Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T10:17:17.764Z Has data issue: false hasContentIssue false

16 - Environmental controls on sediment composition and particle fluxes over the Antarctic continental shelf

from Part IV - Solute and sedimentary fluxes in sub-Antarctic and Antarctic environments

Published online by Cambridge University Press:  05 July 2016

Achim A. Beylich
Affiliation:
Geological Survey of Norway
John C. Dixon
Affiliation:
University of Arkansas
Zbigniew Zwoliński
Affiliation:
Adam Mickiewicz University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Accornero, A., Manno, C., Arrigo, K. R., Martini, A., and Tucci, S. (2003). The vertical flux of particulate matter in the polynya of Terra Nova Bay. Part I. Chemical constituents. Antarctic Science, 15, 119132. doi:10.1017/S0954102003001111CrossRefGoogle Scholar
Anderson, J. B. (1991). The Antarctic continental shelf: results from marine geological and geophysical investigations. In Tingey, R. J., ed., The Geology of Antarctica, 285334. Malta: Clarendon Press.Google Scholar
Anderson, J. B. (1999). Antarctic Marine Geology. London: Cambridge University Press, 289 pp.CrossRefGoogle Scholar
Anderson, J. B., Kurtz, D., Weaver, F., and Weaver, M. (1982). Sedimentation on the West Antarctic Continental Margin. In Craddock, C., ed., Antarctic Geoscience, 10031012. Madison: The University of Wisconsin Press.Google Scholar
Anderson, J. B., Brake, C., Domack, E. W., Myers, N., and Singer, J. (1983). Sedimentary dynamics on the Antarctic continental shelf. In Oliver, R. L., James, P. R., and Jago, J. B., eds., Antarctic Earth Science-Proceedings of the Fourth International Symposium on Antarctic Earth Sciences, 387389, Canberra: Australian Academy of Science / Cambridge University Press.Google Scholar
Anderson, J. B., Brake, C. F., and Myers, N. C. (1984). Sedimentation on the Ross Sea continental shelf, Antarctica. Marine Geology, 57, 295333.CrossRefGoogle Scholar
Anderson, J. B., and Smith, M. J. (1989). Formation of modern sand-rich facies by marine currents on the Antarctic continental shelf. GCSSEPM Foundation Seventh Annual Research Conference Proceedings, 41–52.Google Scholar
Anderson, J. B., Bartek, L. R., and Thomas, M. A. (1991). Seismic and sedimentological record of glacial events on the Antarctic Peninsula shelf. In Thomson, M. R. A., Crame, J. A., and Thomson, J. W., eds., Geological Evolution of Antarctica, 687691, Proceedings of the Fifth International Symposium on Antarctic Earth Sciences. Cambridge, UK: Cambridge University Press.Google Scholar
Anderson, J. B., and Thomas, M. A. (1991). Marine ice-sheet decoupling as a mechanism for rapid, episodic sea-level change: the record of such events and their influence on sedimentation. Sedimentary Geology, 70, 87104.CrossRefGoogle Scholar
Arrigo, K. R., Mock, T., and Lizotte, M. P. (2003). Primary Producers and Sea Ice. In Thomas, D. N. and Dieckmann, G. S., eds., Sea Ice, 283326. Chichester: Blackwell Publishing Ltd.Google Scholar
Arrigo, K. R., and Thomas, D. N. (2004). Large scale importance of sea ice biology in the Southern Ocean. Antarctic Science, 16, 471486. doi:10.1017/S0954102004002263CrossRefGoogle Scholar
Arrigo, K. R., van Dijken, G. L., and Bushinsky, S. (2008). Primary production in the Southern Ocean, 1997–2006. Journal of Geophysical Research, 113, C08004, doi:10.1029/2007JC004551.CrossRefGoogle Scholar
