). But α ∈ D+, which leads to a contradiction. �

Example 3.2. Let X = SU(3)/T 2. Recall the basic notions of semisimple Lie group SU(3). The Lie

algebra su(3) is the set of trace zero skew-hermitian matrices of order 3. A Cartan sub-algebra t is the

Lie algebra of diagonal matrices in su(3). The set of positive roots with respect to t consists of three

elements {α, β, γ}, and the normal adapted basis is given by Xα,β,γ , Yα,β,γ .

Consider a distinguished point q ∈ M with tangent space generated by {X0, Xα,β,γ , Yα,β,γ}. Now,

we only focus on the subspace V ⊂ TqM generated by {Xα,β,γ , Yα,β,γ}. To simplify the notation in

calculation, we introduce a complex coordinate system in V ; precisely, zα = Xα+iYα. Let σi denote the

i-th element of diagonal matrices. Then, α, β, γ can be expressed as, α = σ1−σ2, β = σ1−σ3, γ =

σ2−σ3. Hence, let {α, γ} be the simple root system of SU(3) and β = α+γ. The fundamental weights

are given as follows,

ω1 =
2

3
σ1 −

1

3
σ2 −

1

3
σ3, ω2 =

1

3
σ1 +

1

3
σ2 −

2

3
σ3.

Let O(p, q) denote the line bundle corresponding to the integral weight λ = pω1 + qω2. In the case

of (p, q) 6= 0. Noting that that kernel of λ = pω1 + qω2 is R〈qt1 − (p + q)t2〉. Then, the S1 action is

given by T p,qθ = diag(eiqθ, e−i(p+q)θ, eipθ) and if we represent the action on complex coordinate system

(zα, zβ, zγ), we have

T p,qθ (zα, zβ, zγ) = (e−i(p+2q)θzα, e
i(p−q)θzβ, e

i(2p+q)θzγ).

In conclusion, we have the following cases

Conditions on (p, q) Invariant vector fields over M

p = −2q X0, Xα, Yα
p = q X0, Xβ, Yβ

2p = −q X0, Xγ , Yγ
Others X0
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Notice that

α = 2ω1 − ω2, β = ω1 + ω2, γ = −ω1 + 2ω2

The integral weights in the above table, −2nω1 + nω2, nω1 + nω2, −nω1 + 2nω2 are proportional to

α, β, γ respectively in agreement with Proposition 3.1.

The left-invariant 1-forms on M can be viewed as the dual space of left-invariant vector fields. More

precisely, if we apply the previous notion of adapted basis at TqM , given by {X0, Xα, Yα;α ∈ D+}, we

write the dual basis of T ∗qM as {η0, ηα, ξα;α ∈ D+}. According to Proposition 3.1, the space of left-

invariant vector fields is in one-to-one correspondence with the space generated by {X0} or {X0, Xα, Yα}
for some α ∈ D+. Consider the subset, {η0} or {η0, ηα, ξα} of the dual basis, whose elements are R0

invariant. Therefore, {η0} or {η0, ηα, ξα} generates the space of G-invariant 1 forms over M .

3.2. The differentials of left invariant 1-forms on M . According to proposition 3.1, the left

invariant 1-forms are generated by {η0} or {η0, ξα, ηα}. We only consider the second case in this

subsection.

Let M be an S1 bundle associated with line bundle L. Notice that there is a natural projection

π̃ : G→M . If we write Ω1, Ω2 as the space of smooth 1-forms and 2-forms respectively, then we have

the following commutative graph,

Ω1(M)

d
��

π̃∗ // Ω1(G)

d
��

Ω2(M)
π̃∗ // Ω2(G).

(3.3)

Since the left-invariant vector fields are globally generated in G, with a natural basis corresponding to

{Hα, Xβ, Yβ : α ∈ Π, β ∈ ∆} and its dual basis {hα, ηβ, ξβ : α ∈ Π, β ∈ ∆}, then the pull back of ηα,

ξα in Ω1(M) under π̃ are exactly ηα, ξα in Ω1(G). And the pull-back of η0 is a certain combination

of hα determined by weight λ. To calculate the differentials of left invariant 1-forms, The technique

is to apply the Maurer-Cartan equations on G with respect to the natural basis, Since Maurer-Cartan

equations gives us the derivative of left-invariant 1-form on G, combining the commutative graph (3.3),

we have the derivative of left-invariant 1 form on M .

