Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-08T04:15:09.877Z Has data issue: false hasContentIssue false

Variable Dimensionality in The Uranium Fluoride / 2-Methyl-Piperazine System: Syntheses and Structures of UFO-5, 6, and 7; Zero, One, and Two Dimensional Materials with Unprecedented Topologies

Published online by Cambridge University Press:  16 February 2011

P.S. Halasyamani
Affiliation:
Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, UK OX1 3QR
R.J. Francis
Affiliation:
Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, UK OX1 3QR
J.S. Bee
Affiliation:
Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, UK OX1 3QR
D. O'Hare
Affiliation:
Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, UK OX1 3QR
Get access

Abstract

The hydrothermal syntheses and structures of a new series of organically templated UIV materials are presented. The materials, UFO-5 (C5NH14)2(H3O)U2F13, UFO-6 (C5N2H14)2U2F12H2O and UFO-7 (C5N2H14)(H3O)U2F11, exhibit unprecedented topologies as well as represent 0-D (UFO-5), 1-D (UFO-6), and 2-D (UFO-7) phases. By systematic experimentation and utilizing a composition prism, wherein the reagents including H20 are graphically depicted. we have determined stability regions in which UFO-5, 6, and 7 can be synthesized as phase pure products. In addition, through pH measurements we observe a direct relationship between the acidity of the reaction and the dimensionality of the product. We suggest that the increased acidity facilitates condensation of the molecular uranium units in UFO-5. to produce the 1-D UFO-6 and at higher acidity the 2-D UFO-7.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Davis, M. E.: Lobo, R. F. Chem. Mater. 1992, 4, 756768.Google Scholar
(2) Flanigen, E. M.; Patton, R. L.; Wilson, S. T. Stud. Surf Sci. Catal. 1988, 37, 1327.Google Scholar
(3) Haushalter, R. C.; Mundi, L. A. Chem. Mater. 1992, 4, 31.Google Scholar
(4) Venuto, P. B. Microporous Mater. 1994, 2, 297411.Google Scholar
(5) Clearfield, A. Chem. Rev. 1988, 88, 125148.Google Scholar
(6) Breck, D. W. Zeolite Molecule Sieves: Structure, Chemistry and Use; Wiley and Sons: London. 1974.Google Scholar
(7) Ferey, G. J. Fluor. Chem. 1995, 72, 187193.Google Scholar
(8) Gier, T. E.: Stucky, G. D. Nature 1991, 349, 508510.Google Scholar
(9) Harrison, W. T. A.; Broach, R. W.; Bedard, R. A.; Gier, T. E.: Bu, X.; Stucky, G. D. Chem. Mater. 1996, 8, 691700.Google Scholar
(10) Khan, M. I.: Meyer, L. M.; Haushalter, R. C.; Schweitzer, A. L.; Zubieta, J.; Dye, J. L. Chem. Mater. 1996, 8, 4353.Google Scholar
(11) Debord, J. R. D.; Haushalter, R. C.; Zubieta, J. J. Solid State Chem. 1996, 125, 270273.Google Scholar
(12) Ayyappan, S.: Cheetham, A. K.; Natarajan, S.; Rao, C. N. R. J. Solid State Chem. 1998, 139. 207210.Google Scholar
(13) Hutchings, G. J.; Heneghan, C. S.; Hudson, I. D.; Taylor, S. H. Nature 1996, 384, 341343.Google Scholar
(14) Francis, R. J.; Drewitt, M. J.; Halasyamani, P. S.; Ranganathachar, C.; O'Hare, D.; Clegg, W.: Teat, S. J. Chem. Commun. 1998, 279.Google Scholar
(15) Francis, R. J.; Halasyamani, P. S.; O'Hare, D. Angew. Chem. hit. Ed. 1998, 37, 22142217.Google Scholar
(16) Halasyamani, P. S.: Willis, M. J.; Lundquist, P. M.; Stern, C. L.; Wong, G. K.; Poeppelmeier, K. R., Inorg. Chem. 1996, 35, 13671371.Google Scholar
(17) Harrison, W. T. A.; Dussack, L. L.; Jacobson, A. J. J. Solid State Cheni. 1996, 125, 234239.Google Scholar
(18) Norquist, A. J.: Heier, K. R.; Stern, C. L.; Poeppelmneier, K. R. Inorg. Chem. 1998, In Press.Google Scholar
(19) Francis, R. J.; Halasyamani, P. S.; Bee, J. S.: O'Hare, D. I Am. Chem. Soc. 1998, In Press. Google Scholar