Ashley, G. M., and Smith, N. D. (2000). Marine sedimentation at a calving glacier margin. Geological Society of America Bulletin, 112, 657667.2.0.CO;2>CrossRefGoogle Scholar
Bathmann, U., Fischer, G., Miller, P. J., and Gerdes, D. (1991). Short-term variations in particulate matter sedimentation off Kapp Norvegia, Weddell Sea, Antarctica: relation to water mass advection, ice cover, plankton biomass and feeding activity. Polar Biology, 11, 185195.CrossRefGoogle Scholar
Beaulieu, S. E. (2002). Accumulation and fate of phytodetritus on the sea floor. In Gibson, R. N. and Barnes, M., eds., Oceanography and Marine Biology: An Annual Review, 40, 171–232. London: Taylor & Francis.Google Scholar
Buffen, A., Leventer, A., Rubin, A., and Hutchins, T. (2007). Diatom assemblages in surface sediments of the northwestern Weddell Sea, Antarctic Peninsula. Marine Micropaleontology, 62, 730.CrossRefGoogle Scholar
Cavalieri, D. J., and Parkinson, C. L. (2008). Antarctic sea ice variability and trends, 1979–2006. Journal of Geophysical Research, 113, C07004, doi:10.1029/2007JC004564.CrossRefGoogle Scholar
Collier, R., Dymond, J., Honjo, S., Manganini, S., Francois, R., and Dunbar, R. (2000). The vertical flux of biogenic and lithogenic material in the Ross Sea: moored sediment trap observations 1996–1998. Deep-Sea Research II, 47, 34913520.CrossRefGoogle Scholar
Cook, A. J., Fox, A. J., Vaughan, D. G., and Ferrigno, J. G. (2005). Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308, 541544.CrossRefGoogle ScholarPubMed
Dayton, P. K., and Oliver, J. S. (1977). Antarctic soft-bottom benthos in oligotrophic and eutrophic environments. Science, 197, 5558.CrossRefGoogle ScholarPubMed
DeMaster, D. J., Nelson, T. M., Harden, S. L., and Nittrouer, C. A. (1991). The cycling and accumulation of biogenic silica and organic carbon in Antarctic deep-sea and continental margin environments. Marine Chemistry, 35, 489502.CrossRefGoogle Scholar
DeMaster, D. J., Dunbar, R. B., Gordon, L. I., Leventer, A. R., Morrison, J. M., Nelson, D. M., Nittrouer, C. A., and Smith, W. A. Jr. (1992). Cycling and accumulation of biogenic silica and organic matter in high latitude environments: The Ross Sea. Oceanography, 5, 146153.CrossRefGoogle Scholar
DeMaster, D. J., Ragueneau, O., and Nittrouer, C. A. (1996). Preservation efficiencies and accumulation rates for biogenic silica and organic C, N, and P in high-latitude sediments: The Ross Sea. Journal of Geophysical Research, 101, 18,50118,518.CrossRefGoogle Scholar
Diekmann, B., and Kuhn, G. (1999). Provenance and dispersal of glacial–marine surface sediments in the Weddell Sea and adjoining areas, Antarctica: ice-rafting versus current transport. Marine Geology, 158, 209231.CrossRefGoogle Scholar
Dierssen, H. M., Zimmerman, R. C., Drake, L. A., and Burdige, D. J. (2009). Potential export of unattached benthic macroalgae to the deep sea through wind-driven Langmuir circulation. Geophysical Research Letters, 36, L04602, doi:10.1029/2008GL036188.CrossRefGoogle Scholar
Domack, E., Duran, D., Leventer, A., Ishman, S., Doane, S., McCallum, S., Amblas, D., Ring, J., Gilbert, R., and Prentice, M. (2005). Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature, 436, 681685.CrossRefGoogle Scholar