Proposition 3.3. Let X be the homogeneous space and M , the S1 bundle of X associated with λ.

Assuming that, at the distinguished point q ∈ M , the space of left-invariant 1-forms can be identified

with the spaces generated by {η0, ηα, ξα}, α ∈ D+. In this case, λ is proportional to α, assuming that

α = −lλ. then the derivative are given by

dη0 = −1

2

∑
α∈D+

(λ, α)ηα ∧ ξα, (3.4)

dηα = −lη0 ∧ ξα −
Cαβ,−γ

2

∑
β,γ∈D+

β−γ=α

(ηβ ∧ ηγ + ξβ ∧ ξγ)

−
Cαβ,γ

2

∑
β,γ∈D+

β+γ=α

(ηβ ∧ ηγ − ξβ ∧ ξγ) (3.5)
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dξα = lη0 ∧ ηα +
Cαβ,−γ

2

∑
β,γ∈D+

β−γ=α

(ηβ ∧ ξγ − ξβ ∧ ηγ)

−
Cαβ,γ

2

∑
β,γ∈D+

β+γ=α

(ηβ ∧ ξγ + ξβ ∧ ηγ). (3.6)

where the coefficients Cαβ,−γ are the coefficients from Maureur-Cartan equation. Let Eα, Eβ, E−γ be

the root vector of α, β, −γ satisfying (2.1), then

[Eβ, E−γ ] = Cαβ,−γEα

Proof. Let {ω1, · · · , ωk} be fundamental integral weights on X and λ =
∑

i niωi. By definition of

fundamental weights and our setting of Hαi , we can evaluate Hαi under λ.

λ(Hαi) =
∑
j

njωj(Hαi) =
1

2i

∑
j

nj(ωj , αi) = −i |αi|
2

4

∑
j

2nj(ωj , αi)

(αi, αi)
= −i |αi|

2

4
ni

By the definition of Lλ, at distinguished point q ∈M with π̃(e) = q, we have

π̃∗(Hαi) =
d

dt

∣∣∣
t=0

χλ(exp(tHαi)) =
d

dt

∣∣∣
t=0

exp(tλ(Hαi)) = −|αi|
2

4
niX0. (3.7)

For each i,

π̃∗(η0)(Hαi) = η0(π̃∗(Hαi)) = −|αi|
2

4
niη0(X0) = −|αi|

2

4
ni.

Since the previous calculation shows that ωi(Hαj ) = −i|αj |2δij/4, then the pullback of η0 can be

represented by π̃∗η0 = −iλ. To get the formula (3.4), notice that

π̃∗dη0(Xα, Yα) = dπ̃∗(η0)(Xα, Yα) = π̃∗η0([Xα, Yα]) = −iλ(Hα) = −1

2
(λ, α).

To get the formulas (3.5), (3.6), if we pull back both sides of formulas by π̃,

π̃∗(dηα)(Hαi , Yα) = −π̃∗ηα([Hαi , Yα]) = −(α, αi)

2
,

2(α, αi)

ni|αi|2
π̃∗(η0 ∧ ξα)(Hαi , Yα) = −i2(α, αi)

ni|αi|2
∑
i

λ ∧ ξα(Hαi , Yα) = −(αi, α)

2
.

Since π̃∗ is injective, dηα admits the term
2(α, αi)

ni|αi|2
η0 ∧ ξα. We can show that the coefficient is in-

dependent of the index i and related to the factor l. Notice that λ is proportional to α, α = −lλ,

then

2(α, αi)

ni|αi|2
=

2(−lλ, αi)
ni|αi|2

=
2(−l

∑
j njωj , αi)

ni|αi|2
= −l.

To compute the remaining cross terms of dηα and dξα, we shall understand the structure of Lie

algebra. Notice that dηα has a nonvanishing 2-form related with root β, γ only if (1) α = β + γ or (2)

α = β−γ. Both in the case (1) and (2), we argue that β, γ ∈ D+. For instance, in the case (1), assume

that γ ∈ ∆(t, r)+, then we have β = α− γ is a root, which contradicts the condition in proposition 3.1.

https://doi.org/10.4153/S0008414X24000464 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000464


Invariant scalar-flat Kähler metrics on line bundles over generalized flag varieties 13

In the case (1), notice that [Eβ, Eγ] = Cαβ,γEα and [Eβ, Eγ ] has no Eα terms. Combining with the

relation (2.1), we have,

ηα([Xβ, Xγ ]) = −ηα([Yβ, Yγ ]) =
Cαβ,γ

2
,

ξα([Xβ, Yγ ]) = ξα([Yβ, Xγ ]) =
Cαβ,γ

2
.

