Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T16:39:25.740Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Frank Oldfield
Affiliation:
University of Liverpool
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Environmental Change
Key Issues and Alternative Perspectives
, pp. 296 - 345
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achard, F., Eva, H. D., Stibig, H.-J., et al. (2002). Determination of deforestation rates of the world's humid tropical forests. Science 297, 999–1002.CrossRefGoogle ScholarPubMed
Achard, F., Eva, H. D., Mayaux, P., Stibig, H.-J. and Delward, A. (2004). Improved estimates of net carbon emissions from land cover change in the tropics from the 1990s. Global Biogeochemical Cycles 18, GB2008.CrossRefGoogle Scholar
Ackert, R. P. (2003). An ice sheet remembers. Science 299, 57–8.CrossRefGoogle ScholarPubMed
Adams, J. B., Mann, M. E. and Amman, C. M. (2003). Proxy evidence for an El Niño-like response to volcanic forcing. Nature 426, 274–8.CrossRefGoogle Scholar
Adams, J. M. and Piovesan, G. (2002). Uncertainties in the role of land vegetation in the carbon cycle. Chemosphere 49, 805–19.CrossRefGoogle ScholarPubMed
Adelson, J. M. and Helz, G. R. (2001). Reconstructing the rise of recent coastal anoxia: molybdenum in Chesapeake Bay sediments. Geochimica & Cosmochimica acta 65, 237–52.CrossRefGoogle Scholar
AGU Council (2003). American Geophysical Union position statement on human impact on climate. EOS 84 (51), 574.CrossRef
Aharon, P. (2003). Meltwater flooding events in the Gulf of Mexico revisited: implications for rapid climate changes during the last glaciation. Paleoceanography 18, 3–1–3–14.CrossRefGoogle Scholar
Ahn, J., Wahlen, M., Deck, B. L.et al. (2004). A record of atmospheric CO2 during the last 40 000 years from the Siple Dome, Antarctica ice core. Journal of Geophysical Research 109, D13305.CrossRefGoogle Scholar
Allen, M. R. and Ingram, W. J. (2002). Constraints on future changes in climate and hydrologic cycle. Nature 419, 224–32.CrossRefGoogle ScholarPubMed
Alley, R. B., (2000). The Younger Dryas cold interval as viewed from central Greenland. Quaternary Science Reviews 19, 213–26.CrossRefGoogle Scholar
Alley, R. B., Mayewski, P. A., Sowers, T., et al. (1997). Holocene climate instability: a prominent widespread event 8200 years ago. Geology 25, 483–6.2.3.CO;2>CrossRefGoogle Scholar
Alley, R. B., Meese, D. A., Shuman, C. A.et al. (1993). Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362, 527–9.CrossRefGoogle Scholar
Alverson, K. and Oldfield, F. (2000). Past global changes and their significance for the future: an introduction. Quaternary Science Reviews 19, 3–7.CrossRefGoogle Scholar
Alverson, K., Bradley, R. S. and Pedersen, T. F. (2001). Environmental Variability and Climate Change. IGBP Science 3. Stockholm, IGBP.Google Scholar
Alverson, K., Bradley, R. S. and Pedersen, T. F.(eds.) (2003). Paleoclimate, Global Change and the Future. Berlin, Springer Verlag.CrossRefGoogle Scholar
Amman, B. (ed.) (2000). Biotic responses to rapid climatic changes around the Younger Dryas. Palaeogeography, Palaeoclimatology, Palaeoecology 159.Google Scholar
Amman, B. and Oldfield, F. (2000). Preface: Rapid warming project. In Amman, B. (ed.). Biotic responses to rapid climatic changes around the Younger Dryas. Palaeogeography, Palaeoclimatology, Palaeoecology15, pp. v–vii.
Amman, C. M., Meehl, G. A. and Washington, W. M. (2003). A monthly and latitudinally varying volcanic forcing dataset in simulations of twentieth century climate. Geophysical Research Letters 30 (12), 1657.Google Scholar
An, Z. (2000). The history and variability of the east Asian paleomonsoon climate. Quaternary Science Reviews 19, 171–87.CrossRefGoogle Scholar
An, Z. and Porter, S. C. (1997). Millennial-scale oscillations during the last interglaciation in central China. Geology 25, 603–6.Google Scholar
Anderson, C., Koc, N., Jennings, A. and Andrews, J. T. (2004). Non-uniform response of the major surface currents in the Nordic seas to insolation forcing: implications for the Holocene climate variability. Paleoceanography 19, PA2003, 1–16.Google Scholar
Anderson, L., Abbott, M. B. and Finney, B. P. (2001). Holocene climate inferred from oxygen isotope ratios in lake sediments, central Brooks Range, Alaska. Quaternary Research, 55, 313–21.CrossRefGoogle Scholar
Anderson, P. M., Bartlein, P. J., Brubaker, L. B., Gajewski, K. and Ritchie, J. C. (1991). Vegetation–climate–pollen relationships for the arcto-boreal regions of North America and Greenland. Journal of Biogeography 18, 565–82.CrossRefGoogle Scholar
Anderson, T. L., Charlson, R. J., Schwartz, S. E.et al. (2003). Climate forcing by aerosols – a hazy picture. Science 300, 1103–4.CrossRefGoogle Scholar
Andreae, M. O., Rosenfield, D., Artaxo, P.et al. (2004). Smoking rain clouds over the Amazon. Science 303, 1337–42.CrossRefGoogle ScholarPubMed
Andren, E., Andren, T. and Kunzendorf, H. (2000). Holocene history of the Baltic Sea as a background for assessing records of human impact in the sediments of the Gotland basin. The Holocene 10, 687–702.CrossRefGoogle Scholar
Andren, E., Shimmield, G. and Brand, T. (1999). Environmental changes of the last three centuries indicated by siliceous microfossil records from the Baltic Sea. The Holocene 9, 25–38.CrossRefGoogle Scholar
Andrews, J. T., Hardadottir, J., Stoner, J., Mann, M. E., Krisjansdottir, B. and Koc, N. (2003). Decadal to millennial-scale periodicities in north Iceland shelf sediments over the last 12 000 cal. yr: long-term North Atlantic variability and solar forcing. Earth and Planetary Science Letters 210, 453–65.CrossRefGoogle Scholar
Angert, A., Biraud, S., Bonfils, C., Buermann, W. and Fung, I. (2004). CO2 seasonality indicates origins of post-Pinatubo sink. Geophysical Research Letters 31, L11103.CrossRefGoogle Scholar
,Anon. (2003a). How to slake a planet's thirst. Nature 422, 243.CrossRefGoogle Scholar
Anon. (2003b). Two wrongs not right. CO2 and climate: world climate alerts. At www.co2andclimate.org/wca/2003/wca.
Appleby, P. G. and Oldfield, F. (1992). Applications of Pb-210 to sedimentation studies. In Ivanovich, M. and Harmon, R. (eds.). Uranium Series Disequilibrium: Applications to Earth, Marine and Environmental Studies. Oxford, Clarendon Press, pp. 731–78.Google Scholar
Appleby, P. G., Richardson, N., Nolan, P. J. and Oldfield, F. (1990). Radiometric dating of the United Kingdom SWAP sites. Philosophical Transactions of the Royal Society B., 327, 7–12.CrossRefGoogle Scholar
Appleby, P. G., Oldfield, F., Thompson, R., Huttunen, P. and Tolonen, K. (1979). Pb-210 dating of annually laminated lake sediment from Finland. Nature, 280, 53–5.CrossRefGoogle Scholar
Arendt, A. A., Echelmeyer, K. A., Harrison, W. D., Lingle, C. S. and Valentine, V. B. (2002). Rapid wastage of Alaskan glaciers and their contribution to rising sea level. Science 297, 382–6.CrossRefGoogle Scholar
Ariztegui, D., Chondrogianni, C., Wolff, G. et al. (1996). Palaeotemperature and palaeosalinity history of the Meso Adriatic Depression (MAD) during the late Quaternary: a stable isotope and alkenones study. In Guilizzoni, P. and Oldfield, F. (eds.). Palaeoenvironmental Analysis of Italian Crater Lake and Adriatic sediments (PALICLAS). Memorie dell'Istituto Italiano di Idrobiologia, 55. Verbania Pallanza, Italy, Istituto Italiano di Idrobiogia, pp. 219–30.Google Scholar
Arnell, N. W. (1999). Climate change and global water resources. Global Environmental Change 9, S31–S49.CrossRefGoogle Scholar
Artaxo, P. (2003). Land-use change, aerosol production and climate: size matters!! LBA Science Highlight. At www//igbp.Kva.se/.
Asioli, A. (1996). High resolution foraminifera biostratigraphy in the central Adriatic basin during the last deglaciation: a contribution to the PALICLAS project. In Guilizzoni, P. and Oldfield, F. (eds.). Palaeoenvironmental Analysis of Italian Crater Lake and Adriatic Sediments (PALICLAS). Memorie dell 'Istituto Italiano di Idrobiologia, 55. Verbania Pallanza, Italy, Istituto Italiano di Idrobiologia, pp. 197–217.Google Scholar
Atkinson, T. C., Briffa, K. R. and Coope, G. R. (1987). Seasonal temperatures in Britain during the last 22 000 years, reconstructed using beetle remains. Nature 325, 587–92.CrossRefGoogle Scholar
Bahn, P. and Flenley, J. R. (1992). Easter Island, Earth Island: A Message from Our Past for the Future of Our Planet. London, Thames and Hudson.Google Scholar
Baillie, M. G. L. and Brown, D. M. (2003). Dendrochronology and the reconstruction of fine-resolution environmental change in the Holocene. In Mackay, A. W., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 75–91.Google Scholar
Banks, H. and Wood, R. (2002). Where to look for anthropogenic climate change in the ocean. Journal of Climate Change 15, 879–91.Google Scholar
Barber, D. C., Dyke, A., Hillaire-Marcel, C.et al. (1999). Forcing of the cold event of 8200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344–48.CrossRefGoogle Scholar
Barber, K. E. and Charman, D. (2003). Holocene Paleoclimate records from peatlands. In Mackay, A. W., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 210–26.Google Scholar
Bard, E., Arnold, M., Hamelin, B., Tisnerat-Laborde, N. and Cabioch, G. (1998). Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Muraroa and Tahiti. Radiocarbon 40, 1085–92.CrossRefGoogle Scholar
Bard, E., Fairbanks, R. G., Arnold, M.et al. (1989). Sea-level estimates during the last deglaciation based on δ18O and accelerator mass spectrometry 14C ages measured in Globigerina bulloides. Quaternary Research 31, 381–91.CrossRefGoogle Scholar
Bard, E., Hamelin, B., Arnold, M.et al. (1996). Deglacial sea-level record from Tahiti corals and the timing of global melt-water discharge. Nature 382, 405–10.CrossRefGoogle Scholar
Bard, E., Rostek, F. and Menot-Combes, G. (2004). Radiocarbon calibration beyond 20 000 14C yr BP by means of planktonic foraminifera of the Iberian margin. Quaternary Research 61, 204–14.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A. and Kaufman, A. (1997). Late Quaternary paleoclimate in the eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel. Quaternary Research 47, 155–68.CrossRefGoogle Scholar
Barnekow, L. (2000). Holocene regional and local vegetation history and lake-level changes in the Tornetrask area, northern Sweden. Journal of Paleolimnology 23, 399–420.CrossRefGoogle Scholar
Barnett, J. and Adger, W. N. (2003). Climate dangers and atoll countries. Climatic Change 61, 321–37.CrossRefGoogle Scholar
Barnett, T. P., Pierce, D. W. and Schnurr, R. (2001). Detection of anthropogenic climate change in the world's oceans. Science 292, 270–4.CrossRefGoogle ScholarPubMed
Barnett, T., Malone, R., Pennell, W.et al. (2004). The effects of climate change on water resources in the West: introduction and overview. Climatic Change 62, 1–11.CrossRefGoogle Scholar
Barnola, J.-M., Pimienta, P., Raynaud, D. and Korotkevich, Y. S. (1991). CO2-climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on a re-evaluation of the air dating. Tellus 43, 83–90.CrossRefGoogle Scholar
Bartlein, P. J., Webb, J. T. III and Fleri, E. (1984). Holocene climatic change in the northern midwest: pollen derived estimates. Quaternary Research 22, 361–74.CrossRefGoogle Scholar
Batchold, D. (2003). Britain to cut CO2 without relying on nuclear power. Science 299, 1291.Google Scholar
Bates, N. R., Pequignet, A. C., Jonson, R. J. and Gruber, N. (2002). A short-term sink for atmospheric CO2 in subtropical mode water of the North Atlantic Ocean. Nature 420, 489–93.CrossRefGoogle ScholarPubMed
Battarbee, R. W. (1978). Observations on the recent history of Lough Neagh and its drainage basin. Philosophical Transactions of the Royal Society B 281, 303–45.CrossRefGoogle Scholar
Battarbee, R. W. (1990). The causes of lake acidification, with special reference to the role of acid deposition. Philosophical Transactions of the Royal Society of London Series B 327, 339–47.CrossRefGoogle Scholar
Battarbee, R. W. (1998). Lake management: the role of palaeolimnology. In Harper, D. M. (ed.). The Ecological Basis for Lake and Reservoir Management. London, Wiley.Google Scholar
Battarbee, R. W., Gasse, F. and Stickley, C. E. (eds.) (2005). Past Climate Variability through Europe and Africa. Dordrecht, Kluwer.Google Scholar
Battarbee, R. W., Mason, J., Renberg, I. and Talling, J. F. (eds.) (1990). Palaeolimnology and lake acidification. Philosophical Transactions of the Royal Society of London B 327, 223–445.
Bauer, E., Claussen, M. and Brovkin, V. (2003). Assessing climate forcings of the Earth system for the past millennium. Geophysical Research Letters 2 (6), 9–1–9–4.Google Scholar
Beer, J, Mende, W. and Stellmacher, R. (2000). The role of the sun in climate forcing. Quaternary Science Reviews 19, 403–15.CrossRefGoogle Scholar
Behl, R. J. and Kennett, J. P. (1996). Evidence for brief interstadial events in the Santa Barbara basin, NE Pacific during the past 60 kyr. Nature 379, 243–6.CrossRefGoogle Scholar
Bellwood, D. R., Hughes, T. P., Folke, C. and Nystrom, M. (2004). Confronting the coral reef crisis. Nature 429, 827–33.CrossRefGoogle ScholarPubMed
Beltrami, W., Wang, J. F. and Bras, R. L. (2000). Energy balance at the Earth's surface: heat flux history in eastern Canada. Geophysical Research Letters 27, 3385–8.CrossRefGoogle Scholar
Bender, M. L. (2002). Orbital tuning chronology for the Vostok climate record supported by trapped gas composition. Earth and Planetary Science Letters 204, 275–89.CrossRefGoogle Scholar
Bender, M. L. (2003). Climate–biosphere interactions on glacial–interglacial timescales. Global Biogeochemical Cycles 17, 8–1–8–10.CrossRefGoogle Scholar
Benestad, R. E. (2003). What can climate models tell us about climate change? Climatic Change 59, 311–31.CrossRefGoogle Scholar
Bengtsson, L. (2001). Hurricane threats. Science 293, 440–441.CrossRefGoogle ScholarPubMed
Bengtsson, L., Hagemann, S. and Hodges, K. I. (2004). Can climate trends be calculated from reanalysis data? Journal of Geophysical Research 109. D11111.CrossRefGoogle Scholar
Beniston, M. (2003). Climatic change in mountain regions: a review of possible impacts. Climatic Change 59, 5–31.CrossRefGoogle Scholar
Bennett, K. D. (1997). Evolution and Ecology. The Pace of Life. Cambridge, Cambridge University Press.Google Scholar
Benson, L., Kashgarian, M., Rye, R.et al. (2002). Holocene multidecadal and multicentennial droughts affecting northern California and Nevada. Quaternary Science Reviews 21, 659–82.CrossRefGoogle Scholar
Bergengren, J. C., Thompson, S. L., Pollard, D. and DeConto, R. M. (2001). Modelling global climate–vegetation interactions in a doubled CO2 world. Climatic Change 50, 31–75.CrossRefGoogle Scholar
Berger, A. (1979). Insolation signatures of Quaternary climatic changes. Il nuovo cimento 2, 63–87.CrossRefGoogle Scholar
Berger, A. and Loutre, M. F. (1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297–318.CrossRefGoogle Scholar
Bianchi, G. G. and McCave, I. N. (1999). Holocene periodicity in North Atlantic climate and deep ocean flow south of Iceland. Nature 397, 515–17.CrossRefGoogle Scholar
Bigler, C., Larocque, I.Peglar, S. M., Birks, H. J. B. and Hall, R. I. (2002). Quantitative multiproxy assessment of long-term patterns of Holocene environmental change from a small lake near Åbisko, northern Sweden. The Holocene 12, 481–96.CrossRefGoogle Scholar
Billen, G. and Garnier, J. (1999). Nitrogen transfers through the Seine drainage network: a budget based on the application of the ‘Riverstrahler’ model. Hydrobiologia 410, 139–50.CrossRefGoogle Scholar
Bindschalder, R., Diner, D. J. and Rignot, E. (2002). West Antarctic ice sheet releases new icebergs. EOS 83 (9), 85–93.CrossRefGoogle Scholar
Biondi, F., Isaacs, C., Hughes, M. K., Cayan, D. R. and Berger, W. H. (2000). The near-1600 dry/wet knockout: linking terrestrial and near-shore ecosystems. In Proceedings of the Twenty-Fourth Annual Climate Diagnostics and Prediction Workshop. Washington DC, US Department of Commerce, NOAA.Google Scholar
Biondi, F., Lange, C. B., Hughes, M. K. and Berger, W. H. (1997). Interdecadal signals during the last millennium (AD 1117–1992) in the varve record of Santa Barbara Basin, California. Geophysical Research Letters 24, 193–6.CrossRefGoogle Scholar
Birks, H. J. B. (2003). Quantitative palaeoenvironmental reconstructions from Holocene biological data. In Mackay, A. W., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 107–23.Google Scholar
Birks, H. H., Battarbee, R. W. and Briks, H. J. B. (2000) The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late glacial and early Holocene – a synthesis. Journal of Paleolimnology 23, 91–114.CrossRefGoogle Scholar
Bishop, J. K. R., Wood, T. J., Davis, R. E. and Sherman, J. T. (2004). Robotic observations of enhanced carbon biomass and export at 55 oS during SOFeX. Science 304, 417–18.CrossRefGoogle Scholar
Björck, S., Koc, N. and Skog, G. (2003). Consistently large marine reservoir ages in the Norwegian Sea during the last deglaciation. Quaternary Science Reviews 22, 429–35.CrossRefGoogle Scholar
Blaauw, M. (2003). An investigation of Holocene sun-climate relationships using numerical C-14 wiggle-match dating of peat deposits. Ph.D. thesis, University of Amsterdam.
Blaauw, M., Geel, B. and Plicht, J. (2004). Solar forcing of climate change during the mid-Holocene: indications from raised bogs in the Netherlands. The Holocene 14, 35–44.CrossRefGoogle Scholar
Blaauw, M., Heuvelink, G. B. M., Mauquoy, D., Plicht, J. and Geel, B. (2003). A numerical approach to 14C wiggle-match dating of organic deposits: best fits and confidence intervals. Quaternary Science Reviews 22, 1485–1500.CrossRefGoogle Scholar
Blunier, T. and Brook, E. J. (2001). Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109–12.CrossRefGoogle ScholarPubMed
Blunier, T., Chappellaz, J., Schwander, J.et al. (1997). Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394, 739–43.CrossRefGoogle Scholar
Boer, G. J., Yu, S-J., Kim, B. and Flato, G. M. (2004). Is there observational support for an El Niño-like pattern of future global warming? Geophysical Research Letters 31, L06201.CrossRefGoogle Scholar
Boersma, A. (1978). Foraminifera. In Haq, B. U. and Boersma, A. (eds.). Introduction to Marine Micropaleontology, New York, Elsevier, pp. 19–77.Google Scholar
Bolger, T. (2001). The functional value of species biodiversity – a review. Proceedings of the Royal Irish Academy 1018, 119–142.Google Scholar
Bolin, B. (1998). The Kyoto negotiation on climate change: a scientific perspective. Science 279, 330–1.CrossRefGoogle Scholar
Bond, G., Kramer, B., Beer, J.et al. (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 2130–6.CrossRefGoogle ScholarPubMed
Bond, G. and Lotti, R. (1995) Iceberg discharges into the North Atlantic on millennial timescales during the last glaciation. Science 267, 1005–10.CrossRefGoogle Scholar
Bond, G., Showers, W., Cheseby, M.et al. (1997). A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 1257–66.CrossRefGoogle Scholar
Bond, G., Showers, W., Elliot, M. et al. (1999). The North Atlantic's 1–2 kyr climate rhythm: relation to Heinrich events, Dansgaard/Oeschger cycles and the Little Ice Age. In Clark, P. U., Webb, R. S. and Keigwin, L. D. (eds.). Mechanisms of Global Climate Change at Millennial Time Scales. Washington DC, AGU, pp. 35–58.CrossRefGoogle Scholar
Bond, N. A., Overland, J. E., Spillane, M. and Stabeno, P. (2003). Recent shifts in the state of the North Pacific. Geophysical Research Letters 30 (23), 1–1–1–4.CrossRefGoogle Scholar
Bopp, L., Kohfeld, K. E.Quéré, C. and Aumont, O. (2003) Dust impact on marine biota and atmospheric CO2 during glacial periods. Paleoceanography, 18 (2), 24–1–24–9.CrossRefGoogle Scholar
Bopp, L., Quéré, , Heimann, M.Manning, A. C. and Monfray, P. (2002). Climate induced ocean-oxygen fluxes: implications for the contemporary carbon budget. Global Geochemical Cycles 16, 6–1–6–14.Google Scholar
Boyd, P. W., Law, C. S., Wong, C. S.et al. (2004). The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature 428, 549–53.CrossRefGoogle ScholarPubMed
Boyd, P. W., Watson, A., Law, C.et al. (2000). A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407, 695–702.CrossRefGoogle ScholarPubMed
Braconnot, P., Joussaume, S., Marti, O. and Noblet, P. (1999). Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-Holocene insolation. Geophysical Research Letters 26, 2481–4.CrossRefGoogle Scholar
Bradley, R. S. (1999). Paleoclimatology: Reconstructing Climate of the Quaternary, 2nd. edn. San Diego, Harcourt Academic Press, ch. 11.Google Scholar
Bradley, R. S. (2003) Climate forcing during the Holocene. In Mackay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 10–19.Google Scholar
Bradley. R. S., Briffa, K. R., Cole, J., Hughes, M. K. and Osborn, T. J. (2003). The climate of the last millennium. In Alverson, K., Bradley, R. S. and Pedersen, T. F. (eds.). Paleoclimate, Global Change and the Future. Berlin, Springer Verlag, pp. 105–41.CrossRefGoogle Scholar
Bradley, R. S. and Jones, P. D. (1992). When was the ‘Little Ice Age’? In Mikami, T. (ed.). Proceedings of the International Symposium on the Little Ice Age Climate. Tokyo, Dept. of Geography, Tokyo Metropolitan University, pp. 1–4.Google Scholar
Braganza, K., Karoly, D. J., Hirst, A. C. (2004). Simple indices of global climate variability and change part II: attribution of climate change during the twentieth century. Climate Dynamics, 22, 823–38.CrossRefGoogle Scholar
Brasseur, G. (2003). An integrated view of the Causes and Impacts of atmospheric changes. In Brasseur, G. P., Prinn, R. G. and Pszenny, A. P. (eds.). Atmospheric Chemistry in a Changing World. Berlin, Springer Verlag, pp. 207–29.CrossRefGoogle Scholar
Bratcher, A. J. and Giese, B. S. (2002). Tropical Pacific decadal variability and global warming. Geophysical Research Letters 29, No.19.CrossRefGoogle Scholar
Bray, R. C., Price, B. B., Clow, G. D. and Glow, A. J. (2001). Climate logging with new rapid optical technique at Siple Dome. Geophysical Research Letters 28, 4635–8.Google Scholar
Brazdil, R., Glaser, R., Pfister, C. and Stangl, H. (2002). Floods in Europe – a look into the past. PAGES Newsletter 10 (3), 21–3.Google Scholar
Briffa, K. R. (2000). Annual climate variability in the Holocene: interpreting the message from ancient trees. Quaternary Science Reviews 19, 87–105.CrossRefGoogle Scholar
Briffa, K. R., Jones, P. D., Schweingruber, F. H. and Osborn, T. J. (1998). Influence of volcanic eruptions on northern hemisphere summer temperature over the past 600 years. Nature 393, 450–5.CrossRefGoogle Scholar
Briffa, K. R., Osborn, T. J., Schweingruber, F. H.et al. (2001). Low frequency temperature variations from a northern tree ring density network. Journal of Geophysical Research 106, 2929–41.CrossRefGoogle Scholar
Briffa, K. R., Osborn, T. J., Schweingruber, F. H.et al. (2002a). Tree-ring width and density data around the northern hemisphere: part 1, local and regional climate signals. The Holocene 12, 737–57.CrossRefGoogle Scholar
Briffa, K. R., Osborn, T. J., Schweingruber, F. H.et al. (2002b). Tree-ring width and density data around the Northern Hemisphere: part 2, spatio-temporal variability and associated climate patterns. The Holocene 12, 759– 89.CrossRefGoogle Scholar
Briffa, K. R., Schweingruber, F. H., Jones, P. D.et al.(1998). Reduced sensitivity of tree-rings to temperatures at high northern latitudes. Nature 391, 678–82.CrossRefGoogle Scholar
Briffa, K. R., Schweingruber, F. H., Jones, P. D.et al. (1999). Trees tell of past climates, but are they speaking less clearly today? Philosophical Transactions of the Royal Society of London, B 353, 65–73.CrossRefGoogle Scholar
Broccoli, A. J., Dixon, K. W., Delworth, T. L., Knutson, T. R. and Stouffer, R. J. (2003). Twentieth-century temperature and precipitation trends in ensemble climate simulations including natural and anthropogenic forcing. Journal of Geophysical Research 108, ACL 16–1–16–13.CrossRefGoogle Scholar
Broecker, W. S. (1989). The salinity contrast between the Atlantic and Pacific oceans during glacial time. Paleoceanography 4, 207–12.CrossRefGoogle Scholar
Broecker, W. S. (1998). Paleocean circulation during the last deglaciation: a bipolar seesaw? Paleoceanography 13, 119–21.CrossRefGoogle Scholar
Broecker, W. S. (2000). Abrupt climate change: causal constraints provided by the paleoclimatic record. Earth Science Reviews 51, 137–54.CrossRefGoogle Scholar
Broecker, W. S. (2003). Does the trigger for abrupt climate change reside in the ocean or in the atmosphere? Science 300, 1519–22.CrossRefGoogle ScholarPubMed
Broecker, W. S. (2004). Future global warming scenarios. Science 304, 388.CrossRefGoogle ScholarPubMed
Broecker, W. S., Bond, G., Klas, M., Bonani, G. and Wolfi, W. (1990). A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography 3, 659–69.CrossRefGoogle Scholar
Broström, A., Coe, M. T., Harrison, S. Pet al. (1998a). Land surface feedbacks and palaeomonsoons in northern Africa. Geophysical Research Letters 25, 3615–18.CrossRefGoogle Scholar
Broström, A., Gaillard, M.-J., Ihse, M. and Odgaard, B. (1998b). Pollen–landscape relationships in modern analogues of ancient cultural landscapes in southern Sweden – a first step towards quantifying vegetation openness in the past. Vegetation History and Archaeobotany 7, 189–201.CrossRefGoogle Scholar
Bruckner, T., Petschel-Held, G., Toth, F. L., Fuessel, H.-M., Helm, C. and Leimbach, M. (1999). Climate change decision-support and the tolerable windows approach. Environmental Modelling and Assessment 4, 217–34.CrossRefGoogle Scholar
Bryant, D., Burke, L., McManus, J. and Spalding, M. (1998). Reefs at Risk: a Map Based Indicator of Threats to the World's Coral Reefs. Washington DC, World Resources Institute.Google Scholar
Bryden, H. L., McDonagh, E. L. and King, B. A. (2003). Changes in ocean water mass properties: oscillations or trends? Science 300, 2086–8.CrossRefGoogle ScholarPubMed
Buckley, L. B. and Roughgarden, J. (2004). Biodiversity conservation: Effects of changes in climate and land use. Nature 430, 34.CrossRefGoogle ScholarPubMed
Buesseler, K. O., Andrews, J. E., Pike, S. M. and Charette, M. A. (2004). The effects of Iron fertilization on carbon sequestration in the Southern Ocean. Science 304, 414–17.CrossRefGoogle ScholarPubMed
Bugmann, H. K. M. (1997). Gap models, forest dynamics and the response of vegetation to climate change. In Huntley, B., Cramer, W., Morgan, A. V., Prentice, H. C. and Allen, J. R. M. (eds.). Past and Future Rapid Environmental Changes: The Spatial and Evolutionary Responses of Terrestrial Biota. Berlin, Springer Verlag NATO ASI Series, pp. 441–53.CrossRefGoogle Scholar
Bugmann, H. K. M. (2001). A review of forest gap models. Climate change 5, 259–305.CrossRefGoogle Scholar
Bugmann, H. K. M. and Pfister, C. (2000). Impacts of interannual climate variability on past and future forest composition. Regional Environmental Change 1, 1–19.Google Scholar
Burn, G. (2003). After the flood. The Guardian Review, 15 November, pp. 4–6.
Burns, S. J., Fleitman, D., Mather, A., Kramer, J. and Al-Subbary, A. A. (2003). Indian Ocean climate and an absolute chronology over Dansgaard-Oeschger Events 9–13. Science 301, 1365–7.CrossRefGoogle Scholar
Caillon, N., Jouzel, J., Severinghaus, J. P., Chappellaz, J. and Blunier, T. (2003a). A novel method to study the phase relationship between Antarctic and Greenland climate. Geophysical Research Letters 30, 4-1–4-4.CrossRefGoogle Scholar
Caillon, N., Severinghaus, J. P., Jouzel, J.et al. (2003b). Timing of atmospheric CO2 and Antarctic temperature changes across termination III. Science 299, 1728–31.CrossRefGoogle Scholar
Calov, R., Ganapolski, A., Petoukhov, V. and Claussen, M. (2002). Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model. Geophysical Research Letters 29 (24), 69, 1–4.CrossRefGoogle Scholar
Calvo, E., Pejero, C., Logan, C. A. and Deckker, P. (2004). Dust-induced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles. Paleoceanography 19, PA2020.CrossRefGoogle Scholar
Campbell, B. D., Stafford-Smith, D. M. and the GCTE Pasture and Rangelands Network members. (2000). A synthesis of recent global change research on pasture and rangeland production: reduced uncertainties and their management implication. Agriculture, Ecosystems and Environment 82, 39–55.CrossRefGoogle Scholar
Camuffo, D., Secco, C., Brimblecombe, P. and Martin-Vide, J. (2000). Sea storms in the Adriatic and the western Mediterranean during the last millennium. Climatic Change 46, 209–23.CrossRefGoogle Scholar
Canadell, J. G. and Pataki, D. (2002). New advances in carbon cycle research. Trends in Ecology and Evolution 17, 156–8.CrossRefGoogle Scholar
Carcaillet, C., Almquist, H., Asnong, H.et al. (2002). Holocene biomass burning and global dynamics of the carbon cycle. Chemosphere 49, 845–63.CrossRefGoogle ScholarPubMed
Carrington, D. P., Gallimore, R. G. and Kutzbach, J. E. (2001). Climate sensitivity to wetlands and wetland vegetation in mid-Holocene North Africa. Climate Dynamics 17, 151–7.CrossRefGoogle Scholar
Carslaw, K. S., Harrison, R. G. and Kirby, J. (2003). Cosmic rays, clouds, and climate. Science 298, 1732–7.CrossRefGoogle Scholar
Cazenave, A. and Nerem, R. S. (2004). Present-day sea-level change: observations and causes. Review of Geophysics 42, RG3001.CrossRefGoogle Scholar
CENR (2000). Integrated Assessment of Hypoxia in the Northern Gulf of Mexico. Washington DC, National Science and Technology Council Committee on Environment and Natural Resources.