Dragon, A.-C., Houssais, M.-N., Herbaut, C., and Charrassin, J.-B. (2014). A note on the intraseasonal variability in an Antarctic polynia: prior to and after the Mertz Glacier calving. Journal of Marine Systems, 130, 4655.CrossRefGoogle Scholar
Dunbar, R. B., Leventer, A., and Mucciarone, D. A. (1998). Water column sediment fluxes in the Ross Sea, Antarctica: atmospheric and sea ice forcing. Journal of Geophysical Research, 103, 30,74130,759.CrossRefGoogle Scholar
Dunbar, R. B., Leventer, A., and Stockton, W. L. (1989). Biogenic sedimentation in McMurdo Sound, Antarctica. Marine Geology, 85, 155179.CrossRefGoogle Scholar
Ebner, L., Heinemann, G., Haid, V., and Timmermann, R. (2014). Katabatic winds and polynya dynamics at Coats Land, Antarctica. Antarctic Science 26, 309326.CrossRefGoogle Scholar
Eicken, H. (1992). The role of sea ice in structuring Antarctic ecosystems. Polar Biology, 12, 313.CrossRefGoogle Scholar
Elverhøi, A., and Roaldset, E. (1983). Glaciomarine sediments and suspended particulate matter, Weddell Sea Shelf, Antarctica. Polar Research, 1, 121.CrossRefGoogle Scholar
Estrada, M., and Berdalet, E. (1997). Phytoplankton in a turbulent world. Scientia Marina, 61 (Supl. 1), 125140.Google Scholar
Fahl, K., and Kattner, G. (1993). Lipid Content and fatty acid composition of algal communities in sea-ice and water from the Weddell Sea (Antarctica). Polar Biology, 13, 405409.CrossRefGoogle Scholar
Garrison, D. L., Close, A. L., and Reimnltz, E. (1989). Algae concentrated by frazil ice: evidence from laboratory experiments and field measurements. Antarctic Science 1, 313316.CrossRefGoogle Scholar
Gili, J. M., Isla, E., Rodriguez, E., Rodriguez, y Baena, A., Rossi, S., Teixidó, N., Vendrell, B., Gerdes, D., and Arntz, W. E. (2005). Bentho-pelagic coupling under polar spring conditions. Reports on Polar and Marine Research, 503, 4359.Google Scholar
Gleitz, M., Bathmann, U. V., and Lochte, K. (1994). Build-up and decline of summer phytoplankton biomass in the eastern Weddell Sea, Antarctica. Polar Biology, 14, 413422.CrossRefGoogle Scholar
Griffith, T. W., and Anderson, J. B. (1989). Climatic control of sedimentation in bays and fjords of the northern Antarctic Peninsula. Marine Geology, 85, 181204.CrossRefGoogle Scholar
Gutt, J., and Starmans, A. (2001). Quantification of iceberg impact and benthic recolonisation patterns in the Weddell Sea (Antarctica). Polar Biology, 24, 615619.CrossRefGoogle Scholar
Gutt, J., Starmans, A., and Dieckmann, G. (1998). Phytodetritus deposited on the Antarctic shelf and upper slope: its relevance for the benthic system. Journal of Marine Systems, 17, 435444.CrossRefGoogle Scholar
Gutt, J., Barratt, I., Domack, E., d’Udekem d’Acoz, C., Dimmler, W., Grémare, A., Heilmayer, O., Isla, E., Janussen, D., Jorgensen, E., Kock, K-H., Lehnert, L.S., López-González, P., Langner, S., Linse, K., Manjón-Cabeza, M.E., Meißner, M., Montiel, A., Raes, M., Robert, H., Rose, A., Sañé Schepisi, E., Saucède, T., Scheidat, M., Schenke, H-W., Seiler, J., and Smith, C. (2011). Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep-Sea Research II, 58, 7483.CrossRefGoogle Scholar
Hall, A., and Visbeck, M. (2002). Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the Annular Mode. Journal of Climate, 15, 30433057.2.0.CO;2>CrossRefGoogle Scholar