The above equation implies that

π̃∗(dηα)(Xβ, Xγ) = −π∗ηα([Xβ, Xγ ]) = −
Cαβ,γ

2

π̃∗(dηα)(Yβ, Yγ) = −π∗ηα([Yβ, Yγ ]) =
Cαβ,γ

2

Hence, dηα has the term (Cαβ,γ/2)(−ηβ ∧ ηγ + ξβ ∧ ξγ). Likewise, we can find the formulas for dηα and

dξα as (3.5) and (3.6) and we completes the proof. �

Fixing a line bundle related to a weight λ, the Chern class of Lλ can be represented by the form

−i∂∂ log r2, where r is the radius function induced by some Hermitian metric on Lλ. Then we have

1

2
ddc log r2 = −d

(
J
dr

r

)
. (3.8)

Indeed, the 1-form −Jdr/r is induced by circle action along each fiber and more details will be discussed

in the next section. Referring to Proposition 3.3, the curvature form can be represented as

−1

2
ddc log h =

1

2

∑
α∈∆+

(λ, α)ηα ∧ ξα. (3.9)

Comparing with (2.17), the Kähler-Einstein metric is the curvature form associated with the anti-

canonical bundle, Lδ.

3.3. Invariant ddc-lemma on Lλ. Consider the data (X,Lλ) as in the previous section. According

to proposition 3.1, the space of left invariant vector fields on M have two different cases (a) and (b).

Suppose that λ satisfies one of the following conditions,

• The space of left invariant vector fields on M satisfies case (a) in Proposition 3.1;

• The space of left invariant vector fields on M satisfies case (b) in Proposition 3.1. And λ is

proportional to some positive root α with λ = −lα, l > 0.

Then, we have the following invariant ddc lemma.

Proposition 3.4. Let (X,Lλ) satisfy the conditions above. If ω is an G-invariant closed real (1, 1)-

form on L, [ω] = 0 , then there exists a G-invariant Kähler potential Φ ∈ C∞(Lλ) such that.

ω = ddcΦ. (3.10)

Proof. Since ω is exact, there exists an 1-form θ such that dθ = ω. Moreover θ can choose to be G

invariant. Notice that ω = d(g∗θ), then, by taking integral over G, we obtain a G-invariant 1-form θ

with ω = dθ.

The main idea of proof is to represent dθ and ∂∂φ with respect to G-invariant coframe, then we can

reduce the proof of Proposition 3.4 to solving a system of ODE.

Let Lλ be the line bundle such that the space of left invariant vector fields on M satisfies case (b).

Suppose that λ is proportional to α. The basis of left-invariant 1-form on level set M is {η0, ηα, ξα}.
Then, we can extend the these invariant 1-forms in radian direction by rescaling 1/r on each level M(r).

Precisely, There is a natural projection p : L× →M . By identifying L× ∼= G×λC×, the projection can
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be written explicitly,

p((g, z)) = (g, |z|−1z).

Thus, p∗ extends {η0, ηα, ξα} to L×. By abusing the notion, we write {η0, ηα, ξα} as the extended

vector fields over L×. Also let µ = dr/r, hence {µ, η0, ηα, ξα} forms a basis of invariant 1-forms over

L×. Then the invariant 1-form θ can be represented as

θ = ϕr(r)µ+ ϕ0(r)η0 + ϕα(r)ηα + φα(r)ξα. (3.11)

Applying Proposition 3.3, we can take derivative of θ in (3.11),

dθ = rϕ′0(r)µ ∧ η0 −
ϕ0(r)

2

∑
α∈D+

(λ, α)ηα ∧ ξα (3.12)

+ rϕ′α(r)µ ∧ ηα + rφ′α(r)µ ∧ ξα − lϕαη0 ∧ ξα + lφαη0 ∧ ηα (3.13)

− ϕα
Cαβ,−γ

2

∑
(ηβ ∧ ηγ + ξβ ∧ ξγ) + φα

Cαβ,−γ
2

∑
(ηβ ∧ ξγ − ξβ ∧ ηγ) (3.14)