Chameides, W. L., Kasibhatla, P. S., Yienger, J. and Levy, I. H. (1994). Growth of Continetntal-scale metro-agro-plexes, regional ozone pollution, and world Food production. Science 264, 74–7.CrossRefGoogle ScholarPubMed
Chameides, W. L., Yu, H., Bergin, M.et al. (1999). Case study of the effects of atmospheric aerosols and regional haze on agriculture: an opportunity to enhance crop yields in China through emission controls. Proceedings of the National Academy of Sciences USA 96, 13626–33.CrossRefGoogle ScholarPubMed
Chapin, F. S. III, Zavaleta, E. S., Eviner, V. T.et al. (2000a). Consequences of changing biodiversity. Nature 405, 234–42.CrossRefGoogle Scholar
Chapin, F. S. III, McGuire, A. D., Randerson, J.et al. (2000b). Arctic and boreal ecosystems of western North America as components of the climate system. Global Change Biology 6, 211–23.CrossRefGoogle Scholar
Chapman, D. S., Bartlett, M. G. and Harris, R. N. (2004). Comment on ‘ground vs. surface air temperature trends: implications for borehole surface temperature reconstructions’ by M. E. Mann and G. Schmidt. Geophysical Research Letters 31, L07205.CrossRefGoogle Scholar
Chapman, M. R., Shackleton, N. J. and Duplessy, J.-C. (2000). Sea surface temperature variability during the last glacial-interglacial cycle: assessing the magnitude and pattern of climate change in the North Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 157, 1–25.CrossRefGoogle Scholar
Chappell, J. M. A. and Shackleton, N. J. (1986). Oxygen isotopes and sea-level. Nature 324, 137–8.CrossRefGoogle Scholar
Charles, D. F., Binford, M. W., Furlong, E. T.et al. (1990). Palaeoecological investigations of recent lake acidification in the Adirondack Mountains, N. Y. Journal of Paleolimnology, 3, 195–241.CrossRefGoogle Scholar
Chase, T. N., Pielke, R. A., Kittel, T. G. F.et al. (2002). Relative climatic effects of landcover change and elevated carbon dioxide combined with aerosols: a comparison of model results and observations. Journal of Geophysical Research D. Atmospheres 106, 31685–91.CrossRefGoogle Scholar
Cheddadi, R., Yu, G., Guiot, J., Harrison, S. P. and Prentice, I. C. (1997) The climate of Europe 6000 years ago. Climate Dynamics 13, 1–9.CrossRefGoogle Scholar
Chen, D., Cane, M. A., Kaplan, A., Zeblak, S. E. and Huang, D. (2004). Predictability of El Niño over the past 148 years. Nature 428, 733–5.CrossRefGoogle ScholarPubMed
Chen, F. H., Bloemendal, J., Wang, J. M., Li, J. J. and Oldfield, F. (1997). High-resolution multi-proxy climate records from Chinese loess: evidence for rapid climatic changes over the last 75 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology 130, 323–35.CrossRefGoogle Scholar
Chen, F. H., Qiang, M. R., Feng, Z. D., Wang, H. B. and Bloemendal, J. (2003). Stable East Asian monsoon climate during the last interglacial (Eemian) indicated by palaeosol S1 in the western part of the Chinese Loess Plateau. Global and Planetary Change 36, 171–9.CrossRefGoogle Scholar
Chepstow-Lusty, A., Bennett, K. D., Fjeldsa, J., Kendall, A., Galliano, W. and Tupayachi-Herrera, A. (1997). Tracing 4000 years of environmental history in the Cuzco area, Peru, from the pollen record. Mountain Research and Development 18, 159–72.CrossRefGoogle Scholar
Chock, D. P., Song, Q., Hass, H., Schell, B. and Ackermann, I. (2003). Comment on ‘Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming’ by M. Z. Jacobson. Journal of Geophysical Research 108, 12–1–12–3.CrossRefGoogle Scholar
Church, J. A. and Gregory, J. M. (2001). Changes in sea-level. Climate change 2001: the scientific basis. In Houghton, J. T.et al. (eds.). Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press.Google Scholar
Claquin, T., Roelandt, C., Kohfeld, K. E., et al. (2002). Radiative forcing of climate by ice-age atmospheric dust. Climate Dynamics 20, 193–202.CrossRefGoogle Scholar
Clark, P. U., Marshall, S. J., Clarke, G. K. C., Hostetler, S. W., Licciardi, J. M. and Teller, J. T. (2001). Freshwater forcing of abrupt climate change during the last Glaciation. Science 293, 283–7.CrossRefGoogle ScholarPubMed
Clark, P. U., McCabe, A. M., Mix, A. and Weaver, A. J. (2004). Rapid rise of sea-level 19 000 years ago and its global implications. Science 304, 1141–4.CrossRefGoogle Scholar
Clark, P. U., Pisias, N. G., Stocker, T. F. and Weaver, A. J. (2002). The role of the thermohaline circulation in abrupt climate change. Nature 415, 863–9.CrossRefGoogle ScholarPubMed
Clark, W. C. and Dickson, N. M. (2003). Sustainability science: the emerging research program. Proceedings of the National Academy of Sciences 100, 8059–61.CrossRefGoogle ScholarPubMed
Clarke, K. C., Hoppen, S. and Gaydos, L. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design 24, 247–61.CrossRefGoogle Scholar
Clarke, R. T. (2003). Frequencies of extreme events under conditions of changing hydrological regime. Geophysical Research Letters 30 (3), 24–1–24–4.CrossRefGoogle Scholar
Claussen, M., Brovkin, V., Ganapolski, C. and Petoukhov, V. (2003). Climate change in North Africa: the past is not the Future. Climatic Change 57, 99–118.CrossRefGoogle Scholar
Claussen, M., Kubatzki, C., Brovkin, V.et al. (1999). Simulation of an abrupt change in Saharan vegetation at the end of the mid-Holocene. Geophysical Research Letters 24, 2037–40.CrossRefGoogle Scholar
Clement, A. C., Seager, R. and Cane, M. A., (2000). Suppression of El Niño during the mid-Holocene by changes in the Earth's orbit. Paleoceanography 15, 731–7.CrossRefGoogle Scholar
CLIMAP (1981). Seasonal reconstructions of the Earth's surface at the last glacial maximum. Geological Society of America, Map Chart Series, MC-36.
Co2science (2003). Atmospheric methane concentration: no longer rising. In Journal Reviews. www.co2science.org/journal/2003/v6n43cl.htm.
Coale, K. H., et al. (1996). A massive phytoplankton bloom induced by ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383, 495–501.CrossRefGoogle ScholarPubMed
Cohen, A. S. (2003). The History and Evolution of Lake Systems. Oxford, Oxford University Press.Google Scholar
Cole, J. E. (2003). Holocene coral records: windows on tropical climate variability. In McKay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 168–84.Google Scholar
Colinvaux, P. A., Oliveira, P. E. D. and Bush, M. B, (2000). Amazonian and neotropical plant communities on glacial time-scales: The failure of the aridity and refuge hypotheses. Quaternary Science Reviews 19, 141–69.CrossRefGoogle Scholar
Comiso, J. C. (2002). A rapidly declining Arctic perennial ice cover. Geophysical Research Letters 29 (20), 1956.CrossRefGoogle Scholar
Compton, J. S. (2001). Holocene sea-level fluctuations inferred from the evolution of depositional environments of the southern Langebaan Lagoon salt marsh, South Africa. The Holocene 11, 395–406.CrossRefGoogle Scholar
Cook, E. R., Meko, D. M. and Stockton, C. W. (1997). A new assessment of possible solar and lunar forcing of the bidecadal drought rhythm in the western United States. Journal of Climate 10, 1343–56.2.0.CO;2>CrossRefGoogle Scholar
Cook, E. R., Meko, D. M., Stahle, D. W. and Cleaveland, M. K. (1999). Drought re constructions for the continental United States. Journal of Climate 12, 1145–62.2.0.CO;2>CrossRefGoogle Scholar
Cook, E. R., Palmer, J. G. and D'Arrigo, R. D. (2002). Evidence for a ‘Medieval warm Period’ in a 1100 year tree-ring reconstruction of past austral summer temperatures in New Zealand. Geophysical Research Letters 29 (14), 12–1–12–4.CrossRefGoogle Scholar
Cooper, S. R. (1995). Chesapeake Bay watershed historical land use: impact on water quality and diatom communities. Ecological Applications 5, 703–23.CrossRefGoogle Scholar
Cooper, S. R. and Brush, G. S. (1991). Long-term history of Chesapeake Bay anoxia. Science 254, 992–6.CrossRefGoogle ScholarPubMed
Cooper, S. R. and Brush, G. S.(1993). A 2500 year history of anoxia and eutrophication in Chesapeake Bay. Estuaries 16, 617–26.CrossRefGoogle Scholar
Costanza, R., d'Arge, R., Groot, R.et al. (1997). The value of the world's ecosystem services and natural capital. Nature 387, 253–60.CrossRefGoogle Scholar
Coulthard, T. J. and Macklin, M. G. (2001). How sensitive are river systems to climate and land-use changes? A model-based evaluation. Journal of Quaternary Science 16, 347–51.CrossRefGoogle Scholar
Covey, K. (2000). Beware the elegance of the number zero. Climatic Change 44, 409–11.CrossRefGoogle Scholar
Cowling, S. A. and Sykes, M. T. (1999). Physiological significance of low atmospheric CO2 for plant–climate Interactions. Quaternary Research 52, 237–42.CrossRefGoogle Scholar
Cowling, S. A., Sykes, M. T. and Bradshaw, R. H. W. (2001). Palaeovegetation-model comparisons, climate change and tree succession in Scandinavia over the past 1500 years. Journal of Ecology 89, 227–36.CrossRefGoogle Scholar
Cramer, W., Bondeau, A., Woodward, F. I.et al. (2001). Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology 7, 357–73.CrossRefGoogle Scholar
Crowley, T. J. (2000). Causes of climate change over the past 1000 years. Science 289, 270–7.CrossRefGoogle ScholarPubMed
Crowley, T. J. and Kim, K.-Y. (1999). Modeling the temperature response to forced climate change over the last six centuries. Geophysical Research Letters 26, 1901– 4.CrossRefGoogle Scholar
Crowley, T. J. and Lowery, T. S. (2000). How warm was the medieval warm period? Ambio 29, 51–4.CrossRefGoogle Scholar
Crutzen, P. J. (1995). My life with O3, NOx and other YZOOxs. Les Prix Nobel (The Nobel Prizes) 1995. Stockholm, Almqvist and Wiksell, pp. 123–57.Google Scholar
Crutzen, P. J. (2003). The ozone hole. In Steffen, W., Sanderson, A., Tyson, P. Det al. Global Change and the Earth System; A Planet under Pressure. Berlin, Springer Verlag, p. 236.Google Scholar
Crutzen, P. J. and Stoermer, E. (2001). The ‘Anthropocene’. International Geosphere Biosphere Programme Global Change Newsletter 41, 12–13.Google Scholar
Cubasch, U., Meehl, G. A., Boer, G. J. et al. (2001). Projections of future climate change. In Houghton, J. T.et al. (eds.). Climate Change 2001. Cambridge, Cambridge University Press.Google Scholar
Cuffey, K. M., Clow, G. D., Alley, R. B.et al. (1995). Large arctic temperature change at the Wisconsin–Holocene glacial transition. Science 270, 455–8.CrossRefGoogle Scholar
Cullen, H., Kaplan, A., Arkin, P. A. and deMenocal, P. B. (2002). Impact of the North Atlantic Oscillation on Middle Eastern climate and streamflow. Climatic Change 55, 315–38.CrossRefGoogle Scholar
Curry, R., Dickson, B. and Yashayaev, I. (2003). A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426, 826–9.CrossRefGoogle ScholarPubMed
D'Arrigo, R., Frank, D., Jacoby, G. and Pederson, N. (2001). Spatial responses to major volcanic events in or about AD 536, 934 and 1258: frost rings and other dendrochronological evidence from Mongolia and northern Siberia. Comments on R. B. Stothers, ‘Volcanic dry fogs, climate cooling and plague pandemics in Europe and the Middle East’ (Climatic Change, 42, 1999). Climatic Change49, 239–46.
Dahlin, B. H. (2002). Climate change and the end of the classic period in Yucatan: resolving a paradox. Ancient Mesoamerica 13, 327–40.CrossRefGoogle Scholar
Dahl-Jensen, D., Mosegaard, K., and Gunderstrup, N.et al. (1998). Past temperature directly from the Greenland ice sheet. Science 252, 268–71.CrossRefGoogle Scholar
Dallimore, S. R., Collett, T. S., Weber, M. and Uchida, T. (2002). Drilling program investigates permafrost gas hydrates. EOS, 83(18), 193–198.CrossRefGoogle Scholar
Dalrymple, G. B. and Lanphere, M. A. (1969) Potassium–Argon Dating: Principles, Techniques and Applications to Geochronology. San Francisco, W. H. Freeman.Google Scholar
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus 16, 436–68.CrossRefGoogle Scholar
Darwin, C. [1859] (1964). On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life. Cambridge, MA, Harvard University.Google Scholar
Angelis, H. and Skvarca, P. (2003). Glacier surge after ice sheet collapse. Science 299, 1559–62.CrossRefGoogle Scholar
deMenocal, P. B. (2001) Cultural responses to climate change during the late Holocene. Science 292, 667–73.CrossRefGoogle ScholarPubMed
deMenocal, P. B., Ortiz, J., Guilderson, T.et al. (2000). Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quaternary Science Reviews 19, 347–61.CrossRefGoogle Scholar
Noblet, N., Prentice, I. C., Joussaume, S.et al. (1996). Possible role of atmospheric biosphere interactions in triggering the last glaciation. Geophysical Research Letters 23, 3191–94.CrossRefGoogle Scholar
Noblet-Ducoudré, N., Claussen, M. and Prentice, I. C. (2000). Mid-Holocene greening of the Sahara: first results of the GAIM 6000 year experiment with two asynchronously coupled atmosphere/biome models. Climate Dynamics 16, 643–59.CrossRefGoogle Scholar
Silva, S. L., and Zielinski, G. A. (1998). Global influence of the AD 1600 eruption of Huaynaputina, Peru. Nature 393, 455–58.CrossRefGoogle Scholar
Dean, W., Anderson, R., Bradbury, J. P. and Anderson, D. (2002). A 1500 year record of climatic and environmental change at Elk Lake, Minnesota: varve thickness and gray-scale density. Journal of Palaeolimnology 27, 287–99.CrossRefGoogle Scholar
DeFries, R. (2004). Determining rates of tropical deforestation. In Steffen, W., Sanderson, A., Tyson, P. D.et al. Global Change and the Earth System; A Planet under Pressure. Berlin, Springer Verlag, p. 99.Google Scholar
DeFries, R., Houghton, R. A., Hansen, M.et al. (2002). Carbon emissions from tropical deforestation and regrowth based on satellite observations from the 1980's and 90's. Proceedings of the National Academy of Sciences, USA 99, 14256–61.CrossRefGoogle Scholar
Del Genio, A. D. (2002). The dust settles on water vapour feedback. Science 296, 665–6.CrossRefGoogle Scholar
Laat, A. T. J., and Maurellis, A. N. (2004). Industrial CO2 emissions as a proxy for anthropogenic influence on lower tropospheric temperature trends. Geophysical Research Letters 31, LO5204.Google Scholar
Delaygue, G., Stocker, T. F., Joos, F. and Plattner, G.-K. (2003). Simulations of atmospheric radiocarbon during abrupt oceanic circulation changes: trying to reconcile models and reconstructions. Quaternary Science Reviews 22, 1647–58.CrossRefGoogle Scholar
Delgrado, C., Rosegrant, M., Steinfield, H., Ehui, S. and Courbois, C. (1999). Livestock to 2020: The Next Food Revolution. Washington DC, IFPRI.Google Scholar
Delmonte, B., Petit, J. R. and Maggi, V. (2002). Glacial to Holocene implications of the new 27 000-year dust record from the EPICA Dome C (East Antarctica) ice core. Climate Dynamics 18, 647–60.Google Scholar
Delmotte, M., Chappellaz, J., Brook, E.et al. (2004). Atmospheric methane during the last four glacial–interglacial cycles: rapid changes and their link with Antarctic temperature. Journal of Geophysical Research 109, D12104, 1–13.CrossRefGoogle Scholar
Delworth, T. L. and Dixon, K. W. (2000). Implications of the recent trend in the Arctic/North Atlantic oscillation for the North Atlantic thermohaline circulation. Journal of Climatology 13, 3721–7.2.0.CO;2>CrossRefGoogle Scholar
Denton, G. H. and Hendy, C. H. (1994). Younger Dryas age advance of Franz Josef glacier in the southern Alps of New Zealand. Science 264, 1434–7.CrossRefGoogle Scholar
Diaz, H. F., Eischeid, J. K., Duncan, C. and Bradley, R. S. (2003). Variability of freezing levels, melting season indicators and snow cover for selected high-elevation and continental regions in the last 50 years. Climatic Change 59, 33–52.CrossRefGoogle Scholar
Diaz, S. (2001). Complex interactions between plant diversity, succession and elevated CO2. Trends in Ecology and Evolution 16, 667.CrossRefGoogle Scholar
Diaz, S. and Cabindo, M. (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution 16, 646–55.CrossRefGoogle Scholar
Diaz, S., Symstad, A. J., Chapin, F. S. III, Wardle, D. A. and Huenneke, L. F. (2002). Functional diversity revealed by removal experiments. Trends in Ecology and Evolution 18, 140–6.CrossRefGoogle Scholar
Dickens, G. R. (2004). Hydrocarbon-driven warming. Nature 429, 513–15.CrossRefGoogle ScholarPubMed
Dickson, R., Yashayaev, I., Meincke, J., Turrill, W., Dye, S. and Holfort, J. (2002). Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 416, 832–7.CrossRefGoogle ScholarPubMed
Dillehay, T. D. (2002). Climate and human migrations. Science 298, 764–5.CrossRefGoogle ScholarPubMed
Dillehay, T. D., Kolata, A. L. and Pino, M. Q. (2004). Pre-industrial human and environment interactions in northern Peru during the late Holocene. The Holocene 14, 272–81.CrossRefGoogle Scholar
Ding, Z., Rutter, N. W. and Liu, T. S. (1994). Towards an orbital timescale for Chinese loess deposits. Quaternary Science Reviews. 13, 39–70CrossRefGoogle Scholar
Dlugokencky, E. J., Houweling, S., Bruhwiler, L.et al. (2003). Atmospheric methane levels off: temporary pause or a new steady-state? Geophysical Research Letters 30 (19), ASC 5–1–5–4.CrossRefGoogle Scholar
Dodson, J. R.Taylor, D., Ono, Y. and Wang, P. (eds.). (2004). Climate, human and natural systems of the PEPII transect. Quaternary International 118–119, 1–203.Google Scholar
Doll, P. (2002). Impact of climate change and variability on irrigation requirements: a global perspective. Climatic Change 54, 269–93.CrossRefGoogle Scholar
Dore, J. F., Lukas, R., Sadler, D. W. and Karl, D. W. (2003). Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean. Nature 424, 754–7.CrossRefGoogle ScholarPubMed
Dorn, W., Dethloff, K., Rinke, A. and Roeckner, E. (2003). Competition of NAO regime changes and increasing greenhouse gases and aerosols with respect to Arctic climate projections. Climate Dynamics 21, 447–58.CrossRefGoogle Scholar
Douglass, D. H., Pearson, B. D., Singer, S. F., Knappenberger, P. C. and Michaels, P. D. (2004). Disparity of tropospheric and surface temperature trends: new evidence. Geophysical Research Letters 31, L12307.CrossRefGoogle Scholar
Duffy, P. B., Govindaswamy, B., Iorio, J. P.et al. (2003). High-resolution simulations of global climate, part 1: present climate. Climate Dynamics 21, 371–90.CrossRefGoogle Scholar
Dutta, K. (2002). Coherence of tropospheric 14CO2 with El Niño/Southern Oscillation. Geophysical Research Letters 29, 48-1–48-4.CrossRefGoogle Scholar
Dyson, T. (1996). Population and Food: Global Trends and Future Prospects. New York, Routledge.Google Scholar
Edwards, R. L., Chen, J. H. and Wasserburg, G. J. (1987). 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500 000 years. Earth and Planetary Science Letters 81, 175–92.CrossRefGoogle Scholar
Edmunds, W. M., Fellman, E. and Baba Goni, I. (1999). Environmental change, lakes and groundwater in the Sahel of northern Nigeria. Journal of the Geological Society London 156, 345–55.CrossRefGoogle Scholar
Elliot, M., Labeyrie, L. and Duplessy, J.-C. (2002). Changes in North Atlantic deep-water formation associated with Dansgaard-Oeschger temperature oscillations (10–100 ka). Quaternary Science Reviews 21, 1153–65.CrossRefGoogle Scholar
Elton, C. S. (1958). Ecology of Invasions by Animals and Plants. London, Chapman & Hall.CrossRefGoogle Scholar
EPICA community members (2004). Eight glacial cycles from an Antarctic ice core. Nature 429, 623–8.CrossRef
Eschenbach, W. W. (2004). Ecology: climate-change effect on Lake Tanganyika? Nature 430, 207–14.CrossRefGoogle ScholarPubMed
Esper, J., Cook, E. R. and Schweingruber, F. H. (2002). Low frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295, 2250–3.CrossRefGoogle ScholarPubMed
Esper, J., Frank, D. C. and Wilson, R. J. S. (2004). Climate reconstructions: low-frequency ambition and high frequency ratification. EOS 85 (12), 113–20.CrossRefGoogle Scholar
Fagan, B. (2004). The Long Summer: How Climate Changed Civilization. Granta, Basic Books.Google Scholar
Fairbanks, R. G. (1989). A 17 000 year glacio-eustatic sea-level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature 342, 637–42.CrossRefGoogle Scholar
Falkowski, P., Scholes, R. J., Boyle, E.et al. (2000). The global carbon cycle: a test of our knowledge of Earth as a system. Science 290, 291–6.CrossRefGoogle ScholarPubMed
Fang, X. M., Ono, Y., Fukusawa, H., Pan, B. T.et al. (1999) Asian summer monsoon instability during the past 60 000 years: magnetic susceptibility and pedogenic evidence from the western Chinese Loess Plateau. Earth and Planetary Science Letters 168, 219–32.CrossRefGoogle Scholar
FAO (2000). The State of World Fisheries and Aquaculture. Rome, Food and Agriculture Organization of the United Nations.
