Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T12:16:54.242Z Has data issue: false hasContentIssue false

11 - Lattice gauge models: a brief introduction

Published online by Cambridge University Press:  24 November 2021

David Landau
Affiliation:
University of Georgia
Kurt Binder
Affiliation:
Johannes Gutenberg Universität Mainz, Germany
Get access

Summary

Lattice gauge theories have played an important role in the theoretical description of phenomena in particle physics, and Monte Carlo methods have proven to be very effective in their study. In the lattice gauge approach a field theory is defined on a lattice by replacing partial derivatives in the Lagrangian by finite difference operators. For physical systems a quantum field theory on a four-dimensional space–time lattice is used, but simpler models in lower dimensions have also been studied in the hope of gaining some understanding of more complicated models as well as for the development of computational techniques. The present chapter is not at all intended to give a thorough treatment, but rather to convey the flavor of the subject to the non-expert.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrou, C., de Forcrand, P., and Lucini, B. (2006), Phys. Rev. Lett. 97, 222002.CrossRefGoogle Scholar
Aoki, S., Ishikawa, K.-I., Ishizuka, N., Izubuchi, T., Kadoh, D., Kanaya, K., Kuramashi, Y., Namekawa, Y., Okawa, M., Taniguchi, Y., Ukawa, A., Ukita, N., Yamazaki, T., and Yoshié, T. (PACS-CS Collaboration) (2010), Phys. Rev. D 81, 074503.CrossRefGoogle Scholar
Binder, K. (1982), Phys. Rev. A 25, 1699.CrossRefGoogle Scholar
Bock, W., Evertz, H. G., Jersak, J., Landau, D. P., Neuhaus, T., and Xu, J. L. (1990), Phys. Rev. D 41, 2573.CrossRefGoogle Scholar
Borsanyi, Sz., Durr, S., Fodor, Z., Hoelbling, C., Katz, S. D., Krieg, S., Lellouch, L., Lippert, T., Portelli, A., Szabo, K. K., and Toth, B. C. (2015), Science 347, 1452.Google Scholar
Butler, F., Chen, H., Sexton, J., Vaccarino, A., and Weingarten, D. (1993), Phys. Rev. Lett. 70, 7849.Google Scholar
Creutz, M., Jacobs, L., and Rebbi, C. (1979), Phys. Rev. Lett. 42, 1390.CrossRefGoogle Scholar
Creutz, M., Jacobs, L., and Rebbi, C. (1983), Phys. Rep. 93, 207.Google Scholar
Davies, C. T. H., Follana, E., Gray, A., Lepage, G. P., Mason, Q., Nobes, M., Shigemitsu, J., Aubin, C., Bernard, C., Burch, T., DeTar, C., Gottlieb, S., Gregory, E. B., Heller, U. M., Hetrick, J. E., Osborn, J., Sugar, R., Toussaint, D., Di Pierro, M., El-Khadra, A., Kronfeld, A. S., Mackenzie, P. B., Menscher, D., and Simone, J. (2004), Phys. Rev. Lett. 92, 022001.CrossRefGoogle Scholar
DeGrand, T. (2004), Int. J. Mod. Phys. A 19, 1337.CrossRefGoogle Scholar
Dürr, S., Fodor, Z., Frison, J., Hoelbing, C., Hoffmann, R., Katz, S. D., Krieg, S., Kurth, T., Lellouch, L., Lippert, T., Szabo, K. K., and Vulvert, G. (2008), Science 32(2), 1224.Google Scholar
Feynman, R. P. and Hibbs, A. R. (1965), Quantum Mechanics and Path Integrals (McGraw-Hill, New York).Google Scholar
Fodor, Z. (2006), Nucl. Phys. B (Proc. Suppl.) 153, 98.CrossRefGoogle Scholar
Fodor, Z. and Hoelbling, C. (2012), Rev. Mod. Phys. 84, 449.CrossRefGoogle Scholar
Fodor, Z. and Katz, S. D. (2002), JHEP 0203, 014.Google Scholar
Fodor, Z. and Katz, S. D. (2004), JHEP 0404, 050.CrossRefGoogle Scholar
Herrmann, H. J. and Karsch, F. (1991), Fermion Algorithms (World Scientific, Singapore).Google Scholar
Iwasaki, Y., Kanaya, K., Karkkainen, L., Rummukainen, K., and Yoshie, T. (1994), Phys. Rev. D 49, 3540.CrossRefGoogle Scholar
Jersák, J., Lang, C. B., and Neuhaus, T. (1996a), Phys. Rev. Lett. 77, 1933.CrossRefGoogle Scholar
Jersák, J., Lang, C. B., and Neuhaus, T. (1996b), Phys. Rev. D 54, 6909.CrossRefGoogle Scholar
Karsch, F. (1995), Nucl. Phys. A 590, 367.Google Scholar
Kogut, J. B. (1983), Rev. Mod. Phys. 55, 775.Google Scholar
Langfeld, K., Lucini, B., and Rago, A. (2012), Phys. Rev. Lett. 109, 111601.CrossRefGoogle Scholar
Luu, T., Soltz, R., and Vranos, P. (2007), Comput. Sci. Eng. 9, 55.Google Scholar
Meyer-Ortmanns, H. (1996), Rev. Mod. Phys. 68, 473.CrossRefGoogle Scholar
Montvay, I. and Münster, G. (1994), Quantum Fields on the Lattice (Cambridge University Press, Cambridge).Google Scholar
Philipsen, O. and Pinke, C. (2014), Phys. Rev. D 89, 094504.CrossRefGoogle Scholar
Pisarski, R. D. and Wilczek, F. (1984), Phys. Rev. D 29, 338.Google Scholar
Wansleben, S. and Zittartz, J. (1987), Nuclear Phys. B 280, 108.CrossRefGoogle Scholar
Wilson, K. (1974), Phys. Rev. D 10, 2455.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×