− ϕα
Cαβ,γ

2

∑
(ηβ ∧ ηγ − ξβ ∧ ξγ)− φα

Cαβ,γ
2

∑
(ηβ ∧ ξγ + ξβ ∧ ηγ) (3.15)

Let J be complex structure. Note that dθ is real (1, 1)-form if and only if Jdθ = dθ. Notice that

Jη0 = µ, Jξα = ηα, then

Jdθ = rϕ′0(r)µ ∧ η0 −
ϕ0(r)

2

∑
α∈D+

(λ, α)ηα ∧ ξα

+ rϕ′αη0 ∧ ξα − rφ′αη0 ∧ ηα − lϕαµ ∧ ηα − lφαµ ∧ ξα

− ϕα
Cαβ,−γ

2

∑
(ηβ ∧ ηγ + ξβ ∧ ξγ) + φα

Cαβ,−γ
2

∑
(ηβ ∧ ξγ − ξβ ∧ ηγ)

+ ϕα
Cαβ,γ

2

∑
(ηβ ∧ ηγ − ξβ ∧ ξγ) + φα

Cαβ,γ
2

∑
(ηβ ∧ ξγ + ξβ ∧ ηγ)

Then, Jdθ = dθ implies the following ODE

rϕ′α = −lϕα, rφ′α = −lφα (3.16)

and the terms of line (3.15) are vanishing. To ensure the (3.15) vanishes,

Cαβ,γ = 0 or ϕα = φα = 0. (3.17)

Indeed, referring to ([24], Theorem 6.6), if α = β + γ, for some α, β, γ ∈ ∆, then the corresponding

constant Cαβ,γ 6= 0. Assuming that there exist positive roots, β and γ, satisfying α = β + γ, by (3.17),

we have ϕα = φϕ = 0, which automatically satisfies (3.16); hence, if dθ is a real (1, 1) form with some

structure constants Cαβ,γ nonvanishing, then dθ can be written as

dθ = rϕ′0(r)µ ∧ η0 −
ϕ0(r)

2

∑
α∈D+

(λ, α)ηα ∧ ξα

When it comes to the cases that the corresponding weight λ is proportional to a simple root α, i.e.

α cannot be written as the sum of two positive roots, dθ should satisfy the equation (3.16) and its

solution is given by ϕ = C/rl with C an arbitrary constant. In the sequel, it suffices to show that

the constant C in the expression of solution ϕ should equal zero. To prove this, we need to apply

the condition that the form, dθ, is well-defined across the zero level of line bundle. Firstly, we take a

reference metric ω0 near the zero level of line bundle L. Let h be the canonical invariant hermitian

metric defined as before and r be the radial function related to h. Also, given a bundle coordinate u,
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we have

ωε =π∗ωKE + ε · ddcr2

=π∗ωKE + εr2 · ddc log h+ εh · idu ∧ du.

It is easy to see that ωε is positive around zero level. To simplify calculation, let ε tends to 0, then we

obtain a semi-positive form ω0 = π∗ωKE . Consider the following integration,∫
K
ωn−1

0 ∧ dθ ∧ dθ, (3.18)

where the K is a compact neighborhood of zero level, which is defined as K = {x ∈ L, r(x) ≤ δ}.
In the sequel, we write (3.12), (3.13) and (3.14) as Θ1, Θ2, Θ3. Noticing that all crossing terms

Θi ∧Θj ∧ ωn−1
0 = 0, (i 6= j), and Θ3 ∧Θ3 ∧ ωn−1

0 = 0. Only two nonvanishing terms of the integration

(3.18) are the following,∫
K
ωn−1

0 ∧ dθ ∧ dθ =

∫
K
ωn−1

0 ∧Θ1 ∧Θ1 +

∫
K
ωn−1

0 ∧Θ2 ∧Θ2 (3.19)

Inserting the solution of ODE (3.16),

Θ2 = −C1lr
−lµ ∧ ηα − C2lr

−lµ ∧ ξα − C1lr
−lη0 ∧ ξα + C2lr

−lη0 ∧ ηα,

then we can compute the two terms in (3.19) separately,∫
K

Θ2 ∧Θ2 ∧ ωn−1
0 = −

∫
K

(C2
1 + C2

2 )l2r−2lµ ∧ η0 ∧ ηα ∧ ξα ∧ ωn−1
0

= −(C2
1 + C2

2 )l2
∫ δ

0
r−2l−1dr

∫
M1

η0 ∧ ηα ∧ ξα ∧ ωn−1
0 = −∞

and assume λ is proportional to a positive root by a negative constant,∫
K

Θ1 ∧Θ1 ∧ ωn−1
0 = −1

2

∑
α∈∆+

∫
K
rϕ′0(r)ϕ0(r)(λ, α)ηα ∧ ξα ∧ µ ∧ η0 ∧ ωn−1

0

= −1

2

∑
α∈∆+

(λ, α)