Hemer, M., and Harris, P. T. (2004). Sediments collected from beneath the Amery Ice Shelf, East Antarctica, document sub-ice-shelf circulation of water and sediments throughout the Holocene. (Forum for Research into Ice Shelf Processes (FRISP) Report No. 15Google Scholar
Holland, P. R., and Kwok, R. (2012). Wind-driven trends in Antarctic sea-ice drift. Nature Geoscience, 5, 872875.CrossRefGoogle Scholar
Honjo, S., Francois, R., Manganini, S., Dymond, J., and Collier, R. (2000). Particle fluxes to the interior of the Southern Ocean in the Western Pacific sector along 170°W. Deep-Sea Research II, 47, 35213548.CrossRefGoogle Scholar
Ingole, B. (2008). Characteristics of macrobenthic assemblage from sub-littoral sediment off the Lazarev Sea, East Antarctica. Indian Journal of Marine Sciences, 37, 439445.Google Scholar
Isla, E., Gerdes, D., Palanques, A., and Arntz, W. E. (2009). Downward particle fluxes, wind and a phytoplankton bloom over a polar continental shelf: a stormy impulse for the biological pump. Marine Geology, 259, 5972.CrossRefGoogle Scholar
Isla, E., Gerdes, D., Palanques, A., Gili, J. M., and Arntz, W. (2006a). Particle fluxes and tides near the continental ice edge on the eastern Weddell Sea shelf. Deep-Sea Research II, 53, 866874.CrossRefGoogle Scholar
Isla, E., Gerdes, D., Rossi, S., Fiorillo, I., Sañé, E., Gili, J.-M., and Arntz, W. E. (2011). Biochemical characteristics of surface sediments on the eastern Weddell Sea continental shelf, Antarctica: is there any evidence of seasonal patterns? Polar Biology, 34, 11251133.CrossRefGoogle Scholar
Isla, E., Masqué, P., Palanques, A., Guillén, J., Puig, P., and Sanchez-Cabeza, J. A. (2004). Sedimentation of biogenic constituents during the last century in western Bransfield and Gerlache straits, Antarctica: a relation to currents, primary production, and sea floor relief. Marine Geology, 209, 265277.CrossRefGoogle Scholar
Isla, E., Palanques, A., Alvà, V., Puig, P., and Guillén, J. (2001). Fluxes and composition of settling particles during summer in an Antarctic shallow environment: Johnson's Dock (Livingston Island, South Shetlands). Polar Biology, 24, 9, 670676.CrossRefGoogle Scholar
Isla, E., Rossi, S., Palanques, A., Gili, J. M., Gerdes, D., and Arntz, W. (2006b). Biochemical composition of marine sediment from the eastern Weddell Sea (Antarctica): high nutritive value in a high benthic-biomass environment. Journal of Marine Systems, 60, 255267.CrossRefGoogle Scholar
Isla, E., DeMaster, D. J., and Gerdes, D. (unpublished) Organic matter sedimentary patterns along the eastern Weddell Sea continental shelf.Google Scholar
Isla, E., DeMaster, D. J., Sañé, E., and Grémare, A. (2014). Seabed characteristics under the extinct A and B sections of the Larsen ice shelf: a slow awakening. XXXIII SCAR Open Science Conference, Auckland, New Zealand.Google Scholar
Jacobs, S. S. (1989). Marine controls on modern sedimentation on the Antarctic continental shelf. Marine Geology, 85, 121153.CrossRefGoogle Scholar
Kim, D., Kim, D.-Y., Park, J.-S., and Kim, Y.-J. (2005). Interannual variation of particle fluxes in the eastern Bransfield Strait, Antarctica: a response to the sea ice distribution. Deep-Sea Research I, 52, 21402155.CrossRefGoogle Scholar