Feichter, J., Saussen, R., Grassl, H. and Fiebig, M. (2003). Comment on ‘Control of fossil-fuel particulate black carbon and organic matter, probably the most effective method of slowing global warming’ by M. Z. Jacobson. Journal of Geophysical Research 108, 10-1–10-2.CrossRefGoogle Scholar
Finney, B. P., Gregory-Eaves, I., Sweetman, J., Douglas, M. S. V., and Smol, J. P. (2000). Impacts of climatic change and fishing on Pacific salmon abundance over the past 300 years. Science 290, 795–9.CrossRefGoogle ScholarPubMed
Fiore, A. M., Jacob, D. J., Field, B. D., Streets, D. G. and Fernandes, S. D. (2002). Linking ozone pollution and climate change: the case for controlling methane. Geophysical Research Letters 29, 25-1–25-11.CrossRefGoogle Scholar
Fisher D. A. and Koerner, R. M. (2003). Holocene ice core climate history: a multi-variable approach. In Mackay, A. W., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold pp. 281–93.Google Scholar
Fleitmann, D., Burns, S. J., Mudelsee, M.et al. (2002). Holocene variability in the Indian Ocean Monsoon: a stalagmite-based high-resolution oxygen isotope record from southern Oman. PAGES News 10 (2), 7–8.Google Scholar
Flückiger, J., Dällenbach, A., Blunier, T.et al. (1999). Variations in atmospheric N2O concentration during abrupt climatic changes. Science 285, 227–30.CrossRefGoogle ScholarPubMed
Flückiger, J., Monnin, E., Stauffer, B.et al. (2001). High-resolution Holocene N2O ice core rcord and its relationship with CH4 and CO2. Global Biogeochemical Cycles 16, 10-1–10-7.Google Scholar
Flückiger, J., Monnin, E., Stauffer, B.et al. (2004). N2O and CH4 variations during the last glacial epoch: insight into global processes. Global Biogeochemical Cycles 18, GB1020.CrossRefGoogle Scholar
Foley, J., Kutzbach, J., Coe, M. and Levis, S. (1994). Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371, 52–4.CrossRefGoogle Scholar
Foley, J. A., Prentice, I. C., Ramankutty, N.et al. (1996). An integrated biosphere model of land surface processes, terrestrial carbon balance and vegetation dynamics. Global Biogeochemical Cycles 10, 603–28.CrossRefGoogle Scholar
Forster, P. M. de F. and Collins, M. (2004). Quantifying the water vapour feedback associated with post-Pinatubo global cooling. Climate Dynamics, 23, 207–14.CrossRefGoogle Scholar
Foster, D. R. (2002). Insights from historical geography to ecology and conservation: lessons from the New England landscape. Journal of Biogeography 29, 1269–75.CrossRefGoogle Scholar
Foster, D. R., Motzkin, G. and Slater, B. (1998). Land-use history as long-term broad-scale disturbance: regional forest dynamics in Central New England. Ecosystems 1, 96–119.CrossRefGoogle Scholar
Foster, D. R., Clayden, S., Orwig, D. A., Hall, B. and Barry, S. (2002). Oak, chestnut and fire: climatic and cultural controls of long term forest dynamics in New England, USA. Journal of Biogeography 29, 1359–79.CrossRefGoogle Scholar
Foster, D. R., Motzkin, G., Bernardos, D. and Cardoza, J. (2002). Wildlife dynamics in the changing New England landscape. Journal of Biogeography 29, 1337–1358.CrossRefGoogle Scholar
Foukal, P. (2003). Can slow variations in solar luminosity provide missing link between the sun and climate? EOS 84 (22), 205–8.CrossRefGoogle Scholar
Francis, R. C. and Hare, S. R. (1994). Decadal scale regime shifts in the large marine ecosystems of the north-east Pacific: a case for historical science. Fisheries Oceanography 3, 279–91.CrossRefGoogle Scholar
Frankus, P., Bradley, R. S., Abbott, M. B., Partridge, W. and Keimig, F. (2002). Paleoclimate studies of minerogenic sediments using annually resolved textural parameters. Geophysical Research Letters 29, 1988–2002.Google Scholar
Free, M. and Robock, A. (1999). Global warming in the context of the Little Ice Age. Journal of Geophysical Research-Atmospheres 104, 19057–70.CrossRefGoogle Scholar
Friborg, T., Soegaard, H., Chriistensen, T. R., Lloyd, C. R. and Panikov, N. S. (2003). Siberian wetlands: where a sink is a source. Geophysical Research Letters 30, (21) 2129.CrossRefGoogle Scholar
Frumkin, A., Carmi, I., Bopher, A.et al. (1999). A Holocene millennial-scale climatic cycle from a speleothem in Nahal Qanah Cave, Israel. The Holocene 9, 677–82.CrossRefGoogle Scholar
Fu, C. (2003). Potential impacts of human-induced land cover change on east Asia monsoon. Global and Planetary Change 37, 219–29.Google Scholar
Fu, Q., Johnson, C. M., Warren, S. G. and Seldel, D. J. (2004). Contribution of stratospheric cooling to satellite-inferred tropospheric temperature trends. Nature 429, 55–8.CrossRefGoogle ScholarPubMed
Funtowicz, S. O. and Ravetz, J. R. (1992). The emergence of Post-Normal Science. In Schomberg, , (ed.), Science, Politics and Morality. Dordrecht, Kluwer.Google Scholar
Funtowicz, S. O. and Ravetz, J. R. (1993). Science for the Post-Normal Age. Futures 25, 739–55.CrossRefGoogle Scholar
Gagan, M. K., Ayliffe, L. K., Beck, J. W.et al. (2000). New views of tropical paleoclimates from corals. Quaternary Science Reviews 19, 45–64.CrossRefGoogle Scholar
Gagan, M. K., Hendy, E. J., Haberle, S. G. and Hantaro, W. S. (2004). Post-glacial evolution of the Indo-Pacific Warm Pool and El Niño Southern oscillation. Quaternary International 118–119, 127–43.CrossRefGoogle Scholar
Gaillard, M.-J., Birks, H. J. B., Ihse, M. and Runborg, S. (1998). Pollen/landscape calibration based on modern pollen assemblages from surface-sediment samples and landscape mapping – a pilot study in south Sweden. In Gaillard, M.-J., Berglund, B., Frenzel, B. and Huckriede, U. (eds.). Quantification of land surface cleared of forest during the Holocene. Palaeoklimaforschung/Palaeoclimatic Research, 27, Stuttgart, Gustav Fischer Verlag, pp. 31–55.Google Scholar
Gaillard, M.-J., Dearing, J. A., El-Daoushy, F., Enell, F. and Håkansson, H. (1991). A late Holocene record of land use history, lake trophy and lake-level fluctuations at Lake Baresjø (south Sweden). Journal of Paleolimnology 6, 51–81.CrossRefGoogle Scholar
Galloway, J. N. (2004). The global nitrogen cycle: past, present and future. In Steffen, W., Sanderson, A., Tyson, P. D.et al. Global Change and the Earth System; A Planet Under Pressure. Berlin, Springer Verlag., pp. 122–3.Google Scholar
Galloway, J, N., Aber, J. D., Erisman, J. W.et al. (2003). The nitrogen cascade. Bioscience 53, 341–56.CrossRefGoogle Scholar
Ganachaud, A. and Wunsch, C. (2000). Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408, 453–7.CrossRefGoogle ScholarPubMed
Garstang, M., Ellery, W. N., McCarthy, T. S.et al. (1998). The contribution of aerosol- and water-borne nutrients to the Okovanga Delta ecosystem, Botswana. South African Journal of Science 94, 223–9.Google Scholar
Gasse, F. (2000). Hydrological changes in the African tropics since the last glacial maximum. Quaternary Science Reviews 19, 189–211.CrossRefGoogle Scholar
Gasse, F., Fontes, J. Ch., Plaziat, J. C.et al. (1987). Biological remains, geochemistry and stable isotopes for the reconstruction of environmental and hydrological changes in the Holocene lakes from north Sahara. Palaeogeography, Palaeoclimatology, Palaeoecology 60, 1–46.CrossRefGoogle Scholar
Gaston, K. J. (2000). Global patterns in biodiversity. Nature 405, 220–7.CrossRefGoogle ScholarPubMed
Gedalof, Z., Mantua, N. J. and Peterson, D. L. (2002). A multi-century perspective of variability in the Pacific decadal oscillation: new insights from tree rings and coral. Geophysical Research Letters 29 (24), 57-1–57-4.CrossRefGoogle Scholar
Gehrels, W. R. (2001). Discussion on sea-level changes over the past 1000 years in the Pacific. Journal of Coastal Research 17, 244–5.Google Scholar
Gehrels, W. R., Belknap, D. F., Black, D. F. and Newnham, R. M. (2002). Rapid sea-level rise in the Gulf of Maine, USA, since AD 1800. The Holocene 12, 383–9.CrossRefGoogle Scholar
Geist, H. J. and Lambin, E. F. (2002). Proximate causes and underlying driving forces of tropical deforestation. Bioscience 52, 143–50.CrossRefGoogle Scholar
Georgia, P. J. (2002a). The IPCC's ‘political’ scientist. CEI NewsCenter (www.cei.org). April 18.Google Scholar
Georgia, P. J. (2002b). Global-warming nonsense: an economics journal publishes Junk. CEI NewsCenter (www.cei.org). August 2.Google Scholar
Giannini, A., Saravanan, R. and Chang, P. (2003). Oceanic forcing of Sahel rainfall on interannual to interdacadal timescales. Science 302, 1027–30.CrossRefGoogle Scholar
Gildor, H. (2003). When Earth's freezer is left ajar. EOS 84 (23), 215.CrossRefGoogle Scholar
Gillett, N. P., Wehner, W. F., Tett, S. F. B. and Weaver, A. J. (2004). Testing the linearity of the response to combined greenhouse gas and sulphate aerosol forcing. Geophysical Research Letters 31, L14201.CrossRefGoogle Scholar
Gitz, V. and Ciais, P. (2003). Amplifying the effects of land-use change on future CO2 levels. Global Biogeochemical Cycles 17 (1), 24-1–24-15.CrossRefGoogle Scholar
Glenn, E., Stafford Smith, M. and Squires, V. (1998). On our failure to control desertification: implications for global change issues and a research agenda for the future. Environmental Science and Policy 1, 71–8.CrossRefGoogle Scholar
Goldewijk, K. K. (2003). Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemical Cycles 15, 417–34.CrossRefGoogle Scholar
Goldewijk, K. K. and Battjes, J. J. (1997). A Hundred Year Database for Integrated Environmental Assessments. Bilthoven, The Netherlands, National Institute of Public Health and Environment.Google Scholar
Goodwin, I. D. (2003). Unravelling climatic influences on late Holocene sea-level variability. In Mackay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene, London, Arnold, pp. 406–421.Google Scholar
Goolsby, D. A. (2000). Mississippi basin nitrogen flux believed to cause gulf hypoxia. EOS 29, 321–7.CrossRefGoogle Scholar
Govindaswamy, B., Duffy, P. B. and Coquard, J. (2003). High-resolution simulations of global climate, part 2: effects of increased greenhouse gases. Climate Dynamics 21, 391–404.CrossRefGoogle Scholar
Gregg, W. W., Conkright, M. E., Ginoux, P., O'Reilly, J. E. and Casey, N. W. (2003). Ocean primary production and climate: global decadal changes. Geophysical Research Letters 30 (15), 1809.CrossRefGoogle Scholar
Gregory, J. M., Huybrechts, P. and Raper, S. C. B. (2004). Threatened loss of the Greenland ice-sheet. Nature 428, 616.CrossRefGoogle ScholarPubMed
Gregory, P. J. and Ingram, J. S. (2000a). Global change and food and forest production: future scientific challenges. Agriculture, Ecosystems and Environment 82, 3–14.CrossRefGoogle Scholar
Gregory, P. J. and Ingram, J. S. (2000b). Food and forestry: global change and global challenges. Agriculture, Ecosystems and Environment 82, 1–2.CrossRefGoogle Scholar
Gregory, P. J, Ingram, J. S. I., Anderson, R.et al. (2002). Environmental consequences of alternative practices for intensifying crop production. Agriculture, Ecosystems and Environment 88, 279–90.CrossRefGoogle Scholar
Grissino-Mayer, H. D. (1996). A 2129-year annual reconstruction of precipitation for Northwestern New Mexico, USA. In Meko, D. M., Swetnam, T. W. and Dean, J. S. (eds.). Tree-Rings, Environment and Humanity. Tucson, University of Arizona Press, pp. 191–204.Google Scholar
Grissino-Mayer, H. D. and Watson, E. (2000). Tree-ring data document sixteenth century mega-drought over North America. EOS 81, 121–125.Google Scholar
Grossman, E. E., Fletcher, C. P. III and Richmond, B. M. (1998). The Holocene sea-level highstand in the equatorial Pacific: analysis of the insular palaeosea-level database. Coral Reefs 17, 309–27.CrossRefGoogle Scholar
Grove, J. M. (1988). The Little Ice Age, London, Methuen.CrossRefGoogle Scholar
Grove, J. M. (2001). The initiation of the ‘Little Ice Age’ in regions round the North Atlantic. Climatic Change 48, 53–82.CrossRefGoogle Scholar
Grubb, M., Vrolijk, C. and Brack, D. (1999). The Kyoto Protocol: A Guided Assessment. New York, Brookings.Google Scholar
Grubler, A. and Nakicenovic, M. E. (2001). Identifying dangers in an uncertain climate. Nature 412, 15.CrossRefGoogle Scholar
Grudd, H., Briffa, K., Karlen, W.et al. (2002). A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales. The Holocene 12, 657–67.CrossRefGoogle Scholar
Gu, L., Baldocchi, D. D., Wofsy, S. C.et al. (2003). Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science 299, 2035–8.CrossRefGoogle ScholarPubMed
Guiot, J., Pons, A., Beaulieu, J.-L. and Reille, M. (1989). A 140 000 year climatic reconstruction from two European pollen records. Nature 338, 309–13.CrossRefGoogle Scholar
Guo, Z., Biscaye, P., Wei, L.et al. (2000). Summer monsoon variations over the last 1.2 Ma from the weathering of loess-soil sequences in China. Geophysical Research Letters 27, 1751–4.CrossRefGoogle Scholar
Gyalistras, D., Schar, C., Davies, H. C. and Wanner, H. (1998). Future Alpine climate. In Views from the Alps. Boston, MIT Press, pp. 171–223.Google Scholar
Haan, D. and Raynaud, D. (1998) Ice core record of CO2 variations during the last two millennia: atmospheric implications and chemical interactions within the Greenland ice. Tellus Series B–Chemical and Physical Meteorology 50, 253–62.CrossRefGoogle Scholar
Haberle, S. G. and Lusty, A. C. (2000). Can climate influence cultural development? A view through time. Environment and History 6, 349–69.CrossRefGoogle Scholar
Hajdas, I., Bonani, G., Moreno, P. I. and Ariztegui, D. (2003). Precise radiocarbon dating of late-glacial cooling in mid-latitude South America. Quaternary Research 59, 70–8.CrossRefGoogle Scholar
Hall, B., Motzkin, G., Foster, D. R., Syfert, M. and Burk, J. (2002). Three hundred years of forest and land-use change in Massachusetts, USA. Journal of Biogeography 29, 1319–35.CrossRefGoogle Scholar
Hall, V. A. and Pilcher, J. R. (2002). Late-Quaternary Icelandic tephras in Ireland and Great Britain: detection, characterization and usefulness. The Holocene 12, 223–30.Google Scholar
Hammond, P. (1995). The current magnitude of biodiversity. In Heywood, V. (ed.). Global Biodiversity Assessment. Cambridge, Cambridge University Press.Google Scholar
Hansen, J. E. (2002). A brighter future. Climatic Change 52, 435–40.CrossRefGoogle Scholar
Hansen, J. E., Sato, M., Ruedy, R., Lacias, A. and Oinas, V. (2000). Global warming in the twenty-first century: an alternative scenario. Proceedings of the National Academy of Sciences 97, 9875–80.CrossRefGoogle Scholar
Harremoes, P. and Turner, R. K. (2001). Methods for integrated assessment. Regional Environmental Change 2, 57–65.CrossRefGoogle Scholar
Harris, R. N. and Chapman, D. S. (2001). Mid-Latitude (30° – 60° N) climatic warming inferred from combining borehole temperatures with surface air temperatures. Journal of Geophysical Research 30 (21), 2116.Google Scholar
Harrison, S. P. and Digerfeldt, G. (1993). European lakes as palaeohydrological and palaeoclimatic indicators. Quaternary Science Reviews 12, 233–48.CrossRefGoogle Scholar
Harrison, S. P., Kohfield, K. E., Roelandt, C. and Claquin, T. (2001). The role of dust in climate changes today, at the last glacial maximum and in the future. Earth Science Reviews 54, 43–80.CrossRefGoogle Scholar
Harte, J. (2002). Toward a synthesis of the Newtonian and Darwinian worldviews. Physics Today, October 2002, 29–34.CrossRefGoogle Scholar
Harte, J., Ostling, A., Green, J. L. and Kinzig, A. (2004). Biodiversity conservation: climate change and extinction risk. Nature 430, in press.CrossRefGoogle ScholarPubMed
Harvey, L. D. (2000). Upscaling in global change research. Climatic Change 44, 223–63.CrossRefGoogle Scholar
Harvey, L. D. (2003). Characterizing and comparing the control run variability of eight coupled AOGCMs and of observations. Part 2: precipitation. Climate Dynamics 21, 647–58.CrossRefGoogle Scholar
Hassan, F. A. (1981). Historic Nile floods and their implications for climatic change. Science 212, 1142–5.CrossRefGoogle Scholar
Haug, D. and Kaupenjohann, M. (2001). Parameters, prediction, post-normal science and the precautionary principle – a roadmap for modelling for decision-making. Ecological Modelling 144, 45–60.CrossRefGoogle Scholar
Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C. and Roehl, U. (2001). Southward migration of the intertropical convergence zone through the Holocene. Science 293, 1304–8.CrossRefGoogle ScholarPubMed
Haug, G. H., Gunther, D., Peterson, L. C.et al. (2003). Climate and the Maya. PAGES News 11, 28–30.Google Scholar
Hay, S. I., Cox, J., Rogers, D. J.et al. (2002). Climate change and the resurgence of malaria in the east African highlands. Nature 415, 905–9.CrossRefGoogle ScholarPubMed
Hayne, M. and Chappell, J. (2001). Cyclone frequency during the last 5000 years at Curaçao Island, north Queensland. Palaeogeography, Palaeoclimatology, Palaeoecology 168, 207–19.CrossRefGoogle Scholar
Hays, J. D., Imbrie, J. and Shackleton, N. J. (1976). Variations in the Earth's orbit: pacemaker of the ice ages. Science 194, 1121–32.CrossRefGoogle ScholarPubMed
He, Y., Zhang, Z., Theakstone, W. H.et al. (2003). Changing features of the climate and glaciers in Chin's monsoonal temperate glacier region. Journal of Geophysical Research 108, D17, 2067.CrossRefGoogle Scholar
Hegerl, G. C., Crowley, T. J., Baum, S. K., Kim, K-Y. and Hyde, W. T. (2003). Detection of volcanic and greenhouse gas signals in paleo-reconstructions of northern hemisphere temperature. Geophysical Research Letters 30 (5), 46-1–46-4.CrossRefGoogle Scholar
Heikkila, M. and Seppä, H. (2003). A 11 000 yr palaeotemperature reconstruction from the southern boreal zone in Finland. Quaternary Science Reviews 22, 541–54.CrossRefGoogle Scholar
Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130 000 years. Quaternary Research 29, 142–52.CrossRefGoogle Scholar
Heintzenberg, J, Raes, F. and Schwartz, S. E. et al. (2003). Tropospheric aerosols. In Brasseur, G. P, Prinn, R. G. and Pszenny, A. P. (eds.). Atmospheric Chemistry in a Changing World. Berlin, Springer Verlag.CrossRefGoogle Scholar
Hendy, E. J., Gagan, M. K. and Lough, J. M. (2003). Chronological control of coral records using luminescent lines and evidence for non-stationary ENSO teleconnections in northeastern Australia. The Holocene 13, 187–99.CrossRefGoogle Scholar
Hendy, I. L., Kennett, J. P., Roark, E. B. and Ingram, B. L. (2002). Apparent synchroneity of sub-millennial scale climate events between Greenland and Santa Barbara Basin, California from 30–10 ka. Quaternary Science Reviews 21, 1167–84.CrossRefGoogle Scholar
Hinrichs, K-U., Hmelo, L. R. and Sylva, S. P. (2003). Molecular fossil record of elevated methane levels in late Pleistocene coastal Waters. Science 299, 1214–16.CrossRefGoogle ScholarPubMed
Hodell, D. A., Curtis, J. H. and Brenner, M. (1995). Possible role of climate in the collapse of Classic Maya civilization. Nature 375, 391–4.CrossRefGoogle Scholar
Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world's coral reefs. Marine & Freshwater Research 50, 839–66.CrossRefGoogle Scholar
Hoelzmann, P., Keding, B., Berke, H., Kroepelin, S. and Kruse, H.-J. (2001). Environmental change and archaeology: lake evolution and human occupation in the eastern Sahara during the Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 169, 193–217.CrossRefGoogle Scholar
Holland, T. (2003). The oracle is always right. The Telegraph, December 20, Books Section, p. 3.
Holzhauser, H. and Zumbuehl, H. J. (2002). Reconstruction of minimum glacier extensions in the Swiss Alps. PAGES Newsletter 10 (3), 23–5.Google Scholar
Howarth, R. W., Billen, G., Swaney, D.et al. (1996). Regional nitrogen budgets and riverine N and P fluxes for the drainage to the north Atlantic Ocean: natural and human influences. Biogeochemistry 35, 75–9.CrossRefGoogle Scholar
Hoyt, D. V. and Schattén, K. H. (1993). A discussion of plausible solar irradiance variations, 1700–1992. Journal of Geophysical Research 98, 18895–906.CrossRefGoogle Scholar
Huang, C. C., Zhao, S., Pang, J.et al. (2003). Climatic aridity and the relocations of the Zhou culture in the southern Loess Plateau of China. Climatic Change 61, 361–78.CrossRefGoogle Scholar
Huang, S. (2004). Merging information from different resources for new insights into climate change in the past and future. Geophysical Research Letters 31, L13205.CrossRefGoogle Scholar
Huang, S, Pollack, H. N. and Shen, P. Y. (2000). Temperature trends over the past five centuries from borehole temperatures. Nature 403, 756–8.CrossRefGoogle ScholarPubMed
Huang, Y., Street-Perrott, F. A., Metcalfe, S. E.et al. (2001). Climate change as the dominant control on glacial-Interglacial variations in C3 and C4 plant abundance. Science 293, 1648–51.CrossRefGoogle ScholarPubMed
Hughen, K. A., Eglinon, T. I., Xu, L. and Makou, M. (2004). Abrupt tropical vegetation response to rapid climate changes. Science 304, 1955–8.CrossRefGoogle ScholarPubMed
Hughen, K. A., Overpeck, J. T., Peterson, L. C. and Trumbore, S. (1996). Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380, 51–4.CrossRefGoogle Scholar
Hughen, K. A., Overpeck, J. T., Lehman, S. J.et al. (1998). Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391, 65–8.CrossRefGoogle Scholar
Hughen, K. A., Lehman, S., Southon, J.et al. (2004). 14C Activity and global carbon cycle changes over the past 50 000 years. Science 303, 202–7.CrossRefGoogle ScholarPubMed
Hughes, M. K. and Diaz, H. F. (1994). Was there a ‘Medieval Warm Period’ and if so, where and when? Climatic Change 26, 109–42.CrossRefGoogle Scholar
Hughes, M. K. and Funkhouser, G. (1998). Extremes of moisture availability reconstructed from tree rings for recent millennia in the Great Basin of western North America. In Innes, M. and Beniston, J. L. (eds.). The Impacts of Climate Variability on Forests. Berlin, Springer. pp. 99–107.Google Scholar
Hughes, T. P., Baird, A. H., Bellwood, D. R.et al. (2003). Climate change, human impacts and the resilience of coral reefs. Science 301, 929–33.CrossRefGoogle ScholarPubMed
Hulme, M. (2001). Climatic perspectives on Sahelian desiccation: 1973–1998. Global Environmental Change 11, 19–29.CrossRefGoogle Scholar
Hulme, M., Barrow, E. M., Arnell, N. W., Harrison, P. A., Johns, T. C. and Downing, T. E. (1999). Relative impacts of human-induced climate change and natural climate variability. Nature 397, 688–91.CrossRefGoogle Scholar
Hurrell, J. W., Kushnir, Y., Ottersen, G. and Visbeck, M. (2003). An overview of the North Atlantic Oscillation. Geophysical Monograph 134, 1–35.Google Scholar
IMAGE-team (2001). The IMAGE 2.2 Implementation of the SRES Scenarios. Bilthoven, the Netherlands, National Institute for Public health and Environment (RIVM).
Imbrie, J., and Kipp, N. G. (1971). A new micropaleontological method for paleoclimatology: application to a late Pleistocene Caribbean core. In Turekian, K. K. (ed.). The Late Cenozoic Glacial Ages. New Haven, CT, Yale University Press, pp. 71–181.Google Scholar
IPCC (1996). Climate Change 1995: The Science of Climate Change. Cambridge, Cambridge University Press.
IPCC TAR (2001). Climate Change 2001: Synthesis Report. Cambridge, Cambridge University Press.
Irigolen, X., Hulsman, J. and Harris, R. P. (2004). Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863–7.CrossRefGoogle Scholar
Irino, T., Ikehara, K., Katayama, H., Ono, Y. and Tada, R. (2001). East Asian monsoon signals recorded in the Japan Sea sediments. PAGES News 9 (2), 7–8.Google Scholar
Isdale, P. J., Stewart, B. J., Tickle, J. S. and Lough, J. M. (1998). Palaeohydrological variation in a tropical river catchment: a reconstruction using fluorescent bands in corals of the Great Barrier Reef, Australia. The Holocene 8, 1–8.CrossRefGoogle Scholar
Jackson, J. B. C., Kirby, M. X., Berger, W. H.et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–37.CrossRefGoogle ScholarPubMed
Jacobs, S. S., Giulivi, C. F. and Mele, P. A. (2002). Freshening of the Ross Sea during the late twentieth century. Science 297, 386–9.CrossRefGoogle Scholar
Jacobson, M. Z. (2002). Control of fossil-fuel particulate black carbon and organic matter, probably the most effective method of slowing global warming. Journal of Geophysical Research 107 (D19), 4410.CrossRefGoogle Scholar
Jaenisch, T. and Patz, J. (2002). Assessment of associations between climate and infectious diseases: a comparison of the reports of the intergovernmental panel on climate change (IPCC), the National Research Council (NRC), and United States Global Change Research Program (USGCRP). Global Change and Human Health 3, 67–72.CrossRefGoogle Scholar
Jäger J. (2004). Sustainability science. In Steffen, W., Sanderson, A., Tyson, P. D.et al. (eds.). Global Change and the Earth System; A Planet Under Pressure. Berlin, Springer Verlag, p. 296.Google Scholar
Jahnke, R. A. (2000). The Phosphorus cycle. In Jacobson, M. C., Carlson, R. J., Rodhe, H. and Orians, G. H. (eds.). Earth System Science: From Biogeochemical Cycles to Global Change. London, Academic Press. pp. 360–76.Google Scholar
Jayaraman, A. (1999). Results on direct radiative forcing of aerosols obtained over the tropical Indian Ocean. Current Science 76, 924–30.Google Scholar
Jayaraman, A. and Mitra, A. P. (2004). The Asian Brown Cloud. In Steffen, W., Sanderson, A., Tyson, P. D.et al. (eds.). Global Change and the Earth System; A Planet Under Pressure. Berlin, Springer Verlag, p. 110.Google Scholar
Jensen, M. N. (2003). Consensus on ecological impacts remains elusive. Science 299, 38.CrossRefGoogle ScholarPubMed
Jia, G. J., Epstein, H. E. and Walker, D. A. (2003). Greening of arctic Alaska, 1981–2001. Geophysical Research Letters 30 (20), 2067.Google Scholar
Johnsen, S. J., Dahl-Jensen, D., Gundestrup, N.et al. (2001). Oxygen isotope and paleotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journal of Quaternary Science 16, 299–307.CrossRefGoogle Scholar
Jones, G. S., Tett, S. F. B. and Stott, P. A. (2003) Causes of atmospheric temperature change 1960–2000: a combined attribution analysis. Geophysical Research Letters 5, 32-1–32-4.Google Scholar
Jones, P. D. and Mann, M. E. (2004). Climate over past millennia. Review of Geophysics 42, 2003RG000143.CrossRefGoogle Scholar
Jones, P. D., Briffa, K. R. and Osborn, T. J. (2003). Changes in the northern hemisphere annual cycle: implications for palaeclimatology? Journal of Geophysical Research 108 (D18), 4588.CrossRefGoogle Scholar
Jones, P. D., Briffa, K. R., Barnett, T. P. and Tett, S. F. B. (1998). High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control run temperatures. The Holocene 8, 455–71.CrossRefGoogle Scholar
Jones, P. D., Briffa, K. R., Osborn, T. J., Moberg, A. and Bergström, H. (2002). Relationships between circulation strength and the variability of growing season and cold-season climate in northern and central Europe. The Holocene 12, 643–56.CrossRefGoogle Scholar
Jones, R. N. (2001). An environmental risk assessment/management framework for climate change impact assessments. Natural Hazards 23, 197–230.CrossRefGoogle Scholar
Jones, R. T., Marshall, J. D., Crowley, S. F.et al. (2002). A high resolution, multi-proxy late-glacial record of climate change and intrasystem response in northwest England. Journal of Quaternary Science 17, 329–40.CrossRefGoogle Scholar
Joos, F., Gerber, S., Prentice, I. C., Otto-Bliesner, B. L. and Valdes, P. (2004). Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum. Global Biogeochemical Cycles 18, GB2002, 1–18.CrossRefGoogle Scholar
Joos, F., Plattner, G-K., Stocker, T. F., Koertzinger, A. and Wallace, D. W. R. (2003). EOS 84 (21), 197–201.CrossRef
Jouzel, J., Hoffmann, G., Koster, R. D. and Masson, V. (2000). Water isotopes in precipitation: data/model comparison for present-day and past climates. Quaternary Science Reviews 19, 363–79.CrossRefGoogle Scholar
Jouzel, J., Alley, R. B., Cuffey, K. M.et al. (1997). Validity of temperature reconstruction from water isotopes in ice cores. Journal of Geophysical Research 102, 26471–87.CrossRefGoogle Scholar
Kaiser, D. P. and Qian, Y. (2002). Decreasing trends in sunshine duration over China for 1954–1998: indications of increased haze pollution? Geophysical Research Letters 29 (21), 38-1–38-4.CrossRefGoogle Scholar
Kalnay, E. and Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature 423, 528–31.CrossRefGoogle ScholarPubMed
Kaplan, J. O., Bigelow, N. H., Prentice, I. C.et al. (2003). Climate change and Arctic ecosystems II: modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research 108 (D19), 8171.CrossRefGoogle Scholar
Karlsen, A. W., Cronin, T. M., Ishman, S. E.et al. (2004). Historical trends in Chesapeake Bay dissolved oxygen based on benthic Foraminifera from sediment cores. Estuaries 23, 488–508.CrossRefGoogle Scholar
Karpuz, N. K. and Jansen, E. (1992). A high-resolution diatom record of the last deglaciation from the SE Norwegian Sea; documentation of rapid climatic changes. Paleoceanography 7, 499–520.CrossRefGoogle Scholar
Kaspi, Y., Sayag, R. and Tziperman, E. (2004). A ‘triple sea-ice state’ mechanism for the abrupt warming and synchronous ice sheet collapses during Heinrich events. Paleoceanography 19, PA3004.CrossRefGoogle Scholar
Kassas, M. (1995). Desertification: a general review. Journal of Arid Environments 30, 15.CrossRefGoogle Scholar
Kates, R. W. and Parris, T. M. (2003). Long-term trends and a sustainability transition. Procedings of the National Academy of Sciences 100, 8062–7.CrossRefGoogle Scholar
Kaufman, D. S., Ager, T. A., Anderson, N. J.et al. (2004). Holocene thermal maximum in the western Arctic (0° and 180° W). Quaternary Science Reviews 23, 529–60.CrossRefGoogle Scholar
Kaufmann, R. K. and Stock, J. H. (2003). Testing hypotheses about mechanisms for the unknown carbon sink: a time series analysis. Global Biogeochemical Cycles 17 (2), 1072.CrossRefGoogle Scholar
Keith, D. W. (2001). Geoengineering. Nature 409, 420.CrossRefGoogle Scholar
Kennett, J., Cannariato, K. G., Hendy, I. L. and Behl, R. J. (2000). Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science 288, 128–33.CrossRefGoogle ScholarPubMed
Kennett, J. P., Cannariato, K. G., Hendy, I. L. and Behl, R. J. (2003). Methane Hydrates in Quaternary Climate Changes: the Clathrate Gun Hypothesis. New York, American Geophysical Union.CrossRefGoogle Scholar
Kerr, R. A. (2004). Getting warmer, however you measure it. Science 304, 805–7.CrossRefGoogle Scholar
Kessler, W. S. (2002). Is ENSO a cycle or a series of events? Geophysical Research Letters 29, 23.CrossRefGoogle Scholar
Khodri, M., Leclainche, Y., Ramstein, et al. (2001). Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature 410, 570–4.CrossRefGoogle ScholarPubMed
Kim, S. J. (2004). The effect of atmospheric CO2 and ice sheet topography on LGM climate. Climate Dynamics, 22, 639–51.CrossRefGoogle Scholar
Kitching, R. (2000). Biodiversity, hotspots and defiance. Trends in Ecology and Evolution 15, 484–5.CrossRefGoogle Scholar
Knapp, P. A., Grissino-Mayer, H. D. and Soule, P. T. (2002). Climatic Regionalization and the spatio-temporal occurrence of extreme single-year drought events (1500–1998) in the Interior Pacific Northwest, USA. Quaternary Research 58, 226–33.CrossRefGoogle Scholar
Knapp, S. and Mallet, J. (2003). Refuting refugia? Science 300, 71–2.CrossRefGoogle ScholarPubMed
Knorr, G. and Lohmann, G. (2003). Southern Ocean origin for the resumption of Atlantic themonaline circulation during deglaciation. Nature 424, 532–6.CrossRefGoogle ScholarPubMed
Knox, J. (2000). Sensitivity of modern and Holocene floods to climate change. Quaternary Science Reviews 19, 439–57.CrossRefGoogle Scholar
Knutti, R., Stocker, T. F., Joos, F. and Plattner, G.-K. (2002). Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature 416, 719–23.CrossRefGoogle ScholarPubMed
Knutti, R., Stocker, T. F., Joos, F. and Plattner, G.-K. (2003). Probabilistic climate change projections using neural networks. Climate Dynamics 21, 257–72.CrossRefGoogle Scholar
Kohfield, K. E. and Harrison, S. P. (2000). How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets. Quaternary Science Reviews 19, 321–46.CrossRefGoogle Scholar