∫ δ

0
ϕ′0(r)ϕ0(r)dr

∫
M1

η0 ∧ ηα ∧ ξα ∧ ωn−1
0

= C lim
ε→0

(ϕ0(r))2
∣∣∣δ
ε
< C ′, (C, C ′ are nonnegative constants)

Hence, ,

∫
K
dθ ∧ dθ ∧ ωn−1

0 = −∞, which leads to a contradiction. We obtain that ϕα = φα = 0.

According to the discussion of two cases, we have ϕα = φα = 0 and dθ can be represented as,

dθ = rϕ′0(r)µ ∧ η0 −
ϕ0(r)

2

∑
α∈∆+

(λ, α)ηα ∧ ξα (3.20)

Take a function Φ(r) such that Φ′(r) = ϕ0(r)/r, we compute i∂∂Φ,

ddcΦ = −d · JdΦ = −d · J(ϕ0(r)µ) = d(ϕ0(r)η0) = rϕ′0(r)µ ∧ η0 + ϕ0(r)dη0.

Combining with Proposition 3.3, we obtain

ddcΦ = rϕ′0(r)µ ∧ η0 −
ϕ0(r)

2

∑
α∈D+

(λ, α)ηα ∧ ξα (3.21)

Now, we find Φ ∈ C∞(L×) such that ω = ddcΦ. It suffices to prove that Φ can extend smoothly

across the zero level of L. To prove this, we need to apply a basic fact from complex functions: Let

f : [0,∞) → R be a smooth function, then, g(z) = f(|z|) is smooth in C if and only if there exits a
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smooth function h : [0,∞)→ R such that f(r) = h(r2). Since ω is defined in the whole line bundle L,

on each fibre, the terms of ω,

rϕ′0(r)µ ∧ η0, ϕ0(r)ηα ∧ ξα (3.22)

can extend smoothly across the zero level. Notice that µ∧η0 = Cr−2du∧du, where u denotes the fiber

coordinate of L. Then, it is easy to see that the terms in (3.22) is smooth on each fiber if and only if

r−1ϕ′(r) and ϕ(r) are smooth on C if and only if there exists a smooth function h : [0,∞) → R such

that h(r2) = ϕ(r). According to the definition of Φ, we expand Φ near 0.

Φ′(r) = h(r2)/r = C−1/r + C1r + C2r
3 + . . . .

we have

Φ(r) = C−1 log r + C0 + C1r
2 + C2r

4 + . . . .

We claim that C−1 is vanishing. Otherwise, ϕ(0) 6= 0, which implies that ϕ0(r)η0 is not well defined

on the zero level. Recalling the expression of θ, this contradicts against the fact that θ is well defined

on L. Therefore, we find a global Kähler potential for ω, which completes the proof. �

Remark 3.5. The invariant ∂∂-lemma does not hold for all line bundles. For instance, let α be a

simple root with α = 2λ, for instance, the line bundle O(1) → CP1. Consider the following invariant

1-form

θ = r2η0 + r2ηα + r2ξα.

Then, we can check that dθ is an invariant exact real (1,1) form. However, comparing with (3.21),

there is no potential function for this form.

3.4. Proof of Theorem A. Firstly, it is easy see that the invariant ddc lemma can be applied when

L is a negative line bundle over X. Notice that the homogeneous line bundle L can shrink to the base

manifold X. Furthermore, we can require the shrinking process to be G-equivalent. In particular, we

have the following isomorphism between cohomology groups.

p∗ : H1,1
G (X) ∼= H1,1

G (L),

which implies that all invariant Kähler classes of L arise from the invariant Kähler classes of X. In

each invariant Kähler class of X, there exists exactly one invariant Kähler form, which follows directly

from ddc-lemma on X. Given an invariant Kähler form ω on L, by previous discussion, there exists an

invariant Kähler form ωX on X such that [ω] = p∗[ωX ] then, by Propositions 3.4, there exists a smooth

function Φ defined on L such that,

ω = p∗ωX + ddcΦ.