Kopczynska, E. (1992). Dominance of microflagellates over diatoms in the Antarctic areas of deep vertical mixing and krill concentrations. Journal of Plankton Research, 14, 10311054.CrossRefGoogle Scholar
Langone, L., Frignani, M., Labbrozzi, L., and Ravaioli, M. (1998). Present-day biosiliceous sedimentation in the northwestern Ross Sea, Antarctica. Journal of Marine Systems, 17, 459470.CrossRefGoogle Scholar
Langone, L., Frignani, M., Ravaioli, M., and Bianchi, C. (2000). Particle fluxes and biogeochemical processes in an area influenced by seasonal retreat of the ice margin (northwestern Ross Sea, Antarctica). Journal of Marine Systems, 27, 221234.CrossRefGoogle Scholar
Littlepage, J. L., and Pearse, J. S. (1962). Biological and oceanographic observations under an Antarctic Ice Shelf. Science, 137, 679681.CrossRefGoogle ScholarPubMed
Lizotte, M. P. (2001). The contributions of sea ice algae to Antarctic marine primary production. American Zoologist, 41, 5773.Google Scholar
Margalef, R. (1978). Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta, 1, 493509.Google Scholar
Massom, R. A., Stammerjohn, S. E., Lefebvre, W., Harangozo, S. A., Adams, N., Scambos, T. A., Pook, M. J., and Fowler, C. (2008). West Antarctic Peninsula sea ice in 2005: Extreme ice compaction and ice edge retreat due to strong anomaly with respect to climate. Journal of Geophysical Research, 113, C02S20, doi:10.1029/2007JC004239.CrossRefGoogle Scholar
Masson, R. A., Harris, P. T., Michael, K. J., and Potter, M. J. (1998). The distribution and formative processes of latent-heat polynyas in East Antarctica. Annals of Glaciology, 27, 420426.CrossRefGoogle Scholar
Miles, B. W. J., Stokes, C. R., Vieli, A., and Cox, N. J. (2013). Rapid, climate-driven changes in outlet glaciers on the Pacific coast of East Antarctica. Nature, 500, 563567.CrossRefGoogle ScholarPubMed
Mock, T., and Kroon, B. M. A. (2002). Photosynthetic energy conversion under extreme conditions – I: important role of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatoms. Phytochemistry, 61, 4151.CrossRefGoogle ScholarPubMed
Montes-Hugo, M., Doney, S. C., Ducklow, H. W., Fraser, W., Martinson, D., Stammerjohn, S. E., and Schofield, O. (2009). Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science, 323, 14701473.CrossRefGoogle ScholarPubMed
Montes-Hugo, M. A., and Yuan, X. (2012). Climate patterns and phytoplankton dynamics in Antarctic latent heat polynyas. Journal of Geophysical Research, 117, C05031, doi:10.1029/2010JC006597.CrossRefGoogle Scholar
Palanques, A., Isla, E., Puig, P., Sanchez-Cabeza, J. A., and Masqué, P. (2002). Annual evolution of downward particle fluxes in the Western Bransfield Strait (Antarctica) during the FRUELA experiment. Deep-Sea Research II, 49, 903920.CrossRefGoogle Scholar
Peck, L. S., Barnes, D. K. A., Cook, A. J., Fleming, A. H., and Clarke, A. (2010). Negative feedback in the cold: ice retreat produces new carbon sinks in Antarctica. Global Change Biology, 16, 26142623, doi: 10.1111/j.1365–2486.2009.02071.xCrossRefGoogle Scholar
Peisong, Y., Haisheng, Z., Chuanyu, H., and Bing, L. (2012). Using biomarkers in sediments as indicators to rebuild the phytoplankton community in Prydz Bay, Antarctica, 24, 143150.Google Scholar
Pusceddu, A., Cattaneo-Vietti, R., Albertelli, G., and Fabiano, M. (1999). Origin, biochemical composition and vertical flux of particulate organic matter under the pack ice in Terra Nova Bay (Ross Sea, Antarctica) during late summer 1995. Polar Biology, 22, 124132.CrossRefGoogle Scholar