Koren, I., Kaufman, Y. J., Remer, L. A. and Martins, J. V. (2004). Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science 303, 1342–5.CrossRefGoogle ScholarPubMed
Körner, C. (2003). Slow in, rapid out – carbon flux studies and Kyoto targets. Science 300, 1242–3.CrossRefGoogle Scholar
Krakauer, N. Y. and Randerson, J. T. (2003). Do volcanic eruptions enhance or diminish net primary productivity? Evidence from tree rings. Global Biogeochemical Cycles 17 (4), 1118.CrossRefGoogle Scholar
Krajick, K. (2004). All downhill from here? Science 303, 1600–2.CrossRefGoogle Scholar
Kumar, K. K., Rajagopalan, B., and Cane, M. A. (1999). On the weakeneing relationship between the Indian monsoon and ENSO. Science 284, 2156–9.CrossRefGoogle ScholarPubMed
Kunkel, K. E., Easterling, D. R., Hubbard, K. and Redmond, K. (2004). Temporal variations in frost-free season in the United States: 1895–2000. Geophysical Research Letters 31, L0321.CrossRefGoogle Scholar
Kutzbach, J. E. and Guetter, P. J. (1986). The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18 000 years. Journal of Atmospheric Sciences 43, 1726–59.2.0.CO;2>CrossRefGoogle Scholar
Kutzbach, J. E. and Liu, Z. (1997). Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science 278, 440–3.CrossRefGoogle Scholar
Labeyrie, L., Cole, J., Alverson, K. and Stocker, T. (2003). The history of climate dynamics in the Late Quaternary. In Alverson, K., Bradley, R. S. and Pedersen, T. F. (eds). Paleoclimate, Global Change and the Future. Berlin, Springer Verlag, pp. 33–63.CrossRefGoogle Scholar
Lachenbruch, A. H. and Marshall, B. V. (1986). Changing climate: geothermal evidence from permafrost in the Alaskan Arctic. Science 234, 689–96.CrossRefGoogle ScholarPubMed
Lackner, K. S. (2003). A guide to CO2 sequestration. Science 300, 1677–8.CrossRefGoogle ScholarPubMed
Laj, C., Kissel, C., Mazaud, A., Channell, J. E. T. and Beer, J. (2000). North Atlantic paleointensity stack since 75 ka (NAPIS-75) and the duration of the Laschamp event. Philosophical Transactions Royal Society London 358, 1009–25.CrossRefGoogle Scholar
Laj, P., Ghermandi, G., Cecchi, R.et al. (1997). Distribution of Ca, Fe and S between soluble and insoluble material in the Greenland Ice Core Project ice core. Journal of Geophysical Research 102, 26615–24.CrossRefGoogle Scholar
Lamb, H. H. (1965). The early Medieval warm epoch and its sequel. Palaeogeography, Palaeoclimatology, Palaeoecology 1, 13–37.CrossRefGoogle Scholar
Lambert, F. H., Stott, P. A., Allen, M. R. and Palmer, M. A. (2004). Detection and attribution of changes in twentieth century land precipitation. Geophysical Research Letters 31, L10203.CrossRefGoogle Scholar
Lambin, E. F. and Geist, H. J. (2003). Regional differences in tropical deforestation. Environment 45 (6), 22–7.Google Scholar
Lambin, E. F., Geist, H. J. and Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environmental Resources 28, 1–14.CrossRefGoogle Scholar
Lambin, E. F., Turner, B. L., Geist, H. J. (2001). The causes of land-use and land-cover change: moving beyond the myths. Global Environmental Change 11, 261–69.CrossRefGoogle Scholar
Lamy, F., Kaiser, J., Ninnemann, U.et al. (2004). Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304, 1959–62.CrossRefGoogle ScholarPubMed
Lang, A. (2003). Phases of soil erosion-derived colluviation in the loess hills of South Germany. Catena 51, 209–21.CrossRefGoogle Scholar
Lang, A., Hatté, C., Rousseau, D.-D.et al. (2003). High-resolution chronologies for loess: comparing AMS 14C and optical dating results. Quaternary Science Reviews 22, 953–9.CrossRefGoogle Scholar
Langenfields, R. L., Francey, R. J., Pak, B. C.et al. (2002). Interannual growth rate variations in atmospheric CO2 and its δ13C, H2, CH4 and CO between 1992 and 1999 linked to biomass burning. Global Biogeochemical Cycles 16, 21-1–21-7.Google Scholar
Langeweg, F. and Gutierrez-Espeleta, E. E. (2001). Human security and vulnerability in a scenario context: challenges for UNEP's global environmental outlook. IHDP Update: Newsletter of the International Human Dimensions Programme on Global Environmental Change 2, 11–2.Google Scholar
Lapenis, A. G., Lawrence, G. B., Andreev, A. A.et al. (2004). Acidification of forest soil in Russia: from 1893 to present. Global Biogeochemical Cycles 18, GB1037, 11–13.CrossRefGoogle Scholar
Larson, D. O., Neff, H., Greybill, D. A., Michaelsen, J. and Ambos, E. (1996). Risk, climatic variability and the study of southwestern prehistory: an evolutionary perspective. American Antiquity 61, 217–41.CrossRefGoogle Scholar
Latif, M., Roeckner, E.Mikolajewicz, U. and Voss, R. (2000). Tropical stabilization of the thermohaline circulation in the greenhouse warming simulation. Journal of Climatology 13, 1809–13.2.0.CO;2>CrossRefGoogle Scholar
Lau, K.-M. and Weng, H. (1999). Interannual, decadal–interdecadal, and global warming signals in sea surface temperature during 1955–97. Journal of Climate 12, 1257–67.2.0.CO;2>CrossRefGoogle Scholar
Lauritzen, S.-E. (2003). Reconstructing Holocene climate records from speleothems. In McKay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 242–63.Google Scholar
Lauritzen, S.-E. and Lundberg, J. (1999). Calibration of the speleothem delta function: an absolute temperature record from the Holocene in northern Norway. The Holocene 9, 659–70.CrossRefGoogle Scholar
Lawton, J. H. and May, R. M. (1995) Extinction Rates. Oxford, Oxford University Press.Google Scholar
Lean, J., Beer, J. and Bradley, R. S. (1995). Reconstruction of solar irradiance since 1610: implications for climate change. Geophysical Research Letters 22, 3195–8.CrossRefGoogle Scholar
Lean, J., Skumanich, A. and White, O. (1992). Estimating the sun's radiative output during the Maunder Minimum. Geophysical Research Letters 19, 1591–4.CrossRefGoogle Scholar
Leatherman, S. P., Douglas, B. C. and LeBrecque, J. L. (2003). Sea level and coastal erosion require large-scale monitoring. EOS 84 (2), 13–16.CrossRefGoogle Scholar
Lee, K., Choi, S.-D., Park, G.-H.et al. (2003). An updated anthropogenic CO2 inventory in the Atlantic Ocean. Global Biogeochemical Cycles 17 (4), 116.CrossRefGoogle Scholar
Leemans, R. (2003). The IMAGE 2 Integrated assessment modelling framework. In Steffen, W., Sanderson, A., Tyson, P. D.et al. (eds.). Global Change and the Earth System; A Planet Under Pressure. Berlin, Springer Verlag, p. 206.Google Scholar
LeGrand, P. and Alverson, K. (2001). Variations in atmospheric CO2 during glacial cycles from an inverse ocean modeling perspective. Paleoceanography 16, 604–16.CrossRefGoogle Scholar
Lelieveld, J., Crutzen, P. J., Ramanathan, N.et al. (2001). The Indian Ocean Experiment: widespread pollution from south and southeast Asia. Science 291, 1031–6.CrossRefGoogle ScholarPubMed
Leng, M. J. (2003). Stable isotopes in lakes and lake sediment archives. In McKay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 124–39.Google Scholar
Leng, M. J. and Marshall, J. D. (2004). Paleoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 23, 811–31.CrossRefGoogle Scholar
Lenton, T. M. and Cannell, M. G. R. (2002). Mitigating the extent and rate of global warming. Climatic Change 52, 255–62.CrossRefGoogle Scholar
Levitus, S., Antonov, J. I., Boyer, T. P. and Stephens, C. (2000). Warming of the world ocean. Science 287, 2225–9.CrossRefGoogle Scholar
Lewis, M. (2003). Common sense. CEI NewsCenter (www.cei.org). June 4.Google Scholar
Lieberman, B. (2003). Ozone depletion's lessons for global Warming. CEI NewsCenter(www.cei.org). October 1.Google Scholar
Lindzen, R. S. and Giannitsis, C. (2002). Reconciling observations of global temperature changes. Geophysical Research Letters 29 (12), 10.CrossRefGoogle Scholar
Lindzen, R. S., Chou, M.-D. and Hou, A. Y. (2001). Does the Earth have an adaptive infrared Iris? Bulletin of the American Meteorological Society 82, 417–32.2.3.CO;2>CrossRefGoogle Scholar
Lintner, B. R. (2002). Characterizing the global CO2 interannual variability with empirical orthogonal function/principal component (EOF/PC) analysis. Geophysical Research Letters 29, 27-1–27-5.CrossRefGoogle Scholar
Lipp, J., Trimborn, P., Graf, W., Edwards, T. and Becker, B. (1995). Climate signals in a 2H and 13C chronology (1882–1989) from tree rings of Spruce (Picea abies L.), Schussbach Forest, Germany. In Dean, J. S., Meko, D. M. and Swetnam, T. W. (eds.). Tree rings, Environment and Humanity, Radiocarbon, 1996, 603–10.Google Scholar
Liski, J., Korotkov, V., Prins, C. F. L., Karjalainen, T., Victor, D. G. and Kauppi, P. E. (2003). Increased carbon sink in temperate and boreal forests. Climatic Change 61, 89–99.CrossRefGoogle Scholar
Liu, Z., Kutzbach, J. E. and Wu, L. (2000). Modeling climate shift of El Niño variability in the Holocene. Geophysical Research Letters 27, 2265–8.CrossRefGoogle Scholar
Liu, Z., Harrison, S. P., Kutzbach, J. and Otto-Bliesner, B. (2004). Global monsoons in the mid-Holocene and oceanic feedback. Climate Dynamics 22, 157–82.CrossRefGoogle Scholar
Livingstone, D. A. (2003). Global climate change strikes a tropical lake. Science 301, 468–9.CrossRefGoogle ScholarPubMed
Löffler, H. (2004). Origin of lake basins. In O'Sullivan, P. E. and Reynolds, C. S. (eds.). The Lake Handbook: Limnology and Limnetic Ecology, Oxford, Blackwell, vol. 1.Google Scholar
Lohmann, U. and Lesins, G. (2002). Stronger constraints on the anthropogenic indirect aerosol effect. Science 298, 1012–15.CrossRefGoogle ScholarPubMed
Lomborg, B. (2001). The Sceptical Environmentalist: Measuring the Real State of the World. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Long, D., Ballantyne, J. and Bertoia, C. (2002). Is the number of Antarctic icebergs really increasing? EOS 83 (42), 471–4.CrossRefGoogle Scholar
Lorius, C., Jouzel, J., Raynaud, D., Hansen, J. and Treut, H. (1990). The ice core record: climate sensitivity and future greenhouse warming. Nature 347, 139–45.CrossRefGoogle Scholar
Lotter, A. F. (1999). Late-glacial and Holocene vegetation history and dynamics as shown by pollen and plant macrofossil analyses in annually laminated sediments from Soppensee, central Switzerland. Vegetation History and Archaebotany 8, 165–84.CrossRefGoogle Scholar
Lotter, A. F. (2003). Multi-proxy climatic reconstructions. In Mackay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 373–83.Google Scholar
Lowe, J. A., Gregory, J. M. and Flather, R. A. (2001). Changes in the occurrence of storm surges around the United Kingdom under a future climate scenario using a dynamic storm surge model driven by the Hadley Centre climate models. Climate Dynamics 18, 179–88.CrossRefGoogle Scholar
Lowe, J. J. and Walker, M. J. C. (1997). Reconstructing Quatternary Environments, 2nd edn. Harlow, Pearson Prentice Hall.Google Scholar
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. and Wanner, H. (2004). European seasonal and annual temperature variability, trends, and extremes Since 1500. Science 303, 1499–1503.CrossRefGoogle ScholarPubMed
Luterbacher, J., Schmutz, C., Gyalistras, D., Xopalski, E. and Wanner, H. (1999). Reconstruction of monthly NAO and EU indices back to AD 1675. Geophysical Research Letters 26, 2745–8.CrossRefGoogle Scholar
MacArthur, R. H. (1995). Fluctuatuions of animal populations and a measure of community stability. Ecology 36, 533–6.CrossRefGoogle Scholar
Mackay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). (2003). Global Change in the Holocene. London, Arnold.Google Scholar
MacAyeal, D. R. (1993) Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic's Heinrich events. Paleoceanography 8, 775–84.CrossRefGoogle Scholar
MacCracken, M. C. (2002). Do the uncertainty ranges in the IPCC and US national assessments account adequately for possible overlooked climatic influences. Climatic Change 52, 11–23.Google Scholar
Mace, G. M., Gittleman, J. L. and Purvis, A. (2003). Preserving the tree of life. Science 300, 1707–9.CrossRefGoogle ScholarPubMed
Macklin, M. G. (1999). Holocene river environments in prehistoric Britain: human interaction and impact. Quaternary Proceedings 7, 521–30.Google Scholar
Macklin, M. G. and Lewin, J. (2003). River sediments, great floods and centennial-scale Holocene climate change. Journal of Quaternary Science 18, 101–5.CrossRefGoogle Scholar
Maggs, R., Wahid, A., Shamsi, S. R. A. and Ashmore, M. R. (1995). Effects of ambient air pollution on wheat and rice yield in Pakistan. Water, Air and Soil Pollution 85, 1311–6.CrossRefGoogle Scholar
Magny, M. (1993). Solar influences on Holocene climatic changes. Quaternary Research 40, 1–9.CrossRefGoogle Scholar
Maher, B. A. and Dennis, P. F. (2001). Evidence against dust-mediated control of glacial-interglacial changes in atmospheric CO2. Nature 411, 176–180.CrossRefGoogle ScholarPubMed
Maher, B. A. and Thompson, R. (1999). Palaeomonsoons I: the magnetic record of Paleoclimate in the terrestrial loess and palaeosol sequences. In Maher, B. A. and Thompson, R. (eds.). Quaternary Climates, Environments and Magnetism. Cambridge, Cambridge University Press, pp. 81–125.CrossRefGoogle Scholar
Mahowald, N., Kohfeld, K., and Mansson, M. (1999). Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. Journal of Geophysical Research 104, 895–916.CrossRefGoogle Scholar
Manabe, S. and Stouffer, R. J. (1995). Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature 378, 165–7.CrossRefGoogle Scholar
Manabe, S. and Stouffer, R. J. (2000). Study of abrupt climate change by a coupled ocean–atmosphere model. Quaternary Science Reviews 19, 285–99.CrossRefGoogle Scholar
Manley, G. (1974). Central England temperatures: monthly means 1659–1973. Quarterly Journal of the Royal Meteorological Society 100, 389–405.CrossRefGoogle Scholar
Mann, M. E. (2002a). The value of multiple proxies. Science 297, 1481–2.CrossRefGoogle Scholar
Mann, M. E. (2002b). Large-scale climate variability and connections with the Middle East in past centuries. Climatic Change 55, 287–314.CrossRefGoogle Scholar
Mann, M. E. and Jones, P. D. (2003). Global surface temperatures over the past two millennia. Geophysical Research Letters 30 (15), 5-1–5-4.CrossRefGoogle Scholar
Mann, M. E. and Schmidt, G. (2003). Ground vs. surface air temperature trends: implications for borehole surface temperature reconstructions. Geophysical Research Letters 30 (12), 1607.CrossRefGoogle Scholar
Mann, M. E., Bradley, R. S. and Hughes, M. K. (1998). Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392, 779–787.CrossRefGoogle Scholar
Mann, M. E., Bradley, R. S. and Hughes, M. K. (1999). Northern hemisphere temperatures during the past millennium: inferences, uncertainties and limitations. Geophysical Research Letters 26, 759–762.CrossRefGoogle Scholar
Mann, M. E., Bradley, R. S. and Hughes, M. K. (2004). Corrigendum: Global-scale temperature patterns and climate forcing over the past six centuries. Nature 430, 105.CrossRefGoogle Scholar
Mann, M. E., Rutherford, R. S., Bradley, R. S., Hughes, M. K. and Keimig, F. T. (2003). Optimal surface temperature reconstructions using terrestrial borehole data. Journal of Geophysical Research 109, D11107.Google Scholar
Mann, M. E., Amman, C., Bradley, R. S.et al. (2003). On past temperatures and anomalous late-twentieth century warmth. EOS 84 (27), 256–7.CrossRefGoogle Scholar
Mann, M. E., Gille, E., Bradley, R. S.et al. (2000). Annual temperature patterns in past centuries: an interactive presentation. Earth Interactions 4, 1–29.2.3.CO;2>CrossRefGoogle Scholar
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. and Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society 78, 1069–79.2.0.CO;2>CrossRefGoogle Scholar
Marchal, O., Stocker, T. F., Joos, F.et al. (1999). Modelling the concentration of atmospheric CO2 during the Younger Dryas climate event. Climate Dynamics 15, 341–54.CrossRefGoogle Scholar
Markgraf, V. (ed.). (2001). Interhemispheric climate linkages. New York, Academic Press.Google Scholar
Marsh, N. D. and Svensmark, H. (2000). Low cloud properties influenced by cosmic rays. Physics Review Letters 85, 5004–7.CrossRefGoogle ScholarPubMed
Marsh, N. D. and Svensmark, H. (2004). Comment on ‘Solar influences on cosmic rays and clous formation: a reassessment’ by Bomin Sun and Raymond S. Bradley. Journal of Geophysical Research 109, D1425.CrossRefGoogle Scholar
Marshall, J. D., Jones, R. T., Crowley, S. F., Oldfield, F., Nash, S. and Bedford, A. (2002). A high resolution late-glacial isotopic record from Hawes Water, northwest England. Climate oscillations: calibration and comparison of palaetemperature proxies. Palaeogeography, Palaeoclimatology, Palaeoecology 185, 25–40.CrossRefGoogle Scholar
Martens, P. (1998). Health and Climate: Modelling the Impacts of Global Warming and Ozone Depletion. London, Earthscan.Google Scholar
Martinson, D. G., Pisias, N. G., Hays, J. D., Imbrie, J., Moore, T. C. and Shackleton, N. J. (1987). Age dating and the orbital theory of the ice ages: development of a high resolution 0–300 000 year chronostratigraphy. Quaternary Research 27, 1–29.CrossRefGoogle Scholar
Maslin, M., Pike, J., Stickley, C and Ettwein, V. (2003). Evidence of Holocene climate variability in marine sediments. In Mackay, A. W., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.) Global Change in the Holocene. London, Arnold, pp. 185–209.Google Scholar
Maslin, M. and Thomas, E. (2003). Balancing the deglacial carbon budget: the hydrate factor. Quaternary Science Reviews 22, 1729–36.CrossRefGoogle Scholar
Mason, B. (2004). Climate change: the hot hand of history. Nature 427, 582–3.CrossRefGoogle ScholarPubMed
Matthews, H. D.Weaver, A. J.Meissner, K. J.Gillett, N. P. and Eby, M. (2004,). Natural and anthropogenic climate change: incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Climate Dynamics 22, 461–79.CrossRefGoogle Scholar
May, R. M. (1973). Stability and Complexity in Model Ecosystems. Princeton, NJ, Princeton University Press.Google ScholarPubMed
Mayewski, P. A., Meeker, L. D., Twickler, M. S.et al. (1997). Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110 000-year-long glaciochemical series. Journal of Geophysical Research 102, 26345–66.CrossRefGoogle Scholar
Maynard, K., Royer, J.-F. and Chauvin, F. (2002). Impact of greenhouse warming on the west African summer monsoon. Climate Dynamics 19, 499–514.Google Scholar
McCann, K. S. (2000). The diversity-stability debate. Nature 405, 228–33.CrossRefGoogle ScholarPubMed
McCarroll, D. and Loader, N. J. (2004). Stable isotopes in tree rings. Quaternary Science Reviews 23, 771–801.CrossRefGoogle Scholar
McCarroll, D. and Pawelleck, F. (2001). Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. The Holocene 11, 517–26.CrossRefGoogle Scholar
McDermott, F. (2004). Paleo-climate reconstructions from stable isotope variations in speleothems: a review. Quaternary Science Reviews 23, 901–18.CrossRefGoogle Scholar
McGlone, M. S. (1995). Late glacial landscape and vegetation change during the Younger Dryas climatic oscillation in New Zealand. Quaternary Science Reviews 14, 867–81.CrossRefGoogle Scholar
McGregor, H. V. and Gagan, M. K. (2004). Western Pacific δ18O records of anomalous Holocene variability in the El Niño Southern Oscillation. Geophysical Research Letters 31 (15), L11204.CrossRefGoogle Scholar
McGuffie, K. and Henderson-Sellers, A. (1999). A Climate Modelling Primer, 2nd Edition. New York, Wiley.Google Scholar
McIntyre, S. and McKitrick, R. (2003). Corrections to the Mann et al. (1998) proxy data base and northern hemispheric average temperature series. Energy and Environment 14, 751–71.CrossRefGoogle Scholar
McManus, J. F., François, R., Gherardi, J.-M., Keigwin, L. D. and Brown-Leger, S. (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–7.CrossRefGoogle ScholarPubMed
McNeill, B. I., Matear, R. J., Key, R. M., Bullister, J. L. and Sarmiento, J. L. (2003). Anthropogenic CO2 uptake by the ocean based on the global chlorofluorocarbon data Set. Science 299, 235–8.CrossRefGoogle Scholar
Mearns, L. O., Giorgi, F., McDaniel, L. and Shields, C. (2003). Climate scenarios for the southeastern US Based on GCM and regional model simulations. Climatic Change 60, 7–35.CrossRefGoogle Scholar
Meehl, G. A. and Arblaster, J. M. (2003). Mechanisms for projected future changes in south Asian monsoon precipitation. Climate Dynamics 21, 659–75.CrossRefGoogle Scholar
Meissner, K. J., Weaver, A. J., Matthews, H. D. and Cox, P. M. (2003). The role of land surface dynamics in glacial inception: a study with the Uvic Earth System Model. Climate Dynamics 21, 515–37.CrossRefGoogle Scholar
Menon, S., Hansen, J., Nazarenko, L. and Luo, Y. (2002). Climate effects of black carbon aerosols in China and India. Science 297, 250–2.CrossRefGoogle ScholarPubMed
Menzel, A. (2002). Phenology: its importance to the global change community. Climate Change 54, 379–85.CrossRefGoogle Scholar
Menzel, A. and Estrella, N. (2001). Past phenological changes. In Walther, G. R., Burga, C. A. and Edwards, P. J. (eds.). Fingerprints of Climate Change – Adapted Behaviour and Shifting Species Ranges. New York, Kluwer.Google Scholar
Messerli, B., Grosjean, M., Hofer, T., Nuñez, L. and Pfister, C. (2000). From nature-dominated to human-dominated environmental changes. Quaternary Science Reviews 19, 459–79.CrossRefGoogle Scholar
Meybeck, M. and Ragu, A. (1997). Presenting the GEMS-GLORI, a compendium for world river discharges to the oceans. International Association of Hydrological Sciences 243, 3–14.Google Scholar
Meybeck, M. and Vörösmarty, C. (2004). Human-driven changes to continental aquatic systems. In Steffen, W., Sanderson, A., Tyson, P.et al. (eds.). Global Change and the Earth System: A Planet Under Pressure. Berlin, Springer Verlag. pp. 112–113.Google Scholar
Mickley, L. J., Jacob, D. J., Field, B. D. and Rind, D. (2004). Climate response to the increase in tropospheric ozone since preindustrial times: a comparison between ozone and equivalent CO2 forcings. Journal of Geophysical Research 109, D05106.CrossRefGoogle Scholar
Midgley, G. F., Hannah, L., Millar, D., Rutherford, M. C. and Powrie, L. W. (2002). Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Global Ecology and Biogeography 11, 445–51.CrossRefGoogle Scholar
Mikolajewicz, U., Crowley, T. J., Schiller, A. and Voss, R. (1997). Modelling teleconnections between the North Atlantic and North Pacific during the Younger Dryas. Nature 387, 384–7.CrossRefGoogle Scholar
Milankovitch, M. M. (1941). Canon of insolation and the ice-age problem. Beograd: Koninglich Serbische Akademie. [English translation by the Israel program for Scientific Translations, published by the US Department of Commerce, and the National Science Foundation, Washington DC (1969)].Google Scholar
Miller, L. and Douglas, B. C. (2004). Mass and volume contributions to twentieth-century global sea-level rise. Nature 428, 406–9.CrossRefGoogle ScholarPubMed
Milly, P. C. D., Wetherald, R. T., Dunne, K. A. and Delworth, T. L. (2002). Increasing risk of floods in a changing climate. Nature 415, 514–7.CrossRefGoogle Scholar
Mirza, M., Mirza, Q., Warrick, R. A. and Ericksen, N. J. (2003). The implications of climate change on floods of the Ganges, Brahmaputra and Meghna Rivers in Bangladesh. Climatic Change 57, 287–318.CrossRefGoogle Scholar
Mitchell, J. F. B., Karoly, D. J., Hegerl, G. C.et al. In IPCC TAR (2001). Detection of Climate Change and Attribution of Causes. Cambridge, Cambridge University Press, pp. 697–738.Google Scholar
Mitrovica, J. X., Tamisea, M. E., Davis, J. L. and Milne, G. A. (2001). Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409, 1026–29.CrossRefGoogle ScholarPubMed
Mitsuguchi, T., Matsumoto, E., Abe, O., Uechida, T. and Isdale, P. J. (1996). Mg/Ca thermometry in coral skeletons. Science 274, 961–3.CrossRefGoogle ScholarPubMed
Mix, A. C., Bard, E. and Schneider, R. (2001). Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quaternary Science Reviews 20, 627–57.CrossRefGoogle Scholar
Mock, C. J. (2002). Documentary records of past climate and tropical cyclones from the southeastern United States. PAGES Newsletter 10 (3), 20–21.Google Scholar
Monnin, E., Indermühle, A., Dällenbach, A.et al. (2001). Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112– 114.CrossRefGoogle ScholarPubMed
Mooney, H. A., Canadell, J., Chapin, F. S. III, et al. (1999). Ecosystem physiology responses to global change. In Walker, B., Steffen, W.Canadell, J. and Ingram, J. (eds.). The terrestrial biosphere and global change. Implications for Natural and Managed Ecosystems. Cambridge, Cambridge University Press.Google Scholar
Moore, G. W. K., Holdsworth, G. and Alverson, K. (2001). Extra-tropical responses to ENSO 1736–1985 as expressed in an ice core from the Saint Elias Mountain range in northwestern North America. Geophysical Research Letters 28, 3457–61.CrossRefGoogle Scholar
Moore, G. W. K., Holdsworth, G. and Alverson, K. (2002). Climate change in the north Pacific region over the past three centuries. Nature 420, 401–3.CrossRefGoogle ScholarPubMed
Morgan, V., Delmotte, M., Ommen, T.et al. (2002). Relative timing of deglacial climate events in Antarctica and Greenland. Science 297, 1862–4.CrossRefGoogle ScholarPubMed
Mörner, N.-A. (2004). Estimating future sea-level changes from past records. Global and Planetary Change 40, 49–54.CrossRefGoogle Scholar
Mörner, N.-A., Tooley, M. and Possnert, G. (2004). New perspectives for the future of the Maldives. Global and Planetary Change 40, 177–182.CrossRefGoogle Scholar
Morrill, C., Overpeck, J. T. and Cole, J. E. (2003). A synthesis of abrupt changes in the Asian summer monsoon since the last glaciation. The Holocene 13, 465–76.CrossRefGoogle Scholar
Mosier, A. R., Bleken, M. A., Chaiwanakupt, P.et al. (2002). Policy implications of human-accelerated nitrogen cycling. Biogeochemistry 57–58, 477–516.CrossRefGoogle Scholar
Moy, C. M., Seltzer, G. O., Rodbell, D. T. and Anderson, D. M. (2002). Variability of El Niño/southern oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–5.CrossRefGoogle ScholarPubMed
Mueller, D. R., Vincent, W. F. and Jeffries, M. O. (2003). Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophysical Research Letters 30 (20), CRY 1-1–1-4.CrossRefGoogle Scholar
Müller, P. J., Kirst, G., Ruhland, G., Storch, I. and Rosell-Mélé, A. (1998). Calibration of alkenone paleotemperature index Uk37 based on core tops from the eastern South Atlantic and the global ocean (60° N–60° S). Geochimica et Cosmochimica Acta 62, 1757–71.CrossRefGoogle Scholar
Muller, R. A. and MacDonald, G. J. (1997). Glacial cycles and astronomical forcing. Science 277, 215–18.CrossRefGoogle Scholar
Munk, W. (2003). Ocean freshening, sea-level rising. Science 300, 2041–3.CrossRefGoogle ScholarPubMed
Murray, I. (2003a). Hockey stick slapped: climate change's bellisles? CEI NewsCenter(www.cei.org). November 3.Google Scholar
Murray, I. (2003b). Tackling junk science. CEI NewsCenter(www.cei.org). July 2.Google Scholar
Murray, I. (2003c). Are we all ‘damn fools’? CEI NewsCenter(www.cei.org). September 22.Google Scholar
Myers, N., Mittermeier, R., Mittermeier, C., da Fonseca, G.-A. and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853–8.CrossRefGoogle ScholarPubMed
Nachtergaele, F. (2002). Land degradation assessment in drylands (LADA project). LUCC Newsletter 8, 15.Google Scholar
Nakagawa, T., Kitagawa, H., Yasuda, Y.et al. (2003). Asynchronous climate changes in the North Atlantic and Japan during the last termination. Science 299, 688–91.CrossRefGoogle ScholarPubMed
Nakicenovic, N. and Swart, R. (2001). Special Report on Emission Scenarios. Cambridge, Cambridge University Press.Google Scholar
Neelin, J. D., Chou, C. and Su, H. (2003). Tropical drought regions in global warming and El Niño teleconnections. Geophysical Research Letters 30 (24), 5-1–5-4.CrossRefGoogle Scholar
Neff, U., Burns, S. J., Mangini, A., Mudalsee, M., Fleitmann, D. and Matter, A. (2001). Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411, 290–3.CrossRefGoogle ScholarPubMed
Nemani, R. R., Keeling, C. D., Hashimoto, H.et al. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–62.CrossRefGoogle ScholarPubMed
Nials, F. L., Gregory, D. A., Graybill, D. A. (1989). Salt river stream flow and Hohokam irrigation systems. In Graybill, D. A., Gregory, D. A., Nials, F. L., Gasser, R., Miksicek, C. and Szuter, C. (eds.). The 1982–1992 excavations at Las Colinas: Environment and Subsistence 5. Arizona State Museum Archaeological Series. Tuson AZ, University of Arizona, pp. 59–78.Google Scholar
Nicholls, R. J. and Small, C. (2002). Improved estimates of coastal population and exposure to Hazards released. EOS 83 (28), 301–5.CrossRefGoogle Scholar
Nicholson, S. E. (1982). The Sahel: a Climatic Perspective. Paris, Club du Sahel.Google Scholar
Nicoll, N. (2004). Recent environmental change and prehistoric human activity in Egypt and northern Sudan. Quaternary Science Reviews, 23, 561–80.CrossRefGoogle Scholar
Niggermann, S., Mangini, A., Richter, D. K. and Würth, G. (2003). A Paleoclimate record of the last 17 600 years in stalagmites from the B7 cave, Sauerland, Germany. Quaternary Science Reviews 22, 555–67.CrossRefGoogle Scholar
Nobre, C. A. (2004). The large-scale biosphere–atmosphere experiment in Amazonia. In Steffen, W., Sanderson, A., Tyson, P. D.et al. (eds.). Global Change and the Earth System; a Planet Under Pressure. Berlin, Springer Verlag, p. 278.Google Scholar
Nobre, C. A., Wickland, D. and Kabat, P. I. (2001). The large scale biosphere–atmosphere experiment in Amazonia. IGBP Global Change Newsletter 45, 2–4.Google Scholar
Norby, R. J. (2004). Forest responses to a future CO2 enriched atmosphere. In Steffen, W., Sanderson, A., Tyson, P. D.et al. (eds.). Global Change and the Earth System; a Planet Under Pressure. Berlin, Springer Verlag, pp. 158–9.Google Scholar
Noren, A. J., Bierman, P. R., Steig, E. J., Lini, A. and Southron, J. (2002). Millennial-scale storminess variability in the northeastern United States during the Holocene epoch. Nature 419, 821–4.CrossRefGoogle ScholarPubMed
Nosengo, N. (2003). Fertilized to death. Nature 425, 894–5.CrossRefGoogle Scholar
Nott, J. and Hayne, M. (2001). High frequency of ‘super-cyclones’ along the Great Barrier Reef over the past 5000 years. Nature 413, 508–12.CrossRefGoogle Scholar
Nuñez, L., Grosjean, M. and Cartajena, I. (2002). Human occupations and climate change in the Puna de Atacama, Chile. Science 298, 821–4.CrossRefGoogle ScholarPubMed
Nunn, P. D. (1998). Sea-level changes over the past 1000 years in the Pacific. Journal of Coastal Research 14, 23–30.Google Scholar
Nurse, L. and Sem, G. (2001). Small island states. In McCarthy, J., Canziani, O., Leary, N., Dokken, D. and White, K. (eds.). Climate Change 2001: Impacts, Adaptation and Vulnerability. Cambridge, Cambridge University Press.Google Scholar
Oechel, W. C., Vourlitis, G. L., Hastings, S. J.et al. (2000). Oscillation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406, 978–81.CrossRefGoogle Scholar
Ogi, M., Yamazaki, K. and Yoshihiro, T. (2003). Solar cycle modulation of the seasonal linkage of the North Atlantic oscillation (NAO). Geophysical Research Letters 30 (22), 8-1–8-4.CrossRefGoogle Scholar
Okhouchi, N., Eglinton, T. I., Keigwin, L. D. and Hayes, J. M. (2002). Spatial and temporal offsets between proxy records in a sediment drift. Science 298, 1224–6.CrossRefGoogle Scholar
Oldfield, F. (1993). Forward to the past: changing approaches to Quaternary palaeoecology. In Chambers, F. M. (ed.) Climate Change and Human Impact on the Landscape. Chapman and Hall, London, pp. 13–22.CrossRefGoogle Scholar
Oldfield, F. (in press) Towards developing synergistic linkages between the biophysical and the cultural; a palaeo-environmental perspective. In Hornborg, A., Butzer, K. W., Crumley, C. L., McNeill, J. R. and Martinez-Allier, J. (eds.). World System History and global Environmental change. New York, Columbia University Press.