Hence, we complete the proof of theorem A.

4. Momentum profiles and the classification of invariant cscK metrics

This section is dedicated to the proof of Theorem B. Our main tool of this section comes from [22],

in which the momentum construction is applied to investigate the Calabi ansatz. In Section 4.1, we

will build up momentum construction by tracking the idea in [22]. Then, momentum construction will

be applied in Section 4.2 to get the existence and uniqueness of G-invariant scalar-flat Kähler metric.

We also prove the scalar-flat Kählers are asymptotically conical metrics. This proves Theorem B.

4.1. Momentum construction of Calabi ansatz. Let (X,ωX) be a Kähler manifold and π :

(L, h) → (X,ωX) be a holomorphic line bundle of M with Hermitian metric h. Let t be the loga-

rithm of fibre norm function related to h; i.e., given a local line bundle coordinate chart (u, v), where
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u represents the fibre coordinate, t = log[r(u)2] := log h(u, u). Then, Kähler metrics arise from Calabi

Ansatz is given by

ω = π∗ωX +
1

2
ddcf(t), (4.1)

where f is a smooth function of one real variable. According to theorem A, all invariant Kähler metrics

comes from Calabi ansatz (4.1).

It is well-known that the problem of prescribed scalar curvature is equivalent to a fourth order PDE

of potential function, specially, in this case, a fourth order ODE. However, Hwang and Singer comes

up the method of momentum profile in [22] by which it can be reduced to be a second order ODE, as

the curvature formula related to momentum profile is of second order. In the following, we study the

momentum profile associated with the given original data.

The Kähler metric, ω, arising from Calabi ansatz (4.1) may not exist in the whole line bundle L.

For instance, in some cases, it might be blowing up in a finite domain with respect to fibre coordinate.

We use L′ to denote the possible existence region of L for ω. Notice that Kähler metric ω constructed

in (4.1) admits a natural Killing field X0, which generates a circle action on each fibre and can be

written in local bundle coordinates, X0 = rJ(∂/∂r). In aspects of symplectic geometry, X0 generates

a Hamiltonian action on (L, ω) by

iX0ω = −dτ. (4.2)

At each point on p ∈ X, there exists a coordinate chart around p such that ∂ log h|p = ∂ log h|p = 0.

By computing ω at each point in the chart,

ω = π∗ωX + f ′(t)
1

2
ddc log h+ f ′′(t)i

du ∧ du
|u|2

(4.3)

and inserting (4.3) into (4.2), we have τ = f ′(t). Let the interval I be the image of moment map τ .

Noting that ||X0||ω is a constant along each level of τ , we can define the function ϕ : I → R≥0 by

factoring through τ ,

ϕ(τ) =
1

2
||X0(τ)||2ω.

The interval I together with the function ϕ is called momentum profile related to (L′, ω). The essential

relation between ϕ(τ) and the potential f is given by,

ϕ(τ) =
1

2
ω(X0, JX0) = −1

2
JX0(f ′(t)) = −1

2
f ′′(t) · JX0(log r2) = f ′′(t) (4.4)

Also by observing (4.3), the positivity of Kähler form implies the following two things: f is a convex

function; hence the moment map τ = f ′(t) induces a Legendre transformation from t to τ . Moreover,

if we denote γ = −i∂∂ log h, the positivity of ω also requires ω − τγ to be positive. An interval, I, is

defined to be a momentum interval if for all τ ∈ I, ω(τ) = ω− τγ is positive. In the following, we shall

reconstruct (L′, ω) by momentum profile (I, ϕ) with a momentum interval I and ϕ : I → R≥0.

Based on the inverse Legendre transformation, we can rebuild the Kähler metric ω explicitly by

momentum profile (I, ϕ) as follows. Let (a, b) be the interior of I with −∞ ≤ a < b ≤ ∞ and fix

τ0 ∈ I.

(a) Fibre domain: Let T be the defining domain of f(t) with T ◦ = (t1, t2), then,

t1 = lim
τ→a+

∫ τ

τ0

dx

ϕ(x)
and t2 = lim

τ→b−

∫ τ

τ0

dx

ϕ(x)
.