Pusceddu, A., Dell’Anno, A., and Fabiano, M. (2000). Organic matter composition in coastal sediments at Terra Nova Bay (Ross Sea) during summer 1995. Polar Biology, 23, 288293.CrossRefGoogle Scholar
Rahmstorf, S. (2002). Ocean circulation and climate during the past 120,000 years. Nature, 419, 207214.CrossRefGoogle ScholarPubMed
Ramos, C. S., Parrish, C. C., Quibuyen, T. A. O., and Abrajano, T. A. (2003). Molecular and carbon isotopic variations in lipids in rapidly settling particles during a spring phytoplankton bloom. Organic Geochemistry, 34, 195207.CrossRefGoogle Scholar
Riddle, M. J., Craven, M., Goldsworthy, P. M., and Carsey, F. (2007). A diverse benthic assemblage 100 km from open water under the Amery Ice Shelf, Antarctica. Paleoceanography, 22, PA1204, doi:10.1029/2006PA001327.CrossRefGoogle Scholar
Riebesell, U., Schloss, I., and Smetacek, V. (1991). Aggregation of algae released from melting sea ice: implications for seeding and sedimentation. Polar Biology, 11, 239248.CrossRefGoogle Scholar
Robinson, N. J., and Williams, M. J. M. (2012). Iceberg induced changes to polynya operation and regional oceanography in the southern Ross Sea, Antarctica, from in situ observations. Antarctic Science, 24, 514526.CrossRefGoogle Scholar
Rossi, S., Isla, E., Martínez-García, A., Moraleda, N., Gili, J.-M., Rosell-Melé, A., Arntz, W. E., and Gerdes, D. (2013). Transfer of seston lipids during a flagellate bloom from the surface to the benthic community in the Weddell Sea. Scientia Marina, 77, 397407.CrossRefGoogle Scholar
Ruiz, J., Macías, D., and Peters, F. (2004). Turbulence increases the average settling velocity of phytoplankton cells. Proceedings of the National Academy of Sciences, 101, 1772017724.CrossRefGoogle ScholarPubMed
Salonen, K., Sarvala, J., Hakala, I., and Vilianen, M.-L. (1976). The relation of energy and organic carbon in aquatic invertebrates. Limnology and Oceanography, 21, 724730.CrossRefGoogle Scholar
Sañé, E., Isla, E., Bárcena, M. A., and DeMaster, D. (2013). A shift in the biogenic silica of sediment in the Larsen B continental shelf, off the eastern Antarctic Peninsula, resulting from climate change. Public Library of Science One, 8 (1): e52632. doi:10.1371/journal.pone.0052632.Google Scholar
Sañé, E., Isla, E., Gerdes, D., Montiel, A., and Gili, J.-M. (2012). Benthic macrofauna assemblages and biochemical properties of sediments in two Antarctic regions differently affected by climate change. Continental Shelf Research, 35, 5363.CrossRefGoogle Scholar
Sañé, E., Isla, E., Grémare, A., and Escoubeyrou, K. (2013). Utility of amino acids as biomarkers in polar marine sediments: a study on the continental shelf of Larsen region, Eastern Antarctic Peninsula. Polar Biology, 36, 16711680.CrossRefGoogle Scholar
Sañé, E., Isla, E., Grémare, A., Gutt, J., Vétion, G., and DeMaster, D. J. (2011). Pigments in sediments beneath a recently collapsed ice shelves: the case of Larsen A and B shelves, Antarctic Peninsula. Journal of Sea Research, 65, 94102CrossRefGoogle Scholar
Sañé, E., Isla, E., Pruski, A. M., Bárcena, M. A., Vétion, G., and DeMaster, D. J. (2011). Diatom valve distribution and sedimentary fatty acid composition in Larsen Bay, Eastern Antarctic Peninsula. Continental Shelf Research, 31, 11611168.CrossRefGoogle Scholar