Oldfield, F. and Alverson, K. (2003). The societal relevance of palaeoenvironmental research. In Alverson, K., Bradley, R. S. and Pedersen, T. F. (eds.). Paleoclimate, Global Change and the Future. Berlin, Springer Verlag, pp. 1–11.CrossRefGoogle Scholar
Oldfield, F. and Appleby, P. A. (1984). Empirical testing of 210Pb-dating models for lake sediments. In Haworth, E. Y. and Lund, J. W. G. (eds.). Lake Sediments and Environmental History. Leicester, Leicester University Press, pp. 93–124.Google Scholar
Oldfield, F, Asioli, A, Accorsi, C. A.et al. (2003a). A high resolution late-Holocene palaeo-environmental record from the central Adriatic Sea. Quaternary Science Reviews 22, 319–42.CrossRefGoogle Scholar
Oldfield, F. and Dearing, J. A. (2003). The role of human activities in past environmental change. In Alverson, K. D., Bradley, R. S. and Pedersen, T. F. (eds.). Paleoclimate, Global Change and the Future. Berlin, Springer Verlag, pp. 142–62.CrossRefGoogle Scholar
Oldfield, F., Richardson, N, and Appleby, P. G. (1995). The dating of recent ombrotrophic peat accumulation and evidence for changes in mass balance. The Holocene 5, 141–8.CrossRefGoogle Scholar
Oldfield, F., Thompson, R., Crooks, P. R. J.et al. (1997). Radiocarbon dating of a recent high-latitude peat profile: Stor Åmyran, N.Sweden. The Holocene 7, 283–90.CrossRefGoogle Scholar
Oldfield, F., Wake, R., Boyle, J.et al. (2003b). The late-Holocene history of Gormire Lake (NE England) and its catchment: a multiproxy reconstruction of past human impact. The Holocene 13, 677–90.CrossRefGoogle Scholar
Oppenheimer, M. (1998). Global warming and the stability of the west Antarctic ice sheet. Nature 393, 523–32.CrossRefGoogle Scholar
Oppenheimer, M. and Alley, R. B. (2004). The west Antarctic ice sheet and long term climate policy. Climatic Change, 64, 1–10.CrossRefGoogle Scholar
Oppo, D. W., McManus, J. F. and Cullen, J. L. (2003). Palaeo-oceanography: deepwater variability in the Holocene epoch. Nature 422, 277.CrossRefGoogle ScholarPubMed
O'Reilly, C. M., Alin, S. R., Plisnier, P.-D, Cohen, A. S. and McKee, B. A. (2003). Climate-change effect on Lake Tanganyika. Nature 424, 766–8.CrossRefGoogle ScholarPubMed
Ortlieb, L. (2000). The documentary historical record of El Niño events in Peru: an update of the Quinn record (sixteenth through nineteenth centuries). In Diaz, H. and Markgraf, V. (eds.). El Niño and the Southern Oscillation: Variability, Global and Regional Impacts. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Osborne, T. M., Lawrence, D. M., Slingo, J. M., Challinor, A. J. and Wheeler, T. R. (2004). Influence of vegetation on the local climate and hydrology in the tropics: sensitivity to soil parameters. Climate Dynamics, 23, 45–61.CrossRefGoogle Scholar
Osorio, I. G. (2003). The international green agenda. Foundation Watch, November, pp. 1–7.Google Scholar
Overland, J. E., Spillane, M. C. and Soreide, N. N. (2004). Integrated analysis of physical and biological pan-Arctic change. Climatic Change 63, 291–322.CrossRefGoogle Scholar
Overpeck, J. T. (1996). Varved sediment records of recent seasonal to millennial scale environmental variability. In Jones, P. D., Bradley, R. S. and Jouzel, J. (eds.). Climate Variations and Forcing Mechanisms of the Last 2000 Years. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Overpeck, J., Hughen, K., Hardy, D.et al. (1997). Arctic environmental change of the last four centuries. Science 278, 1251–7.CrossRefGoogle Scholar
Overpeck, J., Rind, D., Lacis, A. and Healy, R. (1996). Possible role of dust-induced regional warming in abrupt climate change during the last glacial period. Nature 384, 447–9.CrossRefGoogle Scholar
Overpeck, J., Whitlock, C. and Huntley, B. (2003). Terrestrial biosphere dynamics in the climate system: past and Future. In Alverson, K. D., Bradley, R. S. and Pedersen, T. F. (eds.). Paleoclimate, Global Change and the Future. Berlin, Springer Verlag, pp. 81–103.CrossRefGoogle Scholar
Ozanne, C. M. P., Anhuf, D., Boulter, S. L.et al. (2003). Biodiversity meets the atmosphere: a global view of forest canopies. Science 301, 183–6.CrossRefGoogle ScholarPubMed
Pal, J. S., Giorgi, F. and Bi, X. (2004). Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophysical Research Letters 31, L13202.CrossRefGoogle Scholar
Palmer, T. N. and Raisanen, J. (2002). Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415, 512–4.CrossRefGoogle Scholar
Parmesan, C. and Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42.CrossRefGoogle ScholarPubMed
Parris, T. M. and Kates, R. W. (2003). Characterizing a sustainability transition. Proceedings of the National Academy of Sciences 100, 8068–73.CrossRefGoogle ScholarPubMed
Parry, M., Arnell, N., McMichael, A., et al. (2001). Millions at risk: defining critical climate change threats and targets. Global Environmental Change 11, 181–3.CrossRefGoogle Scholar
Paul, F. (2002). Combined technologies allow rapid analysis of glacier changes. EOS 83 (23), 253–61.CrossRefGoogle Scholar
Pauling, A., Luterbacher, J. and Wanner, H. (2003). Evaluation of proxies for European and North Atlantic temperature field reconstructions. Geophysical Research Letters 30 (15), 2-1–2-4.CrossRefGoogle Scholar
Paulsen, D. E., Li, H.-C. and Ku, T.-L. (2003). Climate variability in central China over the last 1270 years revealed by high-resolution stalagmite records. Quaternary Science Reviews 22, 691–701.CrossRefGoogle Scholar
Pearson, R. G., Dawson, T. P., Berry, P. M. and Harrison, P. A. (2002). SPECIES: a spatial evaluation of climate impacts on the envelope of species. Ecological Modelling 154, 289–300.CrossRefGoogle Scholar
Pedersen, T. F., François, R., François, L., Alverson, K. and McManus, J. (2003). The late Quaternary history of biogeochemical cycling of carbon. In Alverson, K., Bradley, R. S. and Pedersen, T. F. (eds). Paleoclimate, Global Change and the Future. Berlin, Springer Verlag, pp. 63–79.CrossRefGoogle Scholar
Penner, J. E. (2003). Comment on ‘Control of fossil-fuel particulate black carbon and organic matter, probably the most effective method of slowing global warming’ by M. Z. Jacobson. Journal of Geophysical Research 108, 14-1–14-5.CrossRefGoogle Scholar
Penner, J. E., Dong, X. and Chen, Y. (2004). Observational evidence of a change in radiative forcing due to the indirect aerosol effect. Nature 427, 231–4.CrossRefGoogle ScholarPubMed
Penner, J. E., Zhang, S. Y. and Chuang, C. C. (2003). Soot and smoke aerosol may not warm climate. Journal of Geophysical Research 108 (D24), 4731.CrossRefGoogle Scholar
Penuelas, J. and Boada, M. (2003). A global change-induced biome shift in the Montseny mountains (NE Spain). Global Change Biology 9, 131–40.CrossRefGoogle Scholar
Peterson, B. J., Holmes, R. M., McClelland, J. W.et al. (2002). Increasing river discharge to the Arctic ocean. Science 298, 2171–3.CrossRefGoogle ScholarPubMed
Peterson, G., Allen, C. R. and Holling, C. S. (1998). Ecological resilience, biodiversity and scale. Ecosystems 1, 6–18.CrossRefGoogle Scholar
Petit, J. R., Jouzel, J., Raynaud, D.et al. (1999). Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica. Nature 399, 429–36.CrossRefGoogle Scholar
Petit, R. J., Aguinagalde, I., Beaulieu, J.-L.et al. (2003). Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300, 1563–5.CrossRefGoogle Scholar
Petit-Maire, N. (1999). Variabilité naturelle des environnements terrestres: les deux extrèmes climatiques (1800 ± 2000 and 8000 ± 1000 yrs BP). Earth and Planetary Sciences 328, 273–9.Google Scholar
Petschel-Held, G. (2001). Actors and their environment – syndromes of land-use change in developing countries. International Geosphere Biosphere Programme. Global Change NewsLetter 48, 27.Google Scholar
Pfister, C. (1992). Monthly temperature and precipitation in central Europe 1525–1979: quantifying documentary evidence on weather and its effects. In: Bradley, R. S. and Jones, P. D. (eds.). Climate Since AD 1500. London, Routledge.Google Scholar
Pfister, C., Brazdil, R. and Barriendos, M. (2002). Reconstructing past climate and natural disasters in europe using documentary evidence. PAGES News 10 (3), 6–8.Google Scholar
Pfister, C. and Wanner, H. (eds.). (2002). PAGES News 10 (3), 2, and 8–26.
Philipona, R., Dürr, B., Marty, C., Ohmura, A. and Wild, M. (2004). Radiative forcing – measured at Earth's surface – corroborates the increasing greenhouse effect. Geophysical Research Letters 31, L03202.CrossRefGoogle Scholar
Pielke, R. A. (2002). Overlooked issues in the US national climate and IPCC assessments – an Editorial essay. Climatic Change 52, 1–11.Google Scholar
Pielke, R. A. and Chase, T. N. (2004). Comment on ‘Contributions of anthropogenic and natural forcing to recent tropopause height changes’. Science 303, 1771.CrossRefGoogle ScholarPubMed
Pilkey, O. H. and Cooper, J. A. G. (2004). Society and sea-level rise. Science 303, 1781–2.CrossRefGoogle ScholarPubMed
Pimm, S. L., Russell, G. J., Gittleman, J. L. and Brooks, T. M. (1995). The future of biodiversity. Science 269, 347–50.CrossRefGoogle ScholarPubMed
Pinot, S., Ramstein, G., Harrison, S. P.et al. (1999). Tropical Paleoclimates of the last glacial maximum: comparison of Paleoclimate Modelling Intercomparison project (PMIP): simulations and palaeodata. Climate Dynamics 15, 857–74.CrossRefGoogle Scholar
Pittock, A. B. (2002). What we know and don't know about climate change: reflections on the IPCC TAR. Climatic Change 53, 393–411.CrossRefGoogle Scholar
Plattner, G.-K., Joos, F. and Stocker, T. F. (2002). Revision of the global carbon budget due to changing air-sea oxygen fluxes. Global Biogeochemical Cycles 16, 43-1–43-8.CrossRefGoogle Scholar
Podgorny, I. A., Li, F. and Ramanathan, V. (2003). Large aerosol radiative forcing due to the 1997 Indonesian forest fire. Geophysical Research Letters 30, 28-1–27-4.CrossRefGoogle Scholar
Pollack, H. N. and Smerdon, J. E. (2004). Borehole climate reconstructions; spatial structure and hemispheric averages. Journal of Geophysical Research 109, D11106.CrossRefGoogle Scholar
Popper, K. R. (1963). Conjectures and refutations. London, Routledge & Keegan Paul.Google Scholar
Prentice, I. C., Farquhar, G. D., Fasham, M. J. R. et al. (2001). The carbon cycle and atmospheric CO2. In Houghton, J., et al. (eds). Climate Change 2001: the Scientific Basis. Contribution of Working Group I to the IPCC Third Assessment Report. Cambridge, Cambridge University Press, pp. 183–237.Google Scholar
Prentice, I. C., Jolly, D. and BIOME 6000 members (2000). Mid-Holocene and glacial maximum vegetation geography of the northern continents and Africa. Journal of Biogeography 27, 507–19.CrossRefGoogle Scholar
Prentice, I. C., Sykes, M. T., Lautenschlager, M.et al. (1993). Modelling the global vegetation patterns and terrestrial carbon storage at the last glacial maximum. Global Ecology and Biogeography Letters 3, 67–76.CrossRefGoogle Scholar
Pretty, J. N., Morrison, J. L. L. and Hine, R. E. (2002). Reducing food poverty by increasing agricultural sustainability in developing countries. Agriculture, Ecosystems and Environment 88, 1–18.Google Scholar
Procopio, A. S., Artaxo, P., Kaufman, Y. J., Remer, L. A., Schafer, J. S. and Holben, B. N. (2004). Multiyear analysis of Amazonian biomass burning smoke radiative forcing of climate. Geophysical Research Letters 31, L03108.CrossRefGoogle Scholar
Purvis, A. and Hector, A. (2000). Getting the measure of biodiversity. Nature 405, 212–9.CrossRefGoogle ScholarPubMed
Ramrath, A., Sadori, L. and Negendank, J. F. W. (2000). Sediments from Lago di Mezzano, central Italy: a record of late glacial/Holocene climatic variations and anthropogenic impact. The Holocene 10, 87–95.CrossRefGoogle Scholar
Rahmstorf, S. (2002). Ocean circulation and climate during the past 120 000 years. Nature 419, 207–14.CrossRefGoogle ScholarPubMed
Rahmstorf, S. (2003). Timing of abrupt climate change: a precise clock. Geophysical Research Letters 30 (10), 17-1–17-4.CrossRefGoogle Scholar
Rahmstorf, S. and Alley, R. B. (2002). Stochastic resonance in glacial climates. EOS 83, 129–135.CrossRefGoogle Scholar
Rahmstorf, S. and Ganapolski, A. (1999). Long term global warming scenarios computed with an efficient coupled climate model. Climatic Change 43, 353–67.CrossRefGoogle Scholar
Raisanen, J., Hansson, U., Ullerstig, A.et al. (2003). European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Climate Dynamics 21, 13–31.Google Scholar
Ramanathan, V., Crutzen, P. J., Lelieveld, J.et al. (2001). The Indian Ocean Experiment: an integrated assessment of climate forcing and effects of the great Indo-Asian haze. Journal of Geophysical Research 106, 28371–98.CrossRefGoogle Scholar
Ramankutty, N. and Foley, J. A. (1999). Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochemical Cycles 13, 997–1027.CrossRefGoogle Scholar
Raymo, M. (1992). Global climate change: a three million year perspective. In Kukla, G. J. and Went, E. (eds.). Start of a Glacial. Berlin, Springer Verlag.CrossRefGoogle Scholar
Raymond, C. F. (2002). Ice sheets on the move. Science 298, 2147–8.CrossRefGoogle ScholarPubMed
Raynaud, D., Blunier, T., Ono, Y., and Delmas, R. J. (2003). The late Quaternary history of atmospheric trace gases and aerosols: interactions between climate and biogeochemical cycles. In Alverson, K. D., Bradley, R. S. and Pedersen, T. F. (eds.). Paleoclimate, Global Change and the Future. Berlin, Springer-Verlag, pp. 13–31.CrossRefGoogle Scholar
Reddy, M. S. and Venkataram, C. (2002). Inventory of aerosol and sulphur dioxide emissions from India, Parts I and II. Atmospheric Environment 36, 677–712.CrossRefGoogle Scholar
Redman, C. L. (1999) Human Impact on Ancient Environments. Tuscon AZ, The University of Arizona Press.Google Scholar
Reeburgh, W. S. (1997). Figures summarizing the global cycles of biogeochemically important elements. Bulletin of the Ecological Society of America 78, 260–7.Google Scholar
Reichenau, T. G. and Esser, G. (2003). Is interannual fluctuation of atmospheric CO2 dominated by combined effects of ENSO and volcanic aerosols? Global Biogeochemical Cycles 17 (4), 1094.CrossRefGoogle Scholar
Reichert, B. K., Schnurr, R. and Bengtsson, L. (2002). Global ocean warming tied to anthropogenic forcing. Geophysical Research Letters, 29, 20-1–20-4.CrossRefGoogle Scholar
Ren, G, and Zhang, L. (1998). A preliminary mapped summary of Holocene pollen data for northeast China. Quaternary Science Reviews 17, 669– 88.CrossRefGoogle Scholar
Renberg, I. (1990). A 126 000 year perspective of the acidification of Lille Oresjon, southwest Sweden. Philosophical Transactions of the Royal Society of London Series B 327, 357–61.CrossRefGoogle Scholar
Renssen, H., Goosse, H. and Fichefet, T. (2003). On the non-linear response of the ocean thermohaline circulation to global deforestation. Geophysical Research Letters 30 (2), 10.CrossRefGoogle Scholar
Revenga, C., Brunner, J., Henninger, N., Kassem, K. and Payne, R. (2000). Pilot Analysis of Global Ecosystems: Freshwater Systems. Washington DC, World Resources Institute.Google Scholar
Rex, M., Salawitch, der Gathen P.et al. (2004). Arctic ozone loss and climate change. Geophysical Research Letters 31, L04416.CrossRefGoogle Scholar
Ribbe, J. (2004). Oceanography: the southern supplier. Nature 427, 23–4.CrossRefGoogle ScholarPubMed
Ridgwell, A. J. (2003). Implication of the glacial CO2 ‘iron hypothesis’ for Quaternary climate change. Geochemistry, Geophysics, Geosystems – Research Letters 4 (9), 1–10.Google Scholar
Ridgwell, A. J. and Watson, A. J. (2002). Feedback between Aeolian dust, climate, and atmospheric CO2 in glacial time. Paleoceanography 17 (4). 11-1–11-7.CrossRefGoogle Scholar
Rignot, E. and Thomas, R. H. (2002). Mass balance of polar ice sheets. Science 297, 1502–6.CrossRefGoogle ScholarPubMed
Riley, J. (2001a). Indicator quality for assessment of impact of multidisciplinary systems. Agriculture, Ecosystems and Environment 8, 121–8.CrossRefGoogle Scholar
Riley, J.(2001b). Multidisciplinary indicators of impact and change: key issues for identification and summary. Agriculture, Ecosystems and Environment 8, 245–59.CrossRefGoogle Scholar
Rind, D. (2000). Relating paleoclimate data and past temperature gradients: some suggestive rules. Quaternary Science Reviews 19, 381–90.CrossRefGoogle Scholar
Rind, D. (2003). The Sun's role in climate variations. Science 296, 673–7.CrossRefGoogle Scholar
Rind, D., Lean, J. and Healy, R. (1999). Simulated time-dependent climate response to solar radiative forcing since 1600. Journal of Geophysical Research-Atmospheres 104, 1973–90.CrossRefGoogle Scholar
Roberts, H. M., Wintle, A. G., Maher, B. A. and Hu, M. (2001). Holocene sediment-accumulation rates in the western Loess Plateau, China, and a 2500-year record of agricultural activity, revealed by OSL dating. The Holocene 11, 477–83.CrossRefGoogle Scholar
Roderick, M. L. and Farquhar, G. D. (2004). The pan Evaporation paradox. In Steffen, W., Sanderson, A., Tyson, P. D.et al. (eds.). Global Change and the Earth System; a Planet Under Pressure. Berlin, Springer Verlag, p. 167.Google Scholar
Roderick, M. L., Farquhar, G. D., Berry, S. L. and Noble, I. R. (2001). On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 128, 21–30.CrossRefGoogle Scholar
Rodhe, H., Dentner, F. and Schulz, M. (2002). The global distribution of acidifying wet deposition. Environmental Science and Technology 36, 4382–8.CrossRefGoogle ScholarPubMed
Romanovsky, V., Burgess, M., Smith, S., Yoshikawa, K. and Brown, J. (2002). Permafrost temperature records: indicators of climate change. EOS 83 (50), 589–94.CrossRefGoogle Scholar
Root, T. L., Price, J. T., Hall, K. R.et al. (2003). Fingerprints of global warming on wild animals and plants. Nature 421, 57–60.CrossRefGoogle ScholarPubMed
Rosen, A. M. (1995). The social response to environmental change in early Bronze age Canaan. Journal of Anthropological Archaeology 14, 26–44.CrossRefGoogle Scholar
Rosen, A. M. and Rosen, S. A. (2001). Determinist or not determinist? Climate, environment and archaeological explanation in the Levant. In Wolff, S. (ed.) Studies in the Archaeology of Israel and Neighbouring Lands. Chicago, University of Chicago Press.Google Scholar
Rothlisberger, R., Mulvaney, R., Wolff, E. W.et al. (2002). Dust and sea salt variability in central east Antarctica (Dome C) over the last 45kyrs and its implications for southern high latitude climate. Geophysical Research Letters 29 (20), 24-1–24-4. (Correction published in 2003, 30 (5), 10.).CrossRefGoogle Scholar
Rowe, D., Guilderson, T. P., Dunbar, R. B.et al. (2003). Late Quaternary lake-level changes constrained by radiocarbon and stable isotope studies on sediment cores from Lake Titicaca, South America. Global and Planetary Change 38, 273–90.CrossRefGoogle Scholar
Ruddiman, W. F. (2003a). Orbital insolation, ice volume and greenhouse gases. Quaternary Science Reviews 22, 1597–1629.CrossRefGoogle Scholar
Ruddiman, W. F.(2003b). The anthropogenic greenhouse era began thousands of years ago. Climatic Change 61, 261–93.CrossRefGoogle Scholar
Ruddiman, W. F.(2004). The role of greenhouse gases in orbital scale climate changes. EOS 85 (1). 1–7.CrossRefGoogle Scholar
Ruddiman, W. F. and Raymo, M. E. (2003). A methane-based timescale for Vostok ice. Quaternary Science Reviews 22, 141–55.CrossRefGoogle Scholar
Ruddiman, W. F. and Thompson, J. S. (2001). The case for human causes of increased atmospheric CH4 over the last 5000 years. Quaternary Science Reviews 20, 1769–77.CrossRefGoogle Scholar
Rundgren, M. and Beerling, D. (1999). A Holocene CO2 record from the stomatal index of subfossil Salix herbacea L. leaves from northern Sweden. The Holocene 9, 509–13.CrossRefGoogle Scholar
Rundgren, M. and Björk, S. (2003). Late-glacial and early Holocene variations in atmospheric CO2 concentration indicated by high-resolution stomatal index data. Earth and Planetary Science Letters 213, 191–204.CrossRefGoogle Scholar
Rutherford, S. and Mann, M. E. (2004). Correction to ‘Optimal surface temperature reconstructions using terrestrial borehole data’. Journal of Geophysical Research 109, D11107.CrossRefGoogle Scholar
Saarinen, T. (1999). Paleomagnetic dating of late Holocene sediments in Fennoscandia. Quaternary Science Reviews 18, 889–97.CrossRefGoogle Scholar
Saaroni, H., Ziv, B., Edelson, J. and Alpert, P. (2003). Long-term variations in summer temperatures over the eastern Mediterranean. Geophysical Research Letters 30 (18), 1946.CrossRefGoogle Scholar
Sabine, C. L., Felly, R. A., Gruber, N.et al. (2004). The ocean sink for anthropogenic CO2. Science 305, 367–71.CrossRefGoogle ScholarPubMed
Sahagian, D. (2000). Global physical effects of anthropogenic hydrological alterations: sea-level and water redistribution. Global and Planetary Change 25, 39–48.CrossRefGoogle Scholar
Saloranta, T. M. (2001). Post-normal science and the global climate issue. Climate Change 50, 395–404.CrossRefGoogle Scholar
Saltzman, B. (1985). Paleoclimatic modeling. In Hecht, A. D. (ed.). Paleoclimate Analysis and Modeling. Wiley, Chichester. pp. 341–96.Google Scholar
Sanchez, P. A. (2000). Linking climate change research with food security and poverty reduction in the tropics. Agriculture, Ecosystems and Environment 82, 371–83.CrossRefGoogle Scholar
Sanderson, A. (2004). The Gulf of Mexico dead zone. In Steffen, W., Sanderson, A., Tyson, P.et al. (eds.). Global Change and the Earth System: a Planet Under Pressure. Berlin, Springer Verlag, p. 184.Google Scholar
Santer, B. D., Berger, A., Eddy et al. (1993). How can palaeodata be used to evaluate forcing mechanisms responsible for past climate changes? In Eddy, J. A. and Oeschger, H., (eds.). Global Changes in the Perspective of the Past. Chichester, Wiley, pp. 343–67.Google Scholar
Santer, B. D., Wehner, M. F., Wigley, T. M. L.et al. (2003). Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301, 479–83.CrossRefGoogle ScholarPubMed
Santer, B. D., Wehner, M. F., Wigley, T. M. L.et al. (2004). Response to Comment on ‘Contributions of anthropogenic and natural forcing to recent tropopause height changes.’ Science 303, 1771.CrossRefGoogle Scholar
Sarmiento, J. L. and Gruber, N. (2002). Sinks for anthropogenic carbon. Physics Today 56 (5), 30–6.CrossRefGoogle Scholar
Sarmiento, J. L., Gruber, N., Brezinski, M. A. and Dunne, J. P. (2004). High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60.CrossRefGoogle ScholarPubMed
Sarnthein, M., Kennett, J. P., Allen, J. R. M.et al. (2002). Decadal-to-millennial-scale climate variability – chronology and mechanisms: summary and recommendations. Quaternary Science Reviews 21, 1121–8.CrossRefGoogle Scholar
Saunders, M. A. and Quian, B. (2002). Seasonal predictability of the winter NAO from North Atlantic sea surface temperatures. Geophysical Research Letters 29 (22), 2049.CrossRefGoogle Scholar
Schaeffer, M., Selten, F. M. and Opsteegh, J. D. (2002). Intrinsic limits to predictability of abrupt regional climate change in IPCC SRES scenarios. Geophysical Research Letters 29 (16), 14-1–14-4.CrossRefGoogle Scholar
Schafer, J. S., Eck, T. F., Holben, B. N.et al. (2002). Observed reductions of total solar irradiance by biomass-burning aerosols in the Brazilian Amazon and Zambian Savanna. Geophysical Research Letters 29, 4-1–27-8.CrossRefGoogle Scholar
Schär, C., Vidale, P. L., Luthi, D.et al. (2004). The role of increasing temperature variability in European summer heatwaves. Nature 427, 332–6.CrossRefGoogle ScholarPubMed
Schellnhuber, H. J. (1999). ‘Earth system’ analysis and the second Copernican revolution. Nature 402, C19–23.CrossRefGoogle Scholar
Schellnhuber, H. J. (2002). Coping with Earth system complexity and irregularity. In Steffen, W., Jäger, J., Carson, D. and Bradshaw, C. (eds.). Challenges of a Changing Earth; Proceedings of the Global Change Open Science Conference. IGBP Global Change Series. Berlin, Springer Verlag, pp. 151–6.CrossRefGoogle Scholar
Schiermeier, Q. (2003). Alpine thaw breaks ice over permafrost's role. Nature 424, 712–3.CrossRefGoogle ScholarPubMed
Schiermeier, Q.(2004a). Modellers deplore ‘short-termism’ on climate. Nature 428, 593.CrossRefGoogle Scholar
Schiermeier, Q.(2004b). Global warming anomaly may succomb to microwave study. Nature 429, 7.Google Scholar
Schiermeier, Q.(2004c). A rising tide. Nature 428, 114.CrossRefGoogle Scholar
Schilman, B., Bar-Matthews, M., Almogi-Labin, A. and Luz, B. (2001). Global climate instability reflected by eastern Mediterranean marine records during the late Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 176, 157–76.CrossRefGoogle Scholar
Schimel, D. and Baker, D. (2002). Carbon cycle: the wildfire factor. Nature 420, 29–30.CrossRefGoogle ScholarPubMed
Schimel, D. S., House, J. I., Hubbarde, K. A.et al. (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414, 169–72.CrossRefGoogle ScholarPubMed
Schimmelmann, A., Lange, C. B. and Meggers, B. J. (2003). Palaeoclimatic and archaeological evidence for a ~200 recurrence of floods and droughts linking California, Mesoamerica and South America over the last 2000 years. The Holocene 13, 763–78.CrossRefGoogle Scholar
Schindler, D. W. (2001). The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Canadian Journal of Fisheries and Aquatic Sciences 59, 18–29.CrossRefGoogle Scholar
Schindler, D. W. and Curtis, P. J. (1997). The role of DOC in protecting freshwater subjected to climatic warming and acidification from UV exposure. Biogeochemistry 36, 1–8.CrossRefGoogle Scholar
Schmittner, A., Appenzeller, C. and Stocker, T. F. (2000). Enhanced Atlantic freshwater exported during El Niño. Geophysical Research Letters 27, 1163–6.CrossRefGoogle Scholar
Schmittner, A., Saenko, O. A. and Weaver, A. J. (2003). Coupling of the hemispheres in observations and simulations of glacial climate change. Quaternary Science Reviews 22, 659–671.CrossRefGoogle Scholar
Schmittner, A., Yoshimori, M. and Weaver, A. J. (2002). Instability of glacial climate in a model of the ocean-atmosphere-cryosphere system. Science 295, 145–149.CrossRefGoogle Scholar
Schmutz, C., Luterbach, J., Gyalistras, D., Xopalski, E. and Wanner, H. (2000). Can we trust proxy-based NAO reconstructions? Geophysical Research Letters 27, 1135–8.CrossRefGoogle Scholar
Schneider, S. H. (2001). Earth systems engineering and management. Nature 409, 417–21.CrossRefGoogle ScholarPubMed
Schneider, S. H.(2002). Can we estimate the likelihood of climatic changes at 2100? Climatic Change 52, 441–51.CrossRefGoogle Scholar
Scholes, M. C., Matrai, P. A., Andreae, M. O., Smith, K. A. and Manning, M. R. (2003). Biosphere–Atmosphere interactions. In Brasseur, G. P., Prinn, R. G. and Pszenny, A. P. (eds.). Atmospheric Chemistry in a Changing World. Berlin, Springer Verlag, pp. 19–71.CrossRefGoogle Scholar
Scholes, R. (2002) The past, present and future of carbon on land. In Steffen, W., Jäger, J., Carson, D. and Bradshaw, C. (eds.). Challenges of a Changing Earth; Proceedings of the Global Change Open Science Conference. IGBP Global Change Series. Berlin, Springer Verlag, pp. 81–5.CrossRefGoogle Scholar
Schubert, S. D., Suarez, M. J., Pegion, P. J., Koster, R. D. and Bacmeister, J. T. (2004). On the cause of the 1930's dust bowl. Science 303, 1855–9.CrossRefGoogle Scholar
Schulze, E. D. and Mooney, H. A. (1993). Biodiversity and Ecosystem Function. Berlin, Springer Verlag.CrossRefGoogle Scholar
Schwander, J., Eicher, U. and Ammann, B. (2000). Oxygen isotopes of lake marl at Gerzensee and Leysin (Switzerland), covering the Younger Dryas and two minor oscillations and their correlation to the GRIP ice core. Palaeogeography, Palaeoclimatology, Palaeoecology 159, 213–14.CrossRefGoogle Scholar
Schwartz, P. and Randall, D. (2004). Abrupt Climate Change. Report prepared by Global Business Network (GBN) for the Department of Defense. At www.gbn.org/ArticleDisplayServlet.srv?aid=26231.Google Scholar
Seki, O., Ishiwatari, R. and Matsumoto, K. (2002). Millennial scale oscillations in NE Pacific surface waters over the last 82kyr: new evidence from alkenones. Geophysical Research Letters 29 (23), 2144.CrossRefGoogle Scholar