(b) Potential function: f(t) is given by data (I, ϕ)

f(t) =

∫ τ(t)

τ0

xdx

ϕ(x)
.
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(c) Fibre metric: The metric ω induces the metric on each fibre in terms of coordinate u, gfibre and

the ω-distance between τ0 level and τ(t) level, s(t)

gfibre = ϕ(τ)

∣∣∣∣duu
∣∣∣∣2, s(t) =

∫ τ(t)

τ0

dx

2
√
ϕ(x)

.

where the formulas in (b), (c) can be obtained by change the variable though Legendre transformation.

The next step is to work out the curvature formula in terms of momentum profiles.To make curvature

formula fit in the momentum profile, define (τ, π) : L′ → I ×X. Here are some notations that will be

used in the following:

• Let ωϕ represent the Kähler metric constructed by momentum profile (ϕ, I), and we can rewrite

(4.3) in terms of τ ,

ωϕ = p∗ωX(τ) + ϕ(τ)
idu ∧ du
|u|2

, (4.5)

where ωX(τ) = ωX − τγ.

• Let B denote the endomorphism ω−1
X γ, ρX be the Ricci curvature form of X, define the following

functions on I ×X,

Q(τ) = det(I − τB),

R(τ) = tr[(I − τB)−1(ω−1
X ρX)].

Then, the Ricci curvature, Laplacian and scalar curvature have the following representation in terms

of momentum profile and notations above

• The Ricci form of ωϕ,

ρϕ = p∗ρX − i∂∂ logϕQ(τ) (4.6)

• Scalar curvature Sϕ,

Sϕ = R(τ)−∆ωX(τ)
logQ(τ)− 1

Q

∂2

∂τ2
(ϕQ)(τ) (4.7)

In the case of G-invariance, Q(τ) is a polynomial in τ and ∆X(τ) logQ(τ) = 0. Then, we can assume

that R(τ) = P (τ)/Q(τ) for some polynomial P in τ . Therefore, we reduce the problem of prescribed

scalar curvature to a second order ODE,

(ϕQ)′′ +QSϕ = P. (4.8)

4.2. Proof of Theorem B. In the following, we compute the explicit formula of the polynomials

Q(τ), P (τ) in terms of ωX and corresponding weight λ. Recall the formulas (2.14) and (3.9) and ωX ,

γ can be expressed in terms of dzα = ηα + iξα and dzα = ηα − iξα,

ωX =
i

2
Cα,S dzα ∧ dzα, γ = −i∂∂ log h =

i

4

∑
α∈D+

(λ, α) dzα ∧ dzα,

where S ∈ s such that Cα,S > 0. Then, the matrix B is diagonal, and Q(τ) has the following expression,

Q(τ) = det(I − τB) =
∏
α∈D+

[
1− τ (λ, α)

2Cα,S

]
,

Since the Ricci curvature ρX has the expression,

ρX =
i

4

∑
α∈D+

(α, δ) dzα ∧ dzα
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Then,

R(τ) = tr
[
(I − τB)−1 ω−1

X ρX
]

=
∑
α∈D+

(α, δ)

2Cα,S − τ(λ, α)
.

Hence, the ODE (4.8) can be rewrite as follows,(
ϕ
∏
α∈D+

(
2Cα,S − τ(λ, α)

))′′
+ Sϕ

∏
α∈D+

(
2Cα,S − τ(λ, α)

)
=
∏
α∈D+

(
2Cα,S − τ(λ, α)

) ∑
β∈D+

(β, δ)

2Cβ,S − τ(λ, β)
(4.9)

To determine the initial data of the ODE 4.9, we need to apply the following completeness proposition

in ([22], Proposition 2.2-2.3).

Proposition 4.1. (Hwang, Singer [22]) Let (I, ϕ) be a given momentum profile. Then the associated

fibre metric is complete if and only if the following conditions hold at each endpoint of I

• Finite Endpoints: ϕ satisfies one of the following conditions,

(i) ϕ vanishes to first order with |ϕ′| = 1; or

(ii) ϕ vanishes to order at least two.

• Infinite Endpoints: ϕ grows at most quadratically, i.e., ϕ ≤ Kτ2.

And the corresponding (L′, ω) behaves differently under different decay conditions provided in Propo-

sition 4.1. We conclude the corresponding relations in the table 1, where we consider finite ends at

τ = 0 and infinite ends as τ → ∞. The proof of these bundle behaviors directly follows from the

reconstruction of the data (L′, ω) by moment profile (ϕ, I), (a)–(c).