Schnack-Schiel, S. B., and Isla, E. (2005). The role of zooplankton in the pelagic-benthic coupling of the Southern Ocean. Scientia Marina, 69 (II), 3955.CrossRefGoogle Scholar
Smith, K. L. Jr., Sherman, A. D., Shaw, T. J., Murray, A. E., Vernet, M., and Cefarelli, A. O. (2011). Carbon export associated with free-drifting icebergs in the Southern Ocean. Deep-Sea Research II, 58, 14851496.CrossRefGoogle Scholar
Smith, K. L Jr., Robison, B. H., Helly, J. J., Kaufmann, R. S., Ruhl, H. A., Shaw, T. J., Twining, B. S., and Vernet, M. (2007). Free-drifting icebergs: hot spots of chemical and biological enrichment in the Weddell Sea. Science, 317, 478482.CrossRefGoogle ScholarPubMed
Smith, W. O. Jr., and Comiso, J. C. (2008). Influence of sea ice on primary production in the Southern Ocean: A satellite perspective. Journal of Geophysical Research, 113, C05S93, doi:10.1029/2007JC004251.CrossRefGoogle Scholar
Smith, C. R., Mincks, S., and DeMaster, D. J. (2008b). The FOODBANCS project: introduction and sinking fluxes of organic carbon, chlorophyll-a and phytodetritus on the western Antarctic Peninsula continental shelf. Deep-Sea Research II, 55, 24042414.CrossRefGoogle Scholar
Smith, R. C., Martinson, D. G., Stammerjohn, S. E., Iannuzzi, R. A., and Ireson, K. (2008a). Bellingshausen and western Antarctic Peninsula region: Pigment biomass and sea-ice spatial/temporal distributions and interannual variability. Deep-Sea Research II, 55, 19491963.CrossRefGoogle Scholar
Tamura, T., Ohshima, K. I., and Nihashi, S. (2008). Mapping of sea ice production for Antarctic coastal polynyas. Geophysical Research Letters, 35, L07606, doi:10.1029/2007GL032903.CrossRefGoogle Scholar
Thatje, S., Hillenbrand, C.-D., Mackensen, A., and Larter, R. (2008). Life hung by a thread: endurance of Antarctic fauna in glacial periods. Ecology, 89, 682692.CrossRefGoogle Scholar
Thomas, D., and Dieckmann, G. (2002). Antarctic sea ice – a habitat for extremophiles. Science, 295, 641644.CrossRefGoogle ScholarPubMed
Villafañe, V. E., Helbling, E. W., and Holm-Hansen, O. (1995). Spatial and temporal variability of phytoplankton biomass and taxonomic composition around Elephant Island, Antarctica, during the summers of 1990–1993. Marine Biology, 123, 677686.CrossRefGoogle Scholar
Wefer, G., and Fischer, G. (1991). Annual primary production and export flux in the Southern Ocean from sediment trap data. Marine Chemistry, 35, 597613.CrossRefGoogle Scholar
Wefer, G., Fischer, G., Füetterer, D., and Gersonde, R. (1988). Seasonal particle flux in the Bransfield Strait, Antarctica. Deep-Sea Research, 35, 891898.CrossRefGoogle Scholar
Wefer, G., Fischer, G., Füetterer, D., Gersonde, R., Honjo, S., and Ostermann, D. (1990) Particle sedimentation and productivity in Antarctic waters of the Atlantic sector. In Bleil, U., Thiede, J., eds., Geological History of the Polar Oceans: Arctic versus Antarctic, 363379. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Wing, S. R., McLeod, R. J., Leichter, J. J., Frew, R. D., and Lamare, M. D. (2012). Sea ice microbial production supports Ross Sea benthic communities: influence of a small but stable subsidy. Ecology, 93, 314323.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×