Serreze, M. C., Walsh, J. E., Chapin, F. S. IIIet al. (2000). Observational evidence of recent change in the northern high-latitude environment. Climatic Change 46, 159–207.CrossRefGoogle Scholar
Severinghaus, J. P. and Brook, E. J. (1999). Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286, 930–4.CrossRefGoogle ScholarPubMed
Severinghaus, J. P., Jouzel, J., Caillon, N.et al. (2004). Comment on ‘Greenland–Antarctica phase relations and millennial time-scale climate fluctuations in the Greenland ice-cores’ by C. Wunsch. Quaternary Science Reviews, 23, 2053–4.CrossRefGoogle Scholar
Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. and Bender, M. L. (1998). Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–6.CrossRefGoogle Scholar
Shackleton, N. J., Fairbanks, R. G., Chiu, T. and Parrenin, F. (2004). Absolute calibration of the Greenland timescale: implications for Antarctic timescales and for δ14C. Quaternary Science Reviews, 23, 1513–22.CrossRefGoogle Scholar
Shackleton, N. J., Hall, M. A. and Vincent, E. (2000). Phase relationships between millenial-scale events 64 000–24 000 years ago. Paleoceanography 15, 565–9.CrossRefGoogle Scholar
Shackleton, N. J. and Opdyke, N. D. (1973). Oxygen isotope and paleomagnetic stratigraphy of Pacific core V28–238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quaternary Research 3, 39–55.CrossRefGoogle Scholar
Shackleton, N. J., Sanchez-Goñi, , Pailler, D. and Lancelot, Y. (2003). Marine isotope substage 5e and the Eemian interglacial. Global and Planetary Change 36, 151–5.CrossRefGoogle Scholar
Shah, M. (2002). Food in the twenty-first century: global climate of disparities. In Steffen, W., Jäger, J., Carson, D. and Bradshaw, C. (eds.). Challenges of a Changing Earth; Proceedings of the Global Change Open Science Conference. IGBP Global Change Series. Berlin, Springer Verlag, pp. 31–8.CrossRefGoogle Scholar
Shemesh, A., Rosqvist, G., Rietti-Shati, M.et al. (2001). Holocene climate change in Swedish Lapland inferred from an oxygen isotope record of lacustrine biogenic silica. The Holocene 11, 447–54.CrossRefGoogle Scholar
Shennan, I. (1989). Holocene crustal movements and sea-level changes in Great Britain. Journal of Quaternary Science 4, 77–89.CrossRefGoogle Scholar
Shennan, I. and Horton, B. (2002). Holocene land- and sea-level changes in Great Britain, Journal of Quaternary Science 17, 511–26.CrossRefGoogle Scholar
Shennan, S. (2003). Holocene climate and human populations: an archaeological approach. In Mackay, A. W., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 36–48.Google Scholar
Shindell, D. T. (2003). Whither Arctic climate? Science 299, 215–6.CrossRefGoogle ScholarPubMed
Shindell, D. T., Schmidt, G. A., Mann, M. E. and Faluvegi, G. (2004). Dynamic winter climate response to large tropical volcanic eruptions since 1600. Journal of Geophysical Research 109, D05104.CrossRefGoogle Scholar
Shindell, D. T., Schmidt, G. A., Mann, M. E., Rind, D. and Waple, A. (2001). Solar forcing of regional climate change during the Maunder Minimum. Science 294, 2149–52.CrossRefGoogle ScholarPubMed
Shotyk, W., Cheburkin, A. K., Appleby, P. G., Frankhauser, A. and Kramers, J. D. (1996). Two thousand years of atmospheric arsenic, antimony, and lead deposition recorded in an ombrotrophic peat bog profile, Jura Mountains, Switzerland. Earth Planetary Science Letters 145, E1–7.CrossRefGoogle Scholar
Shotyk, W., Weiss, D., Appleby, P. G.et al. (1998). History of atmospheric lead deposition since 12 370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science 281, 1635–40.CrossRefGoogle ScholarPubMed
Showstack, R. (2003). Montreal protocol benefits cited. EOS 84 (39), 395.Google Scholar
Siddall, M., Rohling, E. J., Almogi-Labin, A.et al. (2003). Sea-level fluctuation during the last glacial cycle. Nature 423, 853–8.CrossRefGoogle Scholar
Sigman, D. M. and Boyle, E. A. (2000). Glacial/Interglacial variations in atmospheric carbon dioxide. Nature 407, 859–69.CrossRefGoogle ScholarPubMed
Singh, G., Wasson, R. J. and Agrawal, D. P. (1990). Vegetational and seasonal climatic changes since the last full glacial in the Thar Desert, northwestern India. Review of Palaebotany and Palynology 64, 351–8.CrossRefGoogle Scholar
Smith, L. C., Sheng, Y., Forster, R. R.et al. (2003). Melting of small Arctic ice caps observed from ERS scatterometer time series. Geophysical Research Letters 30 (20), 2034.CrossRefGoogle Scholar
Smith, S. V., Renwick, W. H., Bartley, J. D. and Buddemeier, R. W. (2002). Distribution and significance of small artificial water bodies across the United States landscape. The Science of the Total Environment 299, 21–36.CrossRefGoogle ScholarPubMed
Smol, J. P., Cumming, B. F., Dixit, A. S. and Dixit, S. S. (1998). Tracking recovery in acidified lakes: a palaeolimnological perspective. Restoration Ecology 6, 318–26.CrossRefGoogle Scholar
Snowball, I. F. and Sandgren, P. (2002). Geomagnetic field variations in northern Sweden during the Holocene quantified from varved lake sediments and their implications for cosmogenic nuclide production rates. The Holocene 15, 517–30.CrossRefGoogle Scholar
Soden, B. J., Wetherald, R. T., Stenchikov, G. L. and Robock, A. (2002). Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapour. Science, 296, 727–30.CrossRefGoogle Scholar
Solomon, S. (2004). The hole truth. Nature 427, 289–91.CrossRefGoogle ScholarPubMed
Somoza, L., Gardner, J. M., Diaz-del-Rio, V.et al. (2002). Numerous methane gas-related sea floor structures identified in Gulf of Cadiz. EOS 83 (47), 541–9.CrossRefGoogle Scholar
Soon, W. and Baliunas, S. (2003). Lessons and Limits of Climate History: Was the Twentieth Century Climate Unusual? Washington DC, The George C. Marshall Institute.Google Scholar
Soon, W., Baliunas, S., Idso, C., Idso, S. and Legates, D. R. (2003). Reconstructing climatic and environmental changes of the past 1000 years: a reappraisal. Energy and Environment 14, 233– 96.CrossRefGoogle Scholar
Solanki, S. K. and Krivova, N. A. (2002). Can solar variability explain global warming since 1970? Journal of Geophysical Research 108, 7-1–7-8.Google Scholar
Sorvari, S., Korhola, A. and Thompson, R. (2002). Lake diatom responses to recent Arctic warming in Finnish Lapland. Global Change Biology 8, 171–81.CrossRefGoogle Scholar
Sowers, T. (2001). The N2O record spanning the penultimate deglaciation from the Vostok ice core. Journal of Geophysical Research-Atmospheres 106, 31903–14.CrossRefGoogle Scholar
Sowers, T., Alley, R. and Jubenville, J. (2003). Ice core records of atmospheric N2O covering the last 106 000 years. Science 301, 945–8.CrossRefGoogle ScholarPubMed
Spahni, R., Schwander, J., Flückinger, J., Stauffer, B., Chappellaz, J. and Raynaud, D. (2003). The attenuation of fast atmospheric CH4 variations recorded in polar ice cores. Geophysical Research Letters 30 (11), 1571.CrossRefGoogle Scholar
Stager, J. C., Mayewski, P. A. and Meeker, L. D. (2002). Cooling cycles, Heinrich Event 1 and the desiccation of Lake Victoria. Palaeogeography, Palaeoclimatology, Palaeoecology 183, 169–78.CrossRefGoogle Scholar
Stahle, D. W., Cook, E. R., Cleaveland, M. K.et al. (2000) Tree-ring data document sixteenth century megadrought over North America. EOS 81, 121–5.CrossRefGoogle Scholar
Staubwasser, M., Sirocko, F., Grootes, P. M. and Segl, M. (2003). Climate change at 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophysical Research Letters, 30 (8), 1425.CrossRefGoogle Scholar
Steffen, W. and Crutzen, P. J. (2003). How long have we been in the Anthropocene era? Climatic Change 61, 251–7.Google Scholar
Steffen, W., Sanderson, A., Tyson, P.et al. (2004). Global Change and the Earth System: a Planet Under Pressure. Berlin, Springer Verlag.Google Scholar
Stenni, B., Masson-Delmotte, , V Johnsen, S.et al. (2001) An oceanic cold reversal during the last deglaciation. Science 293, 2074–7.CrossRefGoogle ScholarPubMed
Stevens, C. J., Dise, N. B., Mountford, J. O. and Gowing, D. J. (2004). Impact of nitrogen deposition on the species richness of grasslands. Science 303, 1876–7.CrossRefGoogle ScholarPubMed
Stine, S. (1994). Extreme and persistent drought in California and Patagonia during medieval time. Nature 369, 546–9.CrossRefGoogle Scholar
Stive, M. J. F. (2003). How important is global waming for coastal erosion? Climatic Change 61, 1–13.Google Scholar
Stocker, T. F. (1998). The seesaw effect. Science 282, 61–2.CrossRefGoogle Scholar
Stocker, T. F.(2003). Global change: south dials north. Nature 424, 496–9.CrossRefGoogle ScholarPubMed
Stocker, T. F. and Johnsen, S. J. (2003). A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18 (4), 11-1–11-9.CrossRefGoogle Scholar
Stocker, T. F. and Schmittner, A. (1997). Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature 388, 862–5.CrossRefGoogle Scholar
Stone, J. O., Balco, G. A., Sugden, D. E.et al. (2003). Holocene deglaciation of Marie Byrd land, west Antarctica. Science 299, 99–102.CrossRefGoogle ScholarPubMed
Stone, R. S., Dutton, E. G., Harris, J. M. and Longenecker, D. (2002). Earlier spring snowmelt in northern Alaska as an indicator of climate change. Journal of Geophysical Research D: Atmospheres 107, 10-1–10-15.CrossRefGoogle Scholar
St-Onge, G., Stoner, J. S. and Hillaire-Marcel, C. (2003). Holocene paleomagnetic records from the St. Lawrence Estuary, eastern Canada: centennial- to millennial-scale geomagnetic modulation of cosmogenic isotopes. Earth and Planetary Science Letters 209, 113–30.CrossRefGoogle Scholar
Stott, P. A. and Kettleborough, J. A. (2002). Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature 416, 723–6.CrossRefGoogle ScholarPubMed
Stott, P. A., Allen, M. R. and Jones, G. S. (2003). Estimating signal amplitudes in optimal fingerprinting. Part II: application to general circulation models. Climate Dynamics 21, 493–500.CrossRefGoogle Scholar
Stott, L., Poulsen, C., Lund, S. and Thunell, R. (2002). Super ENSO and global climate oscillations at millennial timescales. Science 297, 222–6.CrossRefGoogle Scholar
Stott, P. A., Tett, S. F. B., Jones, G. S.et al. (2001). Attribution of twentieth century temperature change to natural and anthropogenic causes. Climate Dynamics 17, 1–21.CrossRefGoogle Scholar
Streets, D. G., Jiang, K., Hu, X.et al. (2001). Recent Reductions in China's greenhouse gas emissions. Science 284, 1835–7.CrossRefGoogle Scholar
Stuiver, M., Braziunas, T. F., Becker, B. and Cromer, B. (1991). Climatic, solar, oceanic and geomagnetic influences on late glacial and 14C/12C change. Quaternary Research 35, 1–24.CrossRefGoogle Scholar
Stuiver, M. and Reimer, P. J. (1993). Extended 14C data base and revised Calib 3.0 14C age calibration program. Radiocarbon 35, 215–30.CrossRefGoogle Scholar
Stuiver, M., Reimer, P. J., Bard, E.et al. (1998). INTCAL98 radiocarbon age calibration, 24 000 – 0 cal BP. Radiocarbon 40, 1041–83.CrossRefGoogle Scholar
Stute, M., Forster, M., Frischkorn, H.et al. (1995). Cooling of tropical Brazil (5 °C) during the last glacial maximum. Science 269, 379–83.CrossRefGoogle ScholarPubMed
Stute, M. and Talma, S. (1998). Glacial temperatures and moisture transport regimes reconstructed from noble gas and δ18O, Stampriert aquifer, Namibia. In Isotope Techniques in the Study of Past and Current Environmental Changes in the Hydrosphere and the Atmosphere. Vienna, IAEA, Proceedings of Vienna Symposium, pp. 307–28.Google Scholar
Sugita, S., Gaillard, M.-J. and Broström, A. (1999). Landscape openness and pollen records: a simulation approach. The Holocene 9, 409–21.CrossRefGoogle Scholar
Sun, B. and Bradley, R. S. (2002). Solar influences on cosmic rays and cloud formation: a reassessment. Journal of Geophysical Research 107, D14, 4211, AAC 5–1.CrossRefGoogle Scholar
Sun, B. and Bradley, R. S. (2004). Reply to comment on ‘Solar influences on cosmic rays and cloud formation: A reassessment’. Journal of Geophysical Research 109, D14206.CrossRefGoogle Scholar
Svensmark, H. and Friis-Christensen, E. (1996). Variation of cosmic ray flux and global cloud coverage – a missing link in solar–climate relationships. Journal of Atmospheric and Solar-Terrestrial Physics 59, 1225–32.CrossRefGoogle Scholar
Svensen, H., Planke, S., Malthe-Sorenssen, A.et al. (2004). Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Natue 429, 542–5.CrossRefGoogle ScholarPubMed
Swetnam, T. W. (1993). Fire history and climate change in Giant Sequoia groves. Science 262, 885–8.CrossRefGoogle ScholarPubMed
Swiss Biodiverity Forum (2003). Visions in Biodiversity Research. Towards a New, Integrative Biodiversity Science. Bern, Swiss Academy of Sciences.
Sykes, M., Prentice, I. C., Smith, B., Cramer, W. and Venevsky, S. (2001). An introduction to the European terrestrial ecosystem modelling activity. Global Ecology and Biogeography 10, 581–94.CrossRefGoogle Scholar
Szeicz, J. M., Haberle, S. G. and Bennett, K. D. (2003). Dynamics of north Patagonian rainforests from fine-resolution pollen, charcoal and tree-ring analysis, Chonos Archipelago, southern Chile. Austral Ecology 28, 413–26.CrossRefGoogle Scholar
Taberlet, P. and Cheddadi, R. (2002). Quaternary refugia and persistence of biodiversity. Science 297, 2009–10.CrossRefGoogle ScholarPubMed
Tada, R., Irino, T. and Koizumi, I. (1999) Land–ocean linkage over orbital and millennial timescales recorded in the late Quaternary sediments of the Japan Sea. Paleoceanography 14, 236–47.CrossRefGoogle Scholar
Talbot, M. (1990). A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology (Isotope Geosciences Section) 80, 261–79.CrossRefGoogle Scholar
Taylor, K. C., Hammer, C. U., Alley, R. B.et al. (1993). Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores. Nature 366, 549–52.CrossRefGoogle Scholar
Taylor, K. C., White, J. W. C., Severinghaus, J. P.et al. (2003). Abrupt climate change around 22ka on the Siple coast of Antarctica. Quaternary Science Reviews 23, 7–15.CrossRefGoogle Scholar
Teller, J. T., Leverington, D. W. and Mann, J. W. (2002). Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Science Reviews 21, 879–87.CrossRefGoogle Scholar
TEMPO Members (1996). Potential role of vegetation feedback in the climate sensitivity of high-latitude regions: a case study at 6000 years BPGlobal Biogeochemical Cycles 10, 727–37.CrossRef
Tett, S. F. B., Jones, G. S., Stott, P. A.et al. (2002). Estimation of natural and anthropogenic contributions to twentieth century temperature change. Journal of Geophysical Research 107, ACL 10-1–10-24.CrossRefGoogle Scholar
Tett, S. F. B., Stott, P. A., Allen, M. R., Ingram, W. J. and Mitchell, J. F. B. (1999). Causes of twentieth-century temperature change near the Earth's surface. Nature 399, 569–72.CrossRefGoogle Scholar
Thomas, C. D., Cameron, A., Green, R. E.et al. (2004). Extinction risk from climate change. Nature 427, 145–8.CrossRefGoogle ScholarPubMed
Thomas, J. A., Telfer, M. G., Roy, D. B.et al. (2004). Comparative losses of British butterflies, birds and plants and the global extinction crisis. Science 303, 1879–81.CrossRefGoogle ScholarPubMed
Thompson, L. G. (1995). Late glacial stage and Holocene tropical Ice core records from Huascaran, Peru. Science 269, 46–50.CrossRefGoogle ScholarPubMed
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Henderson, K. A. and Lin, P. N. (2000). The tropical ice core record of ENSO. In Diaz, H. F. and Markgraf, V. (eds.). El Niño and the Southern Oscillation: Multiscale Variability and Global and Regional Impacts. Cambridge, Cambridge University Press, pp. 325–56.CrossRefGoogle Scholar
Thompson, L. G., Mosley-Thompson, E., Davis, M. Eet al. (2002). Kilimanjaro ice core record: evidence of Holocene climate change in tropical Africa. Science 298, 598–2.CrossRefGoogle ScholarPubMed
Thorne, P. W., Jones, P. D., Tett, S. F. B.et al. (2003). Probable causes of late twentieth century tropospheric temperature trends. Climate Dynamics 21, 573–91.CrossRefGoogle Scholar
Thuiller, W., Araujo, M. B., Pearson, R. G.et al. (2004). Uncertainty in predictions of extinction risk. Nature 430, 34.CrossRefGoogle ScholarPubMed
Tilman, D. (2000). Causes, consequences and ethics of biodiversity. Nature 405, 208–11.CrossRefGoogle ScholarPubMed
Timmerman, A., Oberhuber, J., Bacher, A.et al. (1999). Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398, 694–7.CrossRefGoogle Scholar
Trenberth, K. E. (2000). Conceptual framework for changes of rainfall and extremes of the hydrological cycle with climate change. PAGES Newsletter 8 (1), 13; CLIVAR Exchanges 5 (1), 12–3.Google Scholar
Trenberth, K. E. (2004). Rural land-use change and climate. Nature 427, 213.CrossRefGoogle ScholarPubMed
Trenberth, K. E., Overpeck, J. T. and Solomon, S. (2004). Exploring drought and its implications for the future. EOS 85 (3) 27.CrossRefGoogle Scholar
Tricot, C. and Berger, A. (1988). Sensitivity of present-day climate to astronomical forcing. In Wanner, H. and Siegenthaler, U. (eds.). Long and Short-Term Variability of Climate. New York, Springer Verlag.CrossRefGoogle Scholar
Tsuda, A., Takeda, S., Saito, H.et al. (2003). A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom. Science 300, 958–61.CrossRefGoogle ScholarPubMed
Tudhope, A.,W., Chilcott, C. P., McCulloch, M. T.et al. (2001) Variability in the El Niño-southern oscillation through a glacial–interglacial cycle. Science 291, 1511–17.CrossRefGoogle ScholarPubMed
Turner, B. L. II, Kasperson, R. E., Matson, P. A.et al. (2003). A framework of vulnerability analysis in sustainability science. Proceedings of the National Academy of Science 100, 8074–9.CrossRefGoogle ScholarPubMed
Turner, B. L. II, Kasperson, R. E., Meyer, W. B.et al. (1990). Two types of global environmental change. Global Environmental Change 4, 15–22.Google Scholar
Tyson, P. D., Lee-Thorp, J., Holmgren, K. and Thackeray, J. F. (2002). Changing gradients of climate change in Southern Africa during the past millennium: implications for population movements. Climatic Change 52, 129–35.CrossRefGoogle Scholar
Tzedakis, C. (2003). Timing and duration of last interglacial conditions in Europe: a chronicle of changing chronology. Quaternary Science Reviews 22, 763–8.CrossRefGoogle Scholar
UKCIP (2002). Climate Change Scenarios for the United Kingdom. The UKCIP02 Briefing Report. At: www.ukcip.org.uk/ukcip.html.
Urban, F. E., Cole, J. E. and Overpeck, J. T. (2000). Influence of mean climate change on climate variability from a 155 year tropical Pacific coral record. Nature 407, 989–93.Google ScholarPubMed
Valdes, P. J. (2003). Holocene climate modelling. In McKay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 20–35.Google Scholar
Asselt, M. B.A and Rotmans, J. (2002). Uncertainty in integrated assessment modelling: from positivism to pluralism. Climatic Change 54, 75–105.CrossRefGoogle Scholar
Plassche, O., (2000). North Atlantic climate–ocean variations and sea-level in Long Island Sound, Connecticut, since 500 cal. yr. ADQuaternary Research 53, 89–97.CrossRefGoogle Scholar
Plassche, O., Borge, K. and Jong, A. F. M. (1998). Sea level-climate correlation during the past 1400 yr. Geology 26, 319–22.2.3.CO;2>CrossRefGoogle Scholar
Plassche, O., Schrier, G., Weber, S. L., Gehrels, W. R. and Wright, A. J. (2003). Sea-level variability in the northwest Atlantic during the past 1500 years: a delayed response to solar forcing. Geophysical Research Letters 30 (18). 1-1–1-4.Google Scholar
Geel, B., Buurman, J. and Waterbolk, H. T. (1996). Archaeological and palaeoecological indications of an abrupt climate change in the Netherlands and evidence for climatological teleconnections around 2650 BP. Journal of Quaternary Science 11, 451–60.3.0.CO;2-9>CrossRefGoogle Scholar
Geel, B., Plicht, J. and Renssen, J. (2002). Major Δ14C excursions during the late glacial and early Holocene: changes in ocean ventilation or solar forcing of climate change? Quaternary International 105, 71–76.CrossRefGoogle Scholar
Vecsei, A. and Berger, W. H. (2004). Increase of atmospheric CO2 during deglaciation: constraints on the coral reef hypothesis from patterns of deposition. Global Biogeochemical Cycles 18, GB1035.CrossRefGoogle Scholar
Vellinga, M. and Wood, R. A. (2002). Global climatic impacts of a collapse of the Atlantic Thermohaline circulation. Climatic Change 54, 251–67.CrossRefGoogle Scholar
Vellinga, M. and Wood, R. A. (2004). Timely detection of anthropogenic change in the Atlantic meridional overturning circulation. Geophysical Research Letters 31, L14203.CrossRefGoogle Scholar
Verburg, P., Hecky, R. E. and Kling, H. (2003). Ecological consequences of a century of warming in Lake Tanganyika. Science 301, 505–7.CrossRefGoogle ScholarPubMed
Verschuren, D. (2003). Global change: the heat on Lake Tanganyika. Nature 424, 731–2.CrossRefGoogle ScholarPubMed
Verschuren, D., Laird., K. R. and Cumming, B. F. (2000) Rainfall and drought in equatorial east Africa during the past 1100 years. Nature 403, 410–14.CrossRefGoogle ScholarPubMed
Vinnikov, K. and Grody, N. C. (2003). Global warming trend of mean tropospheric temperature observed by satellites. Science 302, 269–272.CrossRefGoogle ScholarPubMed
Vinther, B. M., Andersen, K. K. and Hansen, A. W. (2003). Improving the Gribraltar/Reykjavik NAO index. Geophysical Research Letters 30 (23), 8-1–8-4.CrossRefGoogle Scholar
Vitousek, P. M., Mooney, H. A., Lubchenco, J. and Melillo, J. (1997). Human domination of the Earth's ecosystems. Science 277, 494–9.CrossRefGoogle Scholar
Voelker, A. H. L. and workshop participants. (2002). Global distribution of centennial-scale records for marine isotope stage (MIS) 3: a database. Quaternary Science Reviews 21, 1185–1214.CrossRefGoogle Scholar
Voldoire, A. and Royer, J. F. (2004). Tropical deforestation and climate variability. Climate Dynamics 22, 857–74.CrossRefGoogle Scholar
Grafenstein, U., Eicher, U., Erlenkauser, , Ruch, P., Schwander, J. and Ammann, B. (2000). Isotope signature of the Younger Dryas and two minor oscillations at Gerzensee (Switzerland): palaeoclimatic and palaeolimnological interpretation based on bulk and biogenic carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology 159, 215–29.CrossRefGoogle Scholar
Grafenstein, U., Erlenkauser, H., Brauer, A., Jouzel, J. and Johnson, S. (1999). A mid-European decadal isotope-climate record from 15 500 to 5000 years BP. Science 284, 1654–7.CrossRefGoogle Scholar
Grafenstein, U., Erlenkeuser, H., Muller, J., Jouzel, J. and Johnsen, S. (1998). The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Climate Dynamics 14, 73–81.CrossRefGoogle Scholar
Storch, H. and Stehr, N. (2000). Climate change in perspective. Nature 405, 615.CrossRefGoogle Scholar
Vörösmarty, C. J. and Sahagian, D. (2000). Anthropogenic disturbance of the terrestrial water cycle. BioScience 50, 753–65.CrossRefGoogle Scholar
Vörösmarty, C. J., Green, P., Salisbury, J. and Lammers, R. B. (2000). Global water resources: vulnerability from climate change and population growth. Science 289, 284–8.CrossRefGoogle ScholarPubMed
Vörösmarty, C. J., Meybeck, M., Fekete, B.et al. (2003). Anthropogenic sediment retention: major global impact from registered river impoundments. Global and Planetary Change, 39, 169–90.CrossRefGoogle Scholar
Vörösmarty, C. J., Sharma, K., Fekete, B.et al. (1997). The storage and aging of continental run-off in large reservoir systems. Ambio 26, 210–9.Google Scholar
Vose, R. S., Karl, T. R., Easterling, D. R., Williams, C. N. and Menne, M. J. (2004). Impact of land-use change on climate. Nature 427, 213–4.CrossRefGoogle ScholarPubMed
Waelbroeck, C., Duplessy, J.-C., Michel, E., Labeyrie, L., Paillard, D. and Duprat, J. (2001). The timing of the last deglaciation in North Atlantic climate records. Nature 412, 724–7.CrossRefGoogle ScholarPubMed
Wagner, G., Beer, J., Laj, C.et al.(2000a) Chlorine-36 evidence for the Mono Lake event in the Summit GRIP ice core. Earth and Planetary Science Letters 181, 1–6.CrossRefGoogle Scholar
Wagner, G., Masarik, J., Beer, J.et al. (2000b). Reconstruction of the geomagnetic field between 20 and 60 kyr BP from cosmogenic radionuclides in the GRIP ice core. Nuclear Instruments and Methods in Physics Research B 172, 597–604.CrossRefGoogle Scholar
Waldhardt, R. (2003). Biodiversity and landscape – summary, conclusions and perspectives. Agriculture, Ecosystems and Environment 98, 305–9.CrossRefGoogle Scholar
Walker, K. J., Pywell, R. F., Warman, E. A., Fowbert, J. A., Bhogal, A. and Chambers, B. J. (2003). The importance of former land use in defining successful re-creation of lowland heath in southern England. Biological Conservation, 116, 289–303.CrossRefGoogle Scholar
Walliser, D. E., Jin, K., Kang, I.-S.et al. (2003). AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Climate Dynamics 21, 391–404.Google Scholar
Walsh, K. J. E., Nguyen, K.-C. and McGregor, J. L. (2003). Fine-resolution regional climate model simulations of the impact of climate change on tropical cyclones near Australia. Climate Dynamics 21, 47–56.Google Scholar
Walther, G.-R., Post, E., Convey, P.et al. (2002). Ecological responses to recent climate changes. Nature 416, 389–95.CrossRefGoogle Scholar
Wang, C. (2004). A modelling study on the climate impacts of black carbon aerosols. Journal of Geophysical Research 109 (D3), 10.Google Scholar
Wang, N., Thompson, L. G., Davis, M. E., Mosley-Thompson, E., Yao, T. and Pu, J. (2003). Influence of variations in NAO and SO on air temperature over the northern Tibetan Plateau as recorded by δ18O in the Malan ice core. Geophysical Research Letters 30 (22),.Google Scholar
Wang, X. and Key, J. R. (2003). Recent trends in Arctic surface, cloud and radiation properties from space. Science 299, 1725–7.CrossRefGoogle ScholarPubMed
Wang, Y. J., Cheng, H., Edwards, R. L.et al., (2001). A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, 2345–8.CrossRefGoogle ScholarPubMed
Wang, Z. and Mysak, L. A. (2002). Simulation of the last glacial inception and rapid ice sheet growth in the McGill Paleoclimate Model. Geophysical Research Letters 29, (23), 2102.CrossRefGoogle Scholar
Wanner, H. and Luterbacher, J. (2002). The LOTRED approach – a first step towards a ‘Palaeoreanalysis’ for Europe. PAGES Newsletter 10(3), 9–11.Google Scholar
Wardle, D. A., Walker, L. R. and Bardgett, R. D. (2004). Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305, 509–13.CrossRefGoogle ScholarPubMed
Wasson, R. J. and Claussen, M. (2002). Earth system models: a test using the mid-Holocene in the southern hemisphere. Quaternary Science Reviews 21, 819–24.CrossRefGoogle Scholar
Watson, A. J., Bakker, D. C. E., Ridgwell, A. J., Boyd, P. W. and Law, C. S., (2000). Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407, 730–3.CrossRefGoogle ScholarPubMed
Watson, R. T. and the core writing team (eds.) (2001). Climate Change 2001: Synthesis Report: Contribution of Working Groups I, II and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press.Google Scholar
Watts, W. A., Allen, J. R. M., Huntley, B. and Fritz, S. C. (1996). Vegetation history and climate of the last 15 000 years at Laghi di Monticchio, southern Italy. Quaternary Science Reviews 15, 113–32.CrossRefGoogle Scholar
Weaver, A. J., Saenko, O. A., Clark, P. U. and Mitrovica, J. X. (2003). Meltwater pulse 1A from Antarctica as a trigger of the Bølling–Allerød warm interval. Science 299, 1709–12.CrossRefGoogle ScholarPubMed
Weiss, H. (1997). Late third millennium abrupt climate change and social collapse in west Asia and Egypt. In Dalfes, H. N., Kukla, G. and Weiss, H. (eds.) Third Millennium BC Climate Change and Old World Collapse. NATO ASI Series, pp. 711–22.CrossRefGoogle Scholar
Weiss, H. and Bradley, R. S. (2001). What drives societal collapse? Science 291, 609–10.CrossRefGoogle ScholarPubMed
Weiss, H., Courtney, M.-A., Wetterstrom, W.et al. (1993). The genesis and collapse of third millennium north Mesopotamian civilization. Science 261, 995–1004.CrossRefGoogle ScholarPubMed
WGBU (1996). World in Transition: Ways Towards Global Environmental Solutions. Annual Report 1995, German Advisory Council on Global Change. Berlin, Springer Verlag.
White, R. and Engelen, G. (1997). Cellular automata as the basis for integrated dynamic regional modelling. Environment and Planning B: Planning and Design 24, 235–46.CrossRefGoogle Scholar
Whittaker, R. J., Willis, K. J. and Field, R. (2001). Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28, 453–70.CrossRefGoogle Scholar
Wigley, T. M. L. and Raper, S. C. B. (2001). Interpretation of high projections for global-mean warming. Science 293, 451–4.CrossRefGoogle ScholarPubMed
Wilkinson, C. R. (ed.) (2000). Status of Coral Reefs of the World 2000. Townsville, Australia, Global Coral Reef Monitoring Network, Australian Institute of Marine Science.Google Scholar
Willard, D. A., Cronin, T. M. and Verardo, S. (2003). Late-Holocene climate and ecosystem history from Chesapeake Bay sediment cores, USA. The Holocene 13, 201–14.CrossRefGoogle Scholar
Wilson, E. O. (1988). Biodiversity. Washington DC, National Academy of Science.Google Scholar
Wilson, K. (2000). Global warming and the spread of disease: the debate heats up. Trends in Ecology and Evolution 15, 488.CrossRefGoogle ScholarPubMed
Wintle, A. G. (1993). Luminescence dating of Aeolian sands: an overview. In Pye, K. (ed.). The Dynamics and Environmental Context of Aeolian Sedimentary Systems. London, Geological Society, Special Publication No. 72. pp. 49–58.Google Scholar
Wintle, A. G., Clarke, M. L., Musson, F. M., Orford, J. D. and Devoy, R. J. N. (1998). Luminescence dating of recent dunes on Inch Spit, Dingle Bay, southwest Ireland. The Holocene 8, 331–9.CrossRefGoogle Scholar
Wohlfart, J., Harrison, S. P. and Braconnot, P. (2004). Synergistic feedbacks between open ocean and vegetation on mid- and high-latitude climates during the mid-Holocene. Climate Dynamics 22, 223–38.CrossRefGoogle Scholar
Wolff, E. W., Moore, J. C., Clausen, H. B. and Hammer, C. U. (1997). Climatic implications of background acidity and other chemistry derived from electrical studies of the Greenland Ice Core Project ice core. Journal of Geophysical Research 102, 26325–32.CrossRefGoogle Scholar
Wolfram, S. (2002). A new kind of science. Champaign, IL, Wolfram Media.Google Scholar
Woodroffe, C. D., Beech, M. R. and Gagan, M. K. (2003). Mid–Late Holocene El Niño variability in the equatorial Pacific from coral microatolls. Geophysical Research Letters 30 (7), 101–4.CrossRefGoogle Scholar
Woods, J. J., Schloss, J. A., Mosteller, J. et al. (2000). Water level decline in the Ogallala Aquifer. A report on KWO-KGS contract 99–132, Kansas Geological Survey open-file report 2000–29B (v2.0). At /www.kgs.ukans/HighPlains/2000-29B/Decdir.htm.
World Resources Institute. (2000). World Resources: People and Ecosystems: The Fraying Web of Life. Oxford, Oxford University Press.
Wright, H. E. and Thorpe, J. (2003). Climatic change and the origin of agriculture in the Near East. In Mackay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 49–62.Google Scholar
Wu, H., Guo, Z. and Peng, C. (2003). Land use induced changes of organic carbon storage in soils of China. Global Change Biology 9, 305–15.CrossRefGoogle Scholar
Wuebbles, D. J. and Hayhoe, K. (2002). Atmospheric methane and global change. Earth Science Reviews 57, 177–210.CrossRefGoogle Scholar
Wuebbles, D. J., Jain, A., Edmonds, J., Harvey, D. and Hayhoe, K. (1999). Global change: state of the science. Environmental Pollution 100, 57–86.CrossRefGoogle ScholarPubMed
Wunsch, C. (2004). Quantitative estimate of the Milankovitch-forced contribution to observed Quaternary climate change. Quaternary Science Reviews, 23, 1001–12.CrossRefGoogle Scholar
Xiao, J. L., Porter, S. C., An, Z. S., Kumai, H. and Yoshikawa, S. (1995). Grain size of quartz as an indicator of winter monsoon strength on the loess plateau of central China during the last 130 000 yr. Quaternary Research 43, 22–9.CrossRefGoogle Scholar
Xu, L. (1999). From GCMs to river flow: a review of downscaling methods and hydrological modelling approaches. Progress in Physical Geography 23, 229–39.CrossRefGoogle Scholar
Xu, Q. (2001). Abrupt change of mid-summer climate in central east China by the influence of atmospheric pollution. Atmospheric Environment 35, 5029–40.CrossRefGoogle Scholar
Yasuda, Y. (ed.) (2002). The origins of pottery and agriculture. New Delhi, Lustre Press.Google Scholar
Ye, D., Dong, W. and Jiang, Y. (2003). The northward shift of climatic belts in China during the last 50 years. IGBP Global Change Newsletter 53, 7–9.Google Scholar
Yevich, R. and Logan, J. A. (2003). An assessment of biofuel use and burning of agricultural waste in the developing world. Global Biogeochemical 17 (4), 6-1–6-21.Google Scholar
Yokohama, Y., Deckker, P. D., Lambeck, K., Johnston, P. and Fifield, L. K. (2001). Sea-level at the last glacial maximum: evidence from northwestern Australia to constrain ice volumes for oxygen isotope stage 2. Palaeogeography, Palaeoclimatology, Palaeoecology 165, 281–97.CrossRefGoogle Scholar
Yu, Z. and Ito, E. (1999). Possible solar forcing of century-scale drought frequency in the northern Great Plains. Geology 27, 263–6.2.3.CO;2>CrossRefGoogle Scholar
Zhang, K., Douglas, B. C. and Leatherman, S. P. (2003). Global warming and coastal erosion. Climatic Change 64, 41–58.CrossRefGoogle Scholar
Zielinski, G. A. (2000). Use of paleo-records in determining variability within the volcanism-climate system. Quaternary Science Reviews 19, 417–38.CrossRefGoogle Scholar
Zielinski, G. A., Mayewski, P. A., Meeker, L. D.et al. (1994). Record of explosive volcanism since 70 000 BC from the GISP 2 Greenland ice core and its implications for the volcano-climate system. Science 267, 256–8.Google Scholar
Zillen, L. (2003). Century-scale Holocene geomagnetic field variations and apparent polar wander paths reconstructed from varved lake sediments in Sweden. In: Zillen, L.Setting the Holocene Clock Using Varved Lake Sediments in Sweden. Lundqua Thesis 50. Lund University.Google Scholar
Zillen, L. M., Wastegard, S. and Snowball, I. F. (2002). Calendar year ages of three mid-Holocene tephra layers identified in varved lake sediments in west central Sweden. Quaternary Science Reviews 21, 1583–91.CrossRefGoogle Scholar
Zolitschka, B. (1998). A 14 000 year sediment yield record from western Germany based on annually laminated sediments. Geomorphology 22, 1–17.CrossRefGoogle Scholar
Zolitschka, B. (2003). Dating based on freshwater- and marine-Laminated sediments. In McKay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 92–106.Google Scholar
Zong, Y. and Chen, X. (2000). The 1998 flood on the Yangtze, China. Natural Hazards 22, 165–84.CrossRefGoogle Scholar
Carbon Dioxide Information Centerwww.cdiac.esd.ornl.gov/trends/trends.htm
Department of Environment, Food and Rural Affairs, UKwww.defra.gov.uk/environment/climatechange/
Global Change Data and Information System/US Global Change Research Program Gateway to Global Change Data and Informationwww.globalchange.gov/
Global Change Master Directorywww.gcmd.gsfc.nasa.gov/
The National Academies – Global Change Websitewww.dels.nas.edu/ccgc/
UK Riverswww.ukrivers.net/climate.html
US Environmental Protection Agencywww.epa.gov/globalwarming
US Global Change Research Information Officewww.gcrio.org
US National Science Foundation – Global Change Research Programswww.geo.nsf.gov/egch/
WGBU German Advisory Council of Global Changewww.wbgu.de/wbgu_home_engl.html
UK Climate Impacts Programmewww.ukcip.org.uk/
Capital Research Institutewww.capitalresearch.org
Center for the Study of Carbon Dioxide and Global Changewww.co2science.org
Competitive Enterprise Institutewww.cei.org
Cooler Heads Coalitionwww.globalwarming.org/
George Marshall Institutewww.marshall.org
Global Climate Coalitionwww.globalclimate.org/index.htm
Global Warming Information Centerwww.nationalcenter.org/Kyoto.html
John Dalywww.johndaly.com/
Lavoisier Groupwww.lavoisier.com.au
Philip Stottwww.probiotech.fsnet.co.uk/
Science and Environmental Policy Project (SEPP)www.sepp.org
Skepticism.net (with many links)www.skepticism.net/global_warming/
Skepticism.Netwww.skepticism.net/faq/environment/global_warming/
Achard, F., Eva, H. D., Stibig, H.-J., et al. (2002). Determination of deforestation rates of the world's humid tropical forests. Science 297, 999–1002.CrossRefGoogle ScholarPubMed
Achard, F., Eva, H. D., Mayaux, P., Stibig, H.-J. and Delward, A. (2004). Improved estimates of net carbon emissions from land cover change in the tropics from the 1990s. Global Biogeochemical Cycles 18, GB2008.CrossRefGoogle Scholar
Ackert, R. P. (2003). An ice sheet remembers. Science 299, 57–8.CrossRefGoogle ScholarPubMed
Adams, J. B., Mann, M. E. and Amman, C. M. (2003). Proxy evidence for an El Niño-like response to volcanic forcing. Nature 426, 274–8.CrossRefGoogle Scholar
Adams, J. M. and Piovesan, G. (2002). Uncertainties in the role of land vegetation in the carbon cycle. Chemosphere 49, 805–19.CrossRefGoogle ScholarPubMed
Adelson, J. M. and Helz, G. R. (2001). Reconstructing the rise of recent coastal anoxia: molybdenum in Chesapeake Bay sediments. Geochimica & Cosmochimica acta 65, 237–52.CrossRefGoogle Scholar
AGU Council (2003). American Geophysical Union position statement on human impact on climate. EOS 84 (51), 574.CrossRef
Aharon, P. (2003). Meltwater flooding events in the Gulf of Mexico revisited: implications for rapid climate changes during the last glaciation. Paleoceanography 18, 3–1–3–14.CrossRefGoogle Scholar
Ahn, J., Wahlen, M., Deck, B. L.et al. (2004). A record of atmospheric CO2 during the last 40 000 years from the Siple Dome, Antarctica ice core. Journal of Geophysical Research 109, D13305.CrossRefGoogle Scholar
Allen, M. R. and Ingram, W. J. (2002). Constraints on future changes in climate and hydrologic cycle. Nature 419, 224–32.CrossRefGoogle ScholarPubMed
Alley, R. B., (2000). The Younger Dryas cold interval as viewed from central Greenland. Quaternary Science Reviews 19, 213–26.CrossRefGoogle Scholar
Alley, R. B., Mayewski, P. A., Sowers, T., et al. (1997). Holocene climate instability: a prominent widespread event 8200 years ago. Geology 25, 483–6.2.3.CO;2>CrossRefGoogle Scholar
Alley, R. B., Meese, D. A., Shuman, C. A.et al. (1993). Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362, 527–9.CrossRefGoogle Scholar
Alverson, K. and Oldfield, F. (2000). Past global changes and their significance for the future: an introduction. Quaternary Science Reviews 19, 3–7.CrossRefGoogle Scholar
Alverson, K., Bradley, R. S. and Pedersen, T. F. (2001). Environmental Variability and Climate Change. IGBP Science 3. Stockholm, IGBP.Google Scholar
Alverson, K., Bradley, R. S. and Pedersen, T. F.(eds.) (2003). Paleoclimate, Global Change and the Future. Berlin, Springer Verlag.CrossRefGoogle Scholar
Amman, B. (ed.) (2000). Biotic responses to rapid climatic changes around the Younger Dryas. Palaeogeography, Palaeoclimatology, Palaeoecology 159.Google Scholar
Amman, B. and Oldfield, F. (2000). Preface: Rapid warming project. In Amman, B. (ed.). Biotic responses to rapid climatic changes around the Younger Dryas. Palaeogeography, Palaeoclimatology, Palaeoecology15, pp. v–vii.
Amman, C. M., Meehl, G. A. and Washington, W. M. (2003). A monthly and latitudinally varying volcanic forcing dataset in simulations of twentieth century climate. Geophysical Research Letters 30 (12), 1657.Google Scholar
An, Z. (2000). The history and variability of the east Asian paleomonsoon climate. Quaternary Science Reviews 19, 171–87.CrossRefGoogle Scholar
An, Z. and Porter, S. C. (1997). Millennial-scale oscillations during the last interglaciation in central China. Geology 25, 603–6.Google Scholar
Anderson, C., Koc, N., Jennings, A. and Andrews, J. T. (2004). Non-uniform response of the major surface currents in the Nordic seas to insolation forcing: implications for the Holocene climate variability. Paleoceanography 19, PA2003, 1–16.Google Scholar
Anderson, L., Abbott, M. B. and Finney, B. P. (2001). Holocene climate inferred from oxygen isotope ratios in lake sediments, central Brooks Range, Alaska. Quaternary Research, 55, 313–21.CrossRefGoogle Scholar
Anderson, P. M., Bartlein, P. J., Brubaker, L. B., Gajewski, K. and Ritchie, J. C. (1991). Vegetation–climate–pollen relationships for the arcto-boreal regions of North America and Greenland. Journal of Biogeography 18, 565–82.CrossRefGoogle Scholar
Anderson, T. L., Charlson, R. J., Schwartz, S. E.et al. (2003). Climate forcing by aerosols – a hazy picture. Science 300, 1103–4.CrossRefGoogle Scholar
Andreae, M. O., Rosenfield, D., Artaxo, P.et al. (2004). Smoking rain clouds over the Amazon. Science 303, 1337–42.CrossRefGoogle ScholarPubMed
Andren, E., Andren, T. and Kunzendorf, H. (2000). Holocene history of the Baltic Sea as a background for assessing records of human impact in the sediments of the Gotland basin. The Holocene 10, 687–702.CrossRefGoogle Scholar
Andren, E., Shimmield, G. and Brand, T. (1999). Environmental changes of the last three centuries indicated by siliceous microfossil records from the Baltic Sea. The Holocene 9, 25–38.CrossRefGoogle Scholar
Andrews, J. T., Hardadottir, J., Stoner, J., Mann, M. E., Krisjansdottir, B. and Koc, N. (2003). Decadal to millennial-scale periodicities in north Iceland shelf sediments over the last 12 000 cal. yr: long-term North Atlantic variability and solar forcing. Earth and Planetary Science Letters 210, 453–65.CrossRefGoogle Scholar
Angert, A., Biraud, S., Bonfils, C., Buermann, W. and Fung, I. (2004). CO2 seasonality indicates origins of post-Pinatubo sink. Geophysical Research Letters 31, L11103.CrossRefGoogle Scholar
,Anon. (2003a). How to slake a planet's thirst. Nature 422, 243.CrossRefGoogle Scholar
Anon. (2003b). Two wrongs not right. CO2 and climate: world climate alerts. At www.co2andclimate.org/wca/2003/wca.
Appleby, P. G. and Oldfield, F. (1992). Applications of Pb-210 to sedimentation studies. In Ivanovich, M. and Harmon, R. (eds.). Uranium Series Disequilibrium: Applications to Earth, Marine and Environmental Studies. Oxford, Clarendon Press, pp. 731–78.Google Scholar
Appleby, P. G., Richardson, N., Nolan, P. J. and Oldfield, F. (1990). Radiometric dating of the United Kingdom SWAP sites. Philosophical Transactions of the Royal Society B., 327, 7–12.CrossRefGoogle Scholar
Appleby, P. G., Oldfield, F., Thompson, R., Huttunen, P. and Tolonen, K. (1979). Pb-210 dating of annually laminated lake sediment from Finland. Nature, 280, 53–5.CrossRefGoogle Scholar
Arendt, A. A., Echelmeyer, K. A., Harrison, W. D., Lingle, C. S. and Valentine, V. B. (2002). Rapid wastage of Alaskan glaciers and their contribution to rising sea level. Science 297, 382–6.CrossRefGoogle Scholar
Ariztegui, D., Chondrogianni, C., Wolff, G. et al. (1996). Palaeotemperature and palaeosalinity history of the Meso Adriatic Depression (MAD) during the late Quaternary: a stable isotope and alkenones study. In Guilizzoni, P. and Oldfield, F. (eds.). Palaeoenvironmental Analysis of Italian Crater Lake and Adriatic sediments (PALICLAS). Memorie dell'Istituto Italiano di Idrobiologia, 55. Verbania Pallanza, Italy, Istituto Italiano di Idrobiogia, pp. 219–30.Google Scholar
Arnell, N. W. (1999). Climate change and global water resources. Global Environmental Change 9, S31–S49.CrossRefGoogle Scholar
Artaxo, P. (2003). Land-use change, aerosol production and climate: size matters!! LBA Science Highlight. At www//igbp.Kva.se/.
Asioli, A. (1996). High resolution foraminifera biostratigraphy in the central Adriatic basin during the last deglaciation: a contribution to the PALICLAS project. In Guilizzoni, P. and Oldfield, F. (eds.). Palaeoenvironmental Analysis of Italian Crater Lake and Adriatic Sediments (PALICLAS). Memorie dell 'Istituto Italiano di Idrobiologia, 55. Verbania Pallanza, Italy, Istituto Italiano di Idrobiologia, pp. 197–217.Google Scholar
Atkinson, T. C., Briffa, K. R. and Coope, G. R. (1987). Seasonal temperatures in Britain during the last 22 000 years, reconstructed using beetle remains. Nature 325, 587–92.CrossRefGoogle Scholar
Bahn, P. and Flenley, J. R. (1992). Easter Island, Earth Island: A Message from Our Past for the Future of Our Planet. London, Thames and Hudson.Google Scholar
Baillie, M. G. L. and Brown, D. M. (2003). Dendrochronology and the reconstruction of fine-resolution environmental change in the Holocene. In Mackay, A. W., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 75–91.Google Scholar
Banks, H. and Wood, R. (2002). Where to look for anthropogenic climate change in the ocean. Journal of Climate Change 15, 879–91.Google Scholar
Barber, D. C., Dyke, A., Hillaire-Marcel, C.et al. (1999). Forcing of the cold event of 8200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344–48.CrossRefGoogle Scholar
Barber, K. E. and Charman, D. (2003). Holocene Paleoclimate records from peatlands. In Mackay, A. W., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 210–26.Google Scholar
Bard, E., Arnold, M., Hamelin, B., Tisnerat-Laborde, N. and Cabioch, G. (1998). Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Muraroa and Tahiti. Radiocarbon 40, 1085–92.CrossRefGoogle Scholar
Bard, E., Fairbanks, R. G., Arnold, M.et al. (1989). Sea-level estimates during the last deglaciation based on δ18O and accelerator mass spectrometry 14C ages measured in Globigerina bulloides. Quaternary Research 31, 381–91.CrossRefGoogle Scholar
Bard, E., Hamelin, B., Arnold, M.et al. (1996). Deglacial sea-level record from Tahiti corals and the timing of global melt-water discharge. Nature 382, 405–10.CrossRefGoogle Scholar
Bard, E., Rostek, F. and Menot-Combes, G. (2004). Radiocarbon calibration beyond 20 000 14C yr BP by means of planktonic foraminifera of the Iberian margin. Quaternary Research 61, 204–14.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A. and Kaufman, A. (1997). Late Quaternary paleoclimate in the eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel. Quaternary Research 47, 155–68.CrossRefGoogle Scholar
Barnekow, L. (2000). Holocene regional and local vegetation history and lake-level changes in the Tornetrask area, northern Sweden. Journal of Paleolimnology 23, 399–420.CrossRefGoogle Scholar
Barnett, J. and Adger, W. N. (2003). Climate dangers and atoll countries. Climatic Change 61, 321–37.CrossRefGoogle Scholar
Barnett, T. P., Pierce, D. W. and Schnurr, R. (2001). Detection of anthropogenic climate change in the world's oceans. Science 292, 270–4.CrossRefGoogle ScholarPubMed
Barnett, T., Malone, R., Pennell, W.et al. (2004). The effects of climate change on water resources in the West: introduction and overview. Climatic Change 62, 1–11.CrossRefGoogle Scholar
Barnola, J.-M., Pimienta, P., Raynaud, D. and Korotkevich, Y. S. (1991). CO2-climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on a re-evaluation of the air dating. Tellus 43, 83–90.CrossRefGoogle Scholar
Bartlein, P. J., Webb, J. T. III and Fleri, E. (1984). Holocene climatic change in the northern midwest: pollen derived estimates. Quaternary Research 22, 361–74.CrossRefGoogle Scholar
Batchold, D. (2003). Britain to cut CO2 without relying on nuclear power. Science 299, 1291.Google Scholar
Bates, N. R., Pequignet, A. C., Jonson, R. J. and Gruber, N. (2002). A short-term sink for atmospheric CO2 in subtropical mode water of the North Atlantic Ocean. Nature 420, 489–93.CrossRefGoogle ScholarPubMed
Battarbee, R. W. (1978). Observations on the recent history of Lough Neagh and its drainage basin. Philosophical Transactions of the Royal Society B 281, 303–45.CrossRefGoogle Scholar
Battarbee, R. W. (1990). The causes of lake acidification, with special reference to the role of acid deposition. Philosophical Transactions of the Royal Society of London Series B 327, 339–47.CrossRefGoogle Scholar
Battarbee, R. W. (1998). Lake management: the role of palaeolimnology. In Harper, D. M. (ed.). The Ecological Basis for Lake and Reservoir Management. London, Wiley.Google Scholar
Battarbee, R. W., Gasse, F. and Stickley, C. E. (eds.) (2005). Past Climate Variability through Europe and Africa. Dordrecht, Kluwer.Google Scholar
Battarbee, R. W., Mason, J., Renberg, I. and Talling, J. F. (eds.) (1990). Palaeolimnology and lake acidification. Philosophical Transactions of the Royal Society of London B 327, 223–445.
Bauer, E., Claussen, M. and Brovkin, V. (2003). Assessing climate forcings of the Earth system for the past millennium. Geophysical Research Letters 2 (6), 9–1–9–4.Google Scholar
Beer, J, Mende, W. and Stellmacher, R. (2000). The role of the sun in climate forcing. Quaternary Science Reviews 19, 403–15.CrossRefGoogle Scholar
Behl, R. J. and Kennett, J. P. (1996). Evidence for brief interstadial events in the Santa Barbara basin, NE Pacific during the past 60 kyr. Nature 379, 243–6.CrossRefGoogle Scholar
Bellwood, D. R., Hughes, T. P., Folke, C. and Nystrom, M. (2004). Confronting the coral reef crisis. Nature 429, 827–33.CrossRefGoogle ScholarPubMed
Beltrami, W., Wang, J. F. and Bras, R. L. (2000). Energy balance at the Earth's surface: heat flux history in eastern Canada. Geophysical Research Letters 27, 3385–8.CrossRefGoogle Scholar
Bender, M. L. (2002). Orbital tuning chronology for the Vostok climate record supported by trapped gas composition. Earth and Planetary Science Letters 204, 275–89.CrossRefGoogle Scholar
Bender, M. L. (2003). Climate–biosphere interactions on glacial–interglacial timescales. Global Biogeochemical Cycles 17, 8–1–8–10.CrossRefGoogle Scholar
Benestad, R. E. (2003). What can climate models tell us about climate change? Climatic Change 59, 311–31.CrossRefGoogle Scholar
Bengtsson, L. (2001). Hurricane threats. Science 293, 440–441.CrossRefGoogle ScholarPubMed
Bengtsson, L., Hagemann, S. and Hodges, K. I. (2004). Can climate trends be calculated from reanalysis data? Journal of Geophysical Research 109. D11111.CrossRefGoogle Scholar
Beniston, M. (2003). Climatic change in mountain regions: a review of possible impacts. Climatic Change 59, 5–31.CrossRefGoogle Scholar
Bennett, K. D. (1997). Evolution and Ecology. The Pace of Life. Cambridge, Cambridge University Press.Google Scholar
Benson, L., Kashgarian, M., Rye, R.et al. (2002). Holocene multidecadal and multicentennial droughts affecting northern California and Nevada. Quaternary Science Reviews 21, 659–82.CrossRefGoogle Scholar
Bergengren, J. C., Thompson, S. L., Pollard, D. and DeConto, R. M. (2001). Modelling global climate–vegetation interactions in a doubled CO2 world. Climatic Change 50, 31–75.CrossRefGoogle Scholar
Berger, A. (1979). Insolation signatures of Quaternary climatic changes. Il nuovo cimento 2, 63–87.CrossRefGoogle Scholar
Berger, A. and Loutre, M. F. (1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297–318.CrossRefGoogle Scholar
Bianchi, G. G. and McCave, I. N. (1999). Holocene periodicity in North Atlantic climate and deep ocean flow south of Iceland. Nature 397, 515–17.CrossRefGoogle Scholar
Bigler, C., Larocque, I.Peglar, S. M., Birks, H. J. B. and Hall, R. I. (2002). Quantitative multiproxy assessment of long-term patterns of Holocene environmental change from a small lake near Åbisko, northern Sweden. The Holocene 12, 481–96.CrossRefGoogle Scholar
Billen, G. and Garnier, J. (1999). Nitrogen transfers through the Seine drainage network: a budget based on the application of the ‘Riverstrahler’ model. Hydrobiologia 410, 139–50.CrossRefGoogle Scholar
Bindschalder, R., Diner, D. J. and Rignot, E. (2002). West Antarctic ice sheet releases new icebergs. EOS 83 (9), 85–93.CrossRefGoogle Scholar
Biondi, F., Isaacs, C., Hughes, M. K., Cayan, D. R. and Berger, W. H. (2000). The near-1600 dry/wet knockout: linking terrestrial and near-shore ecosystems. In Proceedings of the Twenty-Fourth Annual Climate Diagnostics and Prediction Workshop. Washington DC, US Department of Commerce, NOAA.Google Scholar
Biondi, F., Lange, C. B., Hughes, M. K. and Berger, W. H. (1997). Interdecadal signals during the last millennium (AD 1117–1992) in the varve record of Santa Barbara Basin, California. Geophysical Research Letters 24, 193–6.CrossRefGoogle Scholar
Birks, H. J. B. (2003). Quantitative palaeoenvironmental reconstructions from Holocene biological data. In Mackay, A. W., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 107–23.Google Scholar
Birks, H. H., Battarbee, R. W. and Briks, H. J. B. (2000) The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late glacial and early Holocene – a synthesis. Journal of Paleolimnology 23, 91–114.CrossRefGoogle Scholar
Bishop, J. K. R., Wood, T. J., Davis, R. E. and Sherman, J. T. (2004). Robotic observations of enhanced carbon biomass and export at 55 oS during SOFeX. Science 304, 417–18.CrossRefGoogle Scholar
Björck, S., Koc, N. and Skog, G. (2003). Consistently large marine reservoir ages in the Norwegian Sea during the last deglaciation. Quaternary Science Reviews 22, 429–35.CrossRefGoogle Scholar
Blaauw, M. (2003). An investigation of Holocene sun-climate relationships using numerical C-14 wiggle-match dating of peat deposits. Ph.D. thesis, University of Amsterdam.
Blaauw, M., Geel, B. and Plicht, J. (2004). Solar forcing of climate change during the mid-Holocene: indications from raised bogs in the Netherlands. The Holocene 14, 35–44.CrossRefGoogle Scholar
Blaauw, M., Heuvelink, G. B. M., Mauquoy, D., Plicht, J. and Geel, B. (2003). A numerical approach to 14C wiggle-match dating of organic deposits: best fits and confidence intervals. Quaternary Science Reviews 22, 1485–1500.CrossRefGoogle Scholar
Blunier, T. and Brook, E. J. (2001). Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109–12.CrossRefGoogle ScholarPubMed
Blunier, T., Chappellaz, J., Schwander, J.et al. (1997). Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394, 739–43.CrossRefGoogle Scholar
Boer, G. J., Yu, S-J., Kim, B. and Flato, G. M. (2004). Is there observational support for an El Niño-like pattern of future global warming? Geophysical Research Letters 31, L06201.CrossRefGoogle Scholar
Boersma, A. (1978). Foraminifera. In Haq, B. U. and Boersma, A. (eds.). Introduction to Marine Micropaleontology, New York, Elsevier, pp. 19–77.Google Scholar
Bolger, T. (2001). The functional value of species biodiversity – a review. Proceedings of the Royal Irish Academy 1018, 119–142.Google Scholar
Bolin, B. (1998). The Kyoto negotiation on climate change: a scientific perspective. Science 279, 330–1.CrossRefGoogle Scholar
Bond, G., Kramer, B., Beer, J.et al. (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 2130–6.CrossRefGoogle ScholarPubMed
Bond, G. and Lotti, R. (1995) Iceberg discharges into the North Atlantic on millennial timescales during the last glaciation. Science 267, 1005–10.CrossRefGoogle Scholar
Bond, G., Showers, W., Cheseby, M.et al. (1997). A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 1257–66.CrossRefGoogle Scholar
Bond, G., Showers, W., Elliot, M. et al. (1999). The North Atlantic's 1–2 kyr climate rhythm: relation to Heinrich events, Dansgaard/Oeschger cycles and the Little Ice Age. In Clark, P. U., Webb, R. S. and Keigwin, L. D. (eds.). Mechanisms of Global Climate Change at Millennial Time Scales. Washington DC, AGU, pp. 35–58.CrossRefGoogle Scholar
Bond, N. A., Overland, J. E., Spillane, M. and Stabeno, P. (2003). Recent shifts in the state of the North Pacific. Geophysical Research Letters 30 (23), 1–1–1–4.CrossRefGoogle Scholar
Bopp, L., Kohfeld, K. E.Quéré, C. and Aumont, O. (2003) Dust impact on marine biota and atmospheric CO2 during glacial periods. Paleoceanography, 18 (2), 24–1–24–9.CrossRefGoogle Scholar
Bopp, L., Quéré, , Heimann, M.Manning, A. C. and Monfray, P. (2002). Climate induced ocean-oxygen fluxes: implications for the contemporary carbon budget. Global Geochemical Cycles 16, 6–1–6–14.Google Scholar
Boyd, P. W., Law, C. S., Wong, C. S.et al. (2004). The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature 428, 549–53.CrossRefGoogle ScholarPubMed
Boyd, P. W., Watson, A., Law, C.et al. (2000). A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407, 695–702.CrossRefGoogle ScholarPubMed
Braconnot, P., Joussaume, S., Marti, O. and Noblet, P. (1999). Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-Holocene insolation. Geophysical Research Letters 26, 2481–4.CrossRefGoogle Scholar
Bradley, R. S. (1999). Paleoclimatology: Reconstructing Climate of the Quaternary, 2nd. edn. San Diego, Harcourt Academic Press, ch. 11.Google Scholar
Bradley, R. S. (2003) Climate forcing during the Holocene. In Mackay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 10–19.Google Scholar
Bradley. R. S., Briffa, K. R., Cole, J., Hughes, M. K. and Osborn, T. J. (2003). The climate of the last millennium. In Alverson, K., Bradley, R. S. and Pedersen, T. F. (eds.). Paleoclimate, Global Change and the Future. Berlin, Springer Verlag, pp. 105–41.CrossRefGoogle Scholar
Bradley, R. S. and Jones, P. D. (1992). When was the ‘Little Ice Age’? In Mikami, T. (ed.). Proceedings of the International Symposium on the Little Ice Age Climate. Tokyo, Dept. of Geography, Tokyo Metropolitan University, pp. 1–4.Google Scholar
Braganza, K., Karoly, D. J., Hirst, A. C. (2004). Simple indices of global climate variability and change part II: attribution of climate change during the twentieth century. Climate Dynamics, 22, 823–38.CrossRefGoogle Scholar
Brasseur, G. (2003). An integrated view of the Causes and Impacts of atmospheric changes. In Brasseur, G. P., Prinn, R. G. and Pszenny, A. P. (eds.). Atmospheric Chemistry in a Changing World. Berlin, Springer Verlag, pp. 207–29.CrossRefGoogle Scholar
Bratcher, A. J. and Giese, B. S. (2002). Tropical Pacific decadal variability and global warming. Geophysical Research Letters 29, No.19.CrossRefGoogle Scholar
Bray, R. C., Price, B. B., Clow, G. D. and Glow, A. J. (2001). Climate logging with new rapid optical technique at Siple Dome. Geophysical Research Letters 28, 4635–8.Google Scholar
Brazdil, R., Glaser, R., Pfister, C. and Stangl, H. (2002). Floods in Europe – a look into the past. PAGES Newsletter 10 (3), 21–3.Google Scholar
Briffa, K. R. (2000). Annual climate variability in the Holocene: interpreting the message from ancient trees. Quaternary Science Reviews 19, 87–105.CrossRefGoogle Scholar
Briffa, K. R., Jones, P. D., Schweingruber, F. H. and Osborn, T. J. (1998). Influence of volcanic eruptions on northern hemisphere summer temperature over the past 600 years. Nature 393, 450–5.CrossRefGoogle Scholar
Briffa, K. R., Osborn, T. J., Schweingruber, F. H.et al. (2001). Low frequency temperature variations from a northern tree ring density network. Journal of Geophysical Research 106, 2929–41.CrossRefGoogle Scholar
Briffa, K. R., Osborn, T. J., Schweingruber, F. H.et al. (2002a). Tree-ring width and density data around the northern hemisphere: part 1, local and regional climate signals. The Holocene 12, 737–57.CrossRefGoogle Scholar
Briffa, K. R., Osborn, T. J., Schweingruber, F. H.et al. (2002b). Tree-ring width and density data around the Northern Hemisphere: part 2, spatio-temporal variability and associated climate patterns. The Holocene 12, 759– 89.CrossRefGoogle Scholar
Briffa, K. R., Schweingruber, F. H., Jones, P. D.et al.(1998). Reduced sensitivity of tree-rings to temperatures at high northern latitudes. Nature 391, 678–82.CrossRefGoogle Scholar
Briffa, K. R., Schweingruber, F. H., Jones, P. D.et al. (1999). Trees tell of past climates, but are they speaking less clearly today? Philosophical Transactions of the Royal Society of London, B 353, 65–73.CrossRefGoogle Scholar
Broccoli, A. J., Dixon, K. W., Delworth, T. L., Knutson, T. R. and Stouffer, R. J. (2003). Twentieth-century temperature and precipitation trends in ensemble climate simulations including natural and anthropogenic forcing. Journal of Geophysical Research 108, ACL 16–1–16–13.CrossRefGoogle Scholar
Broecker, W. S. (1989). The salinity contrast between the Atlantic and Pacific oceans during glacial time. Paleoceanography 4, 207–12.CrossRefGoogle Scholar
Broecker, W. S. (1998). Paleocean circulation during the last deglaciation: a bipolar seesaw? Paleoceanography 13, 119–21.CrossRefGoogle Scholar
Broecker, W. S. (2000). Abrupt climate change: causal constraints provided by the paleoclimatic record. Earth Science Reviews 51, 137–54.CrossRefGoogle Scholar
Broecker, W. S. (2003). Does the trigger for abrupt climate change reside in the ocean or in the atmosphere? Science 300, 1519–22.CrossRefGoogle ScholarPubMed
Broecker, W. S. (2004). Future global warming scenarios. Science 304, 388.CrossRefGoogle ScholarPubMed
Broecker, W. S., Bond, G., Klas, M., Bonani, G. and Wolfi, W. (1990). A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography 3, 659–69.CrossRefGoogle Scholar
Broström, A., Coe, M. T., Harrison, S. Pet al. (1998a). Land surface feedbacks and palaeomonsoons in northern Africa. Geophysical Research Letters 25, 3615–18.CrossRefGoogle Scholar
Broström, A., Gaillard, M.-J., Ihse, M. and Odgaard, B. (1998b). Pollen–landscape relationships in modern analogues of ancient cultural landscapes in southern Sweden – a first step towards quantifying vegetation openness in the past. Vegetation History and Archaeobotany 7, 189–201.CrossRefGoogle Scholar
Bruckner, T., Petschel-Held, G., Toth, F. L., Fuessel, H.-M., Helm, C. and Leimbach, M. (1999). Climate change decision-support and the tolerable windows approach. Environmental Modelling and Assessment 4, 217–34.CrossRefGoogle Scholar
Bryant, D., Burke, L., McManus, J. and Spalding, M. (1998). Reefs at Risk: a Map Based Indicator of Threats to the World's Coral Reefs. Washington DC, World Resources Institute.Google Scholar
Bryden, H. L., McDonagh, E. L. and King, B. A. (2003). Changes in ocean water mass properties: oscillations or trends? Science 300, 2086–8.CrossRefGoogle ScholarPubMed
Buckley, L. B. and Roughgarden, J. (2004). Biodiversity conservation: Effects of changes in climate and land use. Nature 430, 34.CrossRefGoogle ScholarPubMed
Buesseler, K. O., Andrews, J. E., Pike, S. M. and Charette, M. A. (2004). The effects of Iron fertilization on carbon sequestration in the Southern Ocean. Science 304, 414–17.CrossRefGoogle ScholarPubMed
Bugmann, H. K. M. (1997). Gap models, forest dynamics and the response of vegetation to climate change. In Huntley, B., Cramer, W., Morgan, A. V., Prentice, H. C. and Allen, J. R. M. (eds.). Past and Future Rapid Environmental Changes: The Spatial and Evolutionary Responses of Terrestrial Biota. Berlin, Springer Verlag NATO ASI Series, pp. 441–53.CrossRefGoogle Scholar
Bugmann, H. K. M. (2001). A review of forest gap models. Climate change 5, 259–305.CrossRefGoogle Scholar
Bugmann, H. K. M. and Pfister, C. (2000). Impacts of interannual climate variability on past and future forest composition. Regional Environmental Change 1, 1–19.Google Scholar
Burn, G. (2003). After the flood. The Guardian Review, 15 November, pp. 4–6.
Burns, S. J., Fleitman, D., Mather, A., Kramer, J. and Al-Subbary, A. A. (2003). Indian Ocean climate and an absolute chronology over Dansgaard-Oeschger Events 9–13. Science 301, 1365–7.CrossRefGoogle Scholar
Caillon, N., Jouzel, J., Severinghaus, J. P., Chappellaz, J. and Blunier, T. (2003a). A novel method to study the phase relationship between Antarctic and Greenland climate. Geophysical Research Letters 30, 4-1–4-4.CrossRefGoogle Scholar
Caillon, N., Severinghaus, J. P., Jouzel, J.et al. (2003b). Timing of atmospheric CO2 and Antarctic temperature changes across termination III. Science 299, 1728–31.CrossRefGoogle Scholar
Calov, R., Ganapolski, A., Petoukhov, V. and Claussen, M. (2002). Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model. Geophysical Research Letters 29 (24), 69, 1–4.CrossRefGoogle Scholar
Calvo, E., Pejero, C., Logan, C. A. and Deckker, P. (2004). Dust-induced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles. Paleoceanography 19, PA2020.CrossRefGoogle Scholar
Campbell, B. D., Stafford-Smith, D. M. and the GCTE Pasture and Rangelands Network members. (2000). A synthesis of recent global change research on pasture and rangeland production: reduced uncertainties and their management implication. Agriculture, Ecosystems and Environment 82, 39–55.CrossRefGoogle Scholar
Camuffo, D., Secco, C., Brimblecombe, P. and Martin-Vide, J. (2000). Sea storms in the Adriatic and the western Mediterranean during the last millennium. Climatic Change 46, 209–23.CrossRefGoogle Scholar
Canadell, J. G. and Pataki, D. (2002). New advances in carbon cycle research. Trends in Ecology and Evolution 17, 156–8.CrossRefGoogle Scholar
Carcaillet, C., Almquist, H., Asnong, H.et al. (2002). Holocene biomass burning and global dynamics of the carbon cycle. Chemosphere 49, 845–63.CrossRefGoogle ScholarPubMed
Carrington, D. P., Gallimore, R. G. and Kutzbach, J. E. (2001). Climate sensitivity to wetlands and wetland vegetation in mid-Holocene North Africa. Climate Dynamics 17, 151–7.CrossRefGoogle Scholar
Carslaw, K. S., Harrison, R. G. and Kirby, J. (2003). Cosmic rays, clouds, and climate. Science 298, 1732–7.CrossRefGoogle Scholar
Cazenave, A. and Nerem, R. S. (2004). Present-day sea-level change: observations and causes. Review of Geophysics 42, RG3001.CrossRefGoogle Scholar
CENR (2000). Integrated Assessment of Hypoxia in the Northern Gulf of Mexico. Washington DC, National Science and Technology Council Committee on Environment and Natural Resources.
Chameides, W. L., Kasibhatla, P. S., Yienger, J. and Levy, I. H. (1994). Growth of Continetntal-scale metro-agro-plexes, regional ozone pollution, and world Food production. Science 264, 74–7.CrossRefGoogle ScholarPubMed
Chameides, W. L., Yu, H., Bergin, M.et al. (1999). Case study of the effects of atmospheric aerosols and regional haze on agriculture: an opportunity to enhance crop yields in China through emission controls. Proceedings of the National Academy of Sciences USA 96, 13626–33.CrossRefGoogle ScholarPubMed
Chapin, F. S. III, Zavaleta, E. S., Eviner, V. T.et al. (2000a). Consequences of changing biodiversity. Nature 405, 234–42.CrossRefGoogle Scholar
Chapin, F. S. III, McGuire, A. D., Randerson, J.et al. (2000b). Arctic and boreal ecosystems of western North America as components of the climate system. Global Change Biology 6, 211–23.CrossRefGoogle Scholar
Chapman, D. S., Bartlett, M. G. and Harris, R. N. (2004). Comment on ‘ground vs. surface air temperature trends: implications for borehole surface temperature reconstructions’ by M. E. Mann and G. Schmidt. Geophysical Research Letters 31, L07205.CrossRefGoogle Scholar
Chapman, M. R., Shackleton, N. J. and Duplessy, J.-C. (2000). Sea surface temperature variability during the last glacial-interglacial cycle: assessing the magnitude and pattern of climate change in the North Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 157, 1–25.CrossRefGoogle Scholar
Chappell, J. M. A. and Shackleton, N. J. (1986). Oxygen isotopes and sea-level. Nature 324, 137–8.CrossRefGoogle Scholar
Charles, D. F., Binford, M. W., Furlong, E. T.et al. (1990). Palaeoecological investigations of recent lake acidification in the Adirondack Mountains, N. Y. Journal of Paleolimnology, 3, 195–241.CrossRefGoogle Scholar
Chase, T. N., Pielke, R. A., Kittel, T. G. F.et al. (2002). Relative climatic effects of landcover change and elevated carbon dioxide combined with aerosols: a comparison of model results and observations. Journal of Geophysical Research D. Atmospheres 106, 31685–91.CrossRefGoogle Scholar
Cheddadi, R., Yu, G., Guiot, J., Harrison, S. P. and Prentice, I. C. (1997) The climate of Europe 6000 years ago. Climate Dynamics 13, 1–9.CrossRefGoogle Scholar
Chen, D., Cane, M. A., Kaplan, A., Zeblak, S. E. and Huang, D. (2004). Predictability of El Niño over the past 148 years. Nature 428, 733–5.CrossRefGoogle ScholarPubMed
Chen, F. H., Bloemendal, J., Wang, J. M., Li, J. J. and Oldfield, F. (1997). High-resolution multi-proxy climate records from Chinese loess: evidence for rapid climatic changes over the last 75 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology 130, 323–35.CrossRefGoogle Scholar
Chen, F. H., Qiang, M. R., Feng, Z. D., Wang, H. B. and Bloemendal, J. (2003). Stable East Asian monsoon climate during the last interglacial (Eemian) indicated by palaeosol S1 in the western part of the Chinese Loess Plateau. Global and Planetary Change 36, 171–9.CrossRefGoogle Scholar
Chepstow-Lusty, A., Bennett, K. D., Fjeldsa, J., Kendall, A., Galliano, W. and Tupayachi-Herrera, A. (1997). Tracing 4000 years of environmental history in the Cuzco area, Peru, from the pollen record. Mountain Research and Development 18, 159–72.CrossRefGoogle Scholar
Chock, D. P., Song, Q., Hass, H., Schell, B. and Ackermann, I. (2003). Comment on ‘Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming’ by M. Z. Jacobson. Journal of Geophysical Research 108, 12–1–12–3.CrossRefGoogle Scholar
Church, J. A. and Gregory, J. M. (2001). Changes in sea-level. Climate change 2001: the scientific basis. In Houghton, J. T.et al. (eds.). Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press.Google Scholar
Claquin, T., Roelandt, C., Kohfeld, K. E., et al. (2002). Radiative forcing of climate by ice-age atmospheric dust. Climate Dynamics 20, 193–202.CrossRefGoogle Scholar
Clark, P. U., Marshall, S. J., Clarke, G. K. C., Hostetler, S. W., Licciardi, J. M. and Teller, J. T. (2001). Freshwater forcing of abrupt climate change during the last Glaciation. Science 293, 283–7.CrossRefGoogle ScholarPubMed
Clark, P. U., McCabe, A. M., Mix, A. and Weaver, A. J. (2004). Rapid rise of sea-level 19 000 years ago and its global implications. Science 304, 1141–4.CrossRefGoogle Scholar
Clark, P. U., Pisias, N. G., Stocker, T. F. and Weaver, A. J. (2002). The role of the thermohaline circulation in abrupt climate change. Nature 415, 863–9.CrossRefGoogle ScholarPubMed
Clark, W. C. and Dickson, N. M. (2003). Sustainability science: the emerging research program. Proceedings of the National Academy of Sciences 100, 8059–61.CrossRefGoogle ScholarPubMed
Clarke, K. C., Hoppen, S. and Gaydos, L. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design 24, 247–61.CrossRefGoogle Scholar
Clarke, R. T. (2003). Frequencies of extreme events under conditions of changing hydrological regime. Geophysical Research Letters 30 (3), 24–1–24–4.CrossRefGoogle Scholar
Claussen, M., Brovkin, V., Ganapolski, C. and Petoukhov, V. (2003). Climate change in North Africa: the past is not the Future. Climatic Change 57, 99–118.CrossRefGoogle Scholar
Claussen, M., Kubatzki, C., Brovkin, V.et al. (1999). Simulation of an abrupt change in Saharan vegetation at the end of the mid-Holocene. Geophysical Research Letters 24, 2037–40.CrossRefGoogle Scholar
Clement, A. C., Seager, R. and Cane, M. A., (2000). Suppression of El Niño during the mid-Holocene by changes in the Earth's orbit. Paleoceanography 15, 731–7.CrossRefGoogle Scholar
CLIMAP (1981). Seasonal reconstructions of the Earth's surface at the last glacial maximum. Geological Society of America, Map Chart Series, MC-36.
Co2science (2003). Atmospheric methane concentration: no longer rising. In Journal Reviews. www.co2science.org/journal/2003/v6n43cl.htm.
Coale, K. H., et al. (1996). A massive phytoplankton bloom induced by ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383, 495–501.CrossRefGoogle ScholarPubMed
Cohen, A. S. (2003). The History and Evolution of Lake Systems. Oxford, Oxford University Press.Google Scholar
Cole, J. E. (2003). Holocene coral records: windows on tropical climate variability. In McKay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 168–84.Google Scholar
Colinvaux, P. A., Oliveira, P. E. D. and Bush, M. B, (2000). Amazonian and neotropical plant communities on glacial time-scales: The failure of the aridity and refuge hypotheses. Quaternary Science Reviews 19, 141–69.CrossRefGoogle Scholar
Comiso, J. C. (2002). A rapidly declining Arctic perennial ice cover. Geophysical Research Letters 29 (20), 1956.CrossRefGoogle Scholar
Compton, J. S. (2001). Holocene sea-level fluctuations inferred from the evolution of depositional environments of the southern Langebaan Lagoon salt marsh, South Africa. The Holocene 11, 395–406.CrossRefGoogle Scholar
Cook, E. R., Meko, D. M. and Stockton, C. W. (1997). A new assessment of possible solar and lunar forcing of the bidecadal drought rhythm in the western United States. Journal of Climate 10, 1343–56.2.0.CO;2>CrossRefGoogle Scholar
Cook, E. R., Meko, D. M., Stahle, D. W. and Cleaveland, M. K. (1999). Drought re constructions for the continental United States. Journal of Climate 12, 1145–62.2.0.CO;2>CrossRefGoogle Scholar
Cook, E. R., Palmer, J. G. and D'Arrigo, R. D. (2002). Evidence for a ‘Medieval warm Period’ in a 1100 year tree-ring reconstruction of past austral summer temperatures in New Zealand. Geophysical Research Letters 29 (14), 12–1–12–4.CrossRefGoogle Scholar
Cooper, S. R. (1995). Chesapeake Bay watershed historical land use: impact on water quality and diatom communities. Ecological Applications 5, 703–23.CrossRefGoogle Scholar
Cooper, S. R. and Brush, G. S. (1991). Long-term history of Chesapeake Bay anoxia. Science 254, 992–6.CrossRefGoogle ScholarPubMed
Cooper, S. R. and Brush, G. S.(1993). A 2500 year history of anoxia and eutrophication in Chesapeake Bay. Estuaries 16, 617–26.CrossRefGoogle Scholar
Costanza, R., d'Arge, R., Groot, R.et al. (1997). The value of the world's ecosystem services and natural capital. Nature 387, 253–60.CrossRefGoogle Scholar
Coulthard, T. J. and Macklin, M. G. (2001). How sensitive are river systems to climate and land-use changes? A model-based evaluation. Journal of Quaternary Science 16, 347–51.CrossRefGoogle Scholar
Covey, K. (2000). Beware the elegance of the number zero. Climatic Change 44, 409–11.CrossRefGoogle Scholar
Cowling, S. A. and Sykes, M. T. (1999). Physiological significance of low atmospheric CO2 for plant–climate Interactions. Quaternary Research 52, 237–42.CrossRefGoogle Scholar
Cowling, S. A., Sykes, M. T. and Bradshaw, R. H. W. (2001). Palaeovegetation-model comparisons, climate change and tree succession in Scandinavia over the past 1500 years. Journal of Ecology 89, 227–36.CrossRefGoogle Scholar
Cramer, W., Bondeau, A., Woodward, F. I.et al. (2001). Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology 7, 357–73.CrossRefGoogle Scholar
Crowley, T. J. (2000). Causes of climate change over the past 1000 years. Science 289, 270–7.CrossRefGoogle ScholarPubMed
Crowley, T. J. and Kim, K.-Y. (1999). Modeling the temperature response to forced climate change over the last six centuries. Geophysical Research Letters 26, 1901– 4.CrossRefGoogle Scholar
Crowley, T. J. and Lowery, T. S. (2000). How warm was the medieval warm period? Ambio 29, 51–4.CrossRefGoogle Scholar
Crutzen, P. J. (1995). My life with O3, NOx and other YZOOxs. Les Prix Nobel (The Nobel Prizes) 1995. Stockholm, Almqvist and Wiksell, pp. 123–57.Google Scholar
Crutzen, P. J. (2003). The ozone hole. In Steffen, W., Sanderson, A., Tyson, P. Det al. Global Change and the Earth System; A Planet under Pressure. Berlin, Springer Verlag, p. 236.Google Scholar
Crutzen, P. J. and Stoermer, E. (2001). The ‘Anthropocene’. International Geosphere Biosphere Programme Global Change Newsletter 41, 12–13.Google Scholar
Cubasch, U., Meehl, G. A., Boer, G. J. et al. (2001). Projections of future climate change. In Houghton, J. T.et al. (eds.). Climate Change 2001. Cambridge, Cambridge University Press.Google Scholar
Cuffey, K. M., Clow, G. D., Alley, R. B.et al. (1995). Large arctic temperature change at the Wisconsin–Holocene glacial transition. Science 270, 455–8.CrossRefGoogle Scholar
Cullen, H., Kaplan, A., Arkin, P. A. and deMenocal, P. B. (2002). Impact of the North Atlantic Oscillation on Middle Eastern climate and streamflow. Climatic Change 55, 315–38.CrossRefGoogle Scholar
Curry, R., Dickson, B. and Yashayaev, I. (2003). A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426, 826–9.CrossRefGoogle ScholarPubMed
D'Arrigo, R., Frank, D., Jacoby, G. and Pederson, N. (2001). Spatial responses to major volcanic events in or about AD 536, 934 and 1258: frost rings and other dendrochronological evidence from Mongolia and northern Siberia. Comments on R. B. Stothers, ‘Volcanic dry fogs, climate cooling and plague pandemics in Europe and the Middle East’ (Climatic Change, 42, 1999). Climatic Change49, 239–46.
Dahlin, B. H. (2002). Climate change and the end of the classic period in Yucatan: resolving a paradox. Ancient Mesoamerica 13, 327–40.CrossRefGoogle Scholar
Dahl-Jensen, D., Mosegaard, K., and Gunderstrup, N.et al. (1998). Past temperature directly from the Greenland ice sheet. Science 252, 268–71.CrossRefGoogle Scholar
Dallimore, S. R., Collett, T. S., Weber, M. and Uchida, T. (2002). Drilling program investigates permafrost gas hydrates. EOS, 83(18), 193–198.CrossRefGoogle Scholar
Dalrymple, G. B. and Lanphere, M. A. (1969) Potassium–Argon Dating: Principles, Techniques and Applications to Geochronology. San Francisco, W. H. Freeman.Google Scholar
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus 16, 436–68.CrossRefGoogle Scholar
Darwin, C. [1859] (1964). On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life. Cambridge, MA, Harvard University.Google Scholar
Angelis, H. and Skvarca, P. (2003). Glacier surge after ice sheet collapse. Science 299, 1559–62.CrossRefGoogle Scholar
deMenocal, P. B. (2001) Cultural responses to climate change during the late Holocene. Science 292, 667–73.CrossRefGoogle ScholarPubMed
deMenocal, P. B., Ortiz, J., Guilderson, T.et al. (2000). Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quaternary Science Reviews 19, 347–61.CrossRefGoogle Scholar
Noblet, N., Prentice, I. C., Joussaume, S.et al. (1996). Possible role of atmospheric biosphere interactions in triggering the last glaciation. Geophysical Research Letters 23, 3191–94.CrossRefGoogle Scholar
Noblet-Ducoudré, N., Claussen, M. and Prentice, I. C. (2000). Mid-Holocene greening of the Sahara: first results of the GAIM 6000 year experiment with two asynchronously coupled atmosphere/biome models. Climate Dynamics 16, 643–59.CrossRefGoogle Scholar
Silva, S. L., and Zielinski, G. A. (1998). Global influence of the AD 1600 eruption of Huaynaputina, Peru. Nature 393, 455–58.CrossRefGoogle Scholar
Dean, W., Anderson, R., Bradbury, J. P. and Anderson, D. (2002). A 1500 year record of climatic and environmental change at Elk Lake, Minnesota: varve thickness and gray-scale density. Journal of Palaeolimnology 27, 287–99.CrossRefGoogle Scholar
DeFries, R. (2004). Determining rates of tropical deforestation. In Steffen, W., Sanderson, A., Tyson, P. D.et al. Global Change and the Earth System; A Planet under Pressure. Berlin, Springer Verlag, p. 99.Google Scholar
DeFries, R., Houghton, R. A., Hansen, M.et al. (2002). Carbon emissions from tropical deforestation and regrowth based on satellite observations from the 1980's and 90's. Proceedings of the National Academy of Sciences, USA 99, 14256–61.CrossRefGoogle Scholar
Del Genio, A. D. (2002). The dust settles on water vapour feedback. Science 296, 665–6.CrossRefGoogle Scholar
Laat, A. T. J., and Maurellis, A. N. (2004). Industrial CO2 emissions as a proxy for anthropogenic influence on lower tropospheric temperature trends. Geophysical Research Letters 31, LO5204.Google Scholar
Delaygue, G., Stocker, T. F., Joos, F. and Plattner, G.-K. (2003). Simulations of atmospheric radiocarbon during abrupt oceanic circulation changes: trying to reconcile models and reconstructions. Quaternary Science Reviews 22, 1647–58.CrossRefGoogle Scholar
Delgrado, C., Rosegrant, M., Steinfield, H., Ehui, S. and Courbois, C. (1999). Livestock to 2020: The Next Food Revolution. Washington DC, IFPRI.Google Scholar
Delmonte, B., Petit, J. R. and Maggi, V. (2002). Glacial to Holocene implications of the new 27 000-year dust record from the EPICA Dome C (East Antarctica) ice core. Climate Dynamics 18, 647–60.Google Scholar
Delmotte, M., Chappellaz, J., Brook, E.et al. (2004). Atmospheric methane during the last four glacial–interglacial cycles: rapid changes and their link with Antarctic temperature. Journal of Geophysical Research 109, D12104, 1–13.CrossRefGoogle Scholar
Delworth, T. L. and Dixon, K. W. (2000). Implications of the recent trend in the Arctic/North Atlantic oscillation for the North Atlantic thermohaline circulation. Journal of Climatology 13, 3721–7.2.0.CO;2>CrossRefGoogle Scholar
Denton, G. H. and Hendy, C. H. (1994). Younger Dryas age advance of Franz Josef glacier in the southern Alps of New Zealand. Science 264, 1434–7.CrossRefGoogle Scholar
Diaz, H. F., Eischeid, J. K., Duncan, C. and Bradley, R. S. (2003). Variability of freezing levels, melting season indicators and snow cover for selected high-elevation and continental regions in the last 50 years. Climatic Change 59, 33–52.CrossRefGoogle Scholar
Diaz, S. (2001). Complex interactions between plant diversity, succession and elevated CO2. Trends in Ecology and Evolution 16, 667.CrossRefGoogle Scholar
Diaz, S. and Cabindo, M. (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution 16, 646–55.CrossRefGoogle Scholar
Diaz, S., Symstad, A. J., Chapin, F. S. III, Wardle, D. A. and Huenneke, L. F. (2002). Functional diversity revealed by removal experiments. Trends in Ecology and Evolution 18, 140–6.CrossRefGoogle Scholar
Dickens, G. R. (2004). Hydrocarbon-driven warming. Nature 429, 513–15.CrossRefGoogle ScholarPubMed
Dickson, R., Yashayaev, I., Meincke, J., Turrill, W., Dye, S. and Holfort, J. (2002). Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 416, 832–7.CrossRefGoogle ScholarPubMed
Dillehay, T. D. (2002). Climate and human migrations. Science 298, 764–5.CrossRefGoogle ScholarPubMed
Dillehay, T. D., Kolata, A. L. and Pino, M. Q. (2004). Pre-industrial human and environment interactions in northern Peru during the late Holocene. The Holocene 14, 272–81.CrossRefGoogle Scholar
Ding, Z., Rutter, N. W. and Liu, T. S. (1994). Towards an orbital timescale for Chinese loess deposits. Quaternary Science Reviews. 13, 39–70CrossRefGoogle Scholar
Dlugokencky, E. J., Houweling, S., Bruhwiler, L.et al. (2003). Atmospheric methane levels off: temporary pause or a new steady-state? Geophysical Research Letters 30 (19), ASC 5–1–5–4.CrossRefGoogle Scholar
Dodson, J. R.Taylor, D., Ono, Y. and Wang, P. (eds.). (2004). Climate, human and natural systems of the PEPII transect. Quaternary International 118–119, 1–203.Google Scholar
Doll, P. (2002). Impact of climate change and variability on irrigation requirements: a global perspective. Climatic Change 54, 269–93.CrossRefGoogle Scholar
Dore, J. F., Lukas, R., Sadler, D. W. and Karl, D. W. (2003). Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean. Nature 424, 754–7.CrossRefGoogle ScholarPubMed
Dorn, W., Dethloff, K., Rinke, A. and Roeckner, E. (2003). Competition of NAO regime changes and increasing greenhouse gases and aerosols with respect to Arctic climate projections. Climate Dynamics 21, 447–58.CrossRefGoogle Scholar
Douglass, D. H., Pearson, B. D., Singer, S. F., Knappenberger, P. C. and Michaels, P. D. (2004). Disparity of tropospheric and surface temperature trends: new evidence. Geophysical Research Letters 31, L12307.CrossRefGoogle Scholar
Duffy, P. B., Govindaswamy, B., Iorio, J. P.et al. (2003). High-resolution simulations of global climate, part 1: present climate. Climate Dynamics 21, 371–90.CrossRefGoogle Scholar
Dutta, K. (2002). Coherence of tropospheric 14CO2 with El Niño/Southern Oscillation. Geophysical Research Letters 29, 48-1–48-4.CrossRefGoogle Scholar
Dyson, T. (1996). Population and Food: Global Trends and Future Prospects. New York, Routledge.