Type of Ends Decay (Growth) Fibre Range (t) Distance to
conditions Ends (ω)

finite ends ϕ = 0, ϕ′ = 1, [−∞, t0] finite
finite ends ϕ = ϕ′ = 0 (−∞, t0] infinite

infinite ends Cτ < ϕ ≤ Kτ2 [t0, tend), (tend <∞) infinite
infinite ends ϕ ≤ Cτ [t0,∞) infinite

Table 1. Behaviors of (L′, ω)

To fit in our cases, we define the momentum interval I = [0, b) with b ≤ +∞. The reason we take

the left ends to be 0 is to ensure ω|X = ωS . Assume that the corresponding scalar curvature of ωϕ is

constant. Combining with Proposition 4.1 and table 1, we shall solve the ODE with initial condition

ϕ(0) = 0, ϕ′(0) = 1 and Sϕ = 0. It is obvious that there is a unique solution ϕ satisfies (4.9) and the

initial condition.

4.2.1. The asymptotic behavior of scalar-flat Kähler metrics. In the scalar-flat cases, ϕ satisfies(
ϕ
∏
α∈D+

(
2Cα,S − τ(λ, α)

))′
=

∫ τ

0

∏
α∈D+

(
2Cα,S − t(λ, α)

) ∑
β∈D+

(β, δ)

2Cβ,S − t(λ, β)
dt+

∏
α∈D+

2Cα,S .

Assuming that λ is negative, ϕ is a strictly increasing function with initial value ϕ(0) = 0 with degree

one. According to table 1, ωϕ is well-defined over the whole bundle Lλ. By solving the ODE (4.9), the
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leading coefficient of the solution is given as follows,

iλ,X =
1

(n− 1)n

∑
α∈D+

(α, δ)

(α,−λ)
.

We call iλ,X the metric index of line bundle of (Lλ, X). Recall the Kähler metric associated to ϕ

is given as in (4.5). Let gX(τ), gX , gγ be the metric corresponding to ωX(τ) = ωX − τγ, ωX , −γ
respectively then

gϕ = gX + τgγ + 2ϕ(τ)η2
0 + 2ϕ(τ)µ2.

where µ and η0 are the dual of r∂/∂r and X0 respectively. Then, on each level set of L, M(τ), there

is a metric induced by gϕ, denoted by g(τ),

gM(τ) = gX + τgγ + 2ϕ(τ)η2
0.

Let Cλ be the cone associated with Lλ by collapsing the base manifold X. Then, we should determine

the radial function l of cone Cλ such that the scalar-flat Kähler metric is asymptotically conical to

Ai∂∂l2, where A is the constant coefficient and can be canceled by rescaling. Based on the discussion

in Section 4.1, we have the following relationship between τ and t,

t =

∫ τ(t)

τ0

dx

ϕ(x)
=

∫ τ(t)

τ0

dx

iλ,Xx
+
a1dx

x2
+ . . . = a0 +

1

iλ,X
log τ − a1

τ
+ . . .

where the second equality is just the Taylor expansion of 1/ϕ(x). Taking exponential and solve for τ ,

we can see that τ admits the following expansion at infinity,

τ = b1r
2iλ,X + b0 + b−1r

−2iλ,X + . . . (4.10)

Now, let l = riλ,X , then the model Kähler metric over Cλ is defined by the radial function l,

ωmod = i∂∂l2 = −iλ,X l2γ + 2i2λ,X l
2µ ∧ η0

Rewrite the model Kähler form in terms of metric,

gmod = iλ,X l
2gγ + 2i2λ,X l

2η2
0 + 2i2λ,X l

2µ2

= l2(iλ,Xgγ + 2i2λ,Xη
2
0) + 2dl2

And the metric can be represented by dl as follows,

gϕ = l2
( 1

l2
gX +

τ

l2
gγ +

2ϕ(τ)

l2
η2

0

)
+

2ϕ(τ)

i2λ,X l
2
dl2

= b1
[
l2(iλ,Xgγ + 2i2λ,Xη

2
0) + dl2

]
+O(l−2)

= b1gmod +O(l−2)

Therefore, all scalar-flat Kähler metrics on Lλ are asymptotically conical to (Cλ, gmod), which complete

the proof of Theorem B.

In general, gϕ decays to gmod by order −2, which can be improved in some special cases. For instance,

let the base metric ωX be equal to the curvature form γ, then, the similar calculation shows that the

metric gϕ with scalar-flat curvature decays to order −2n+ 2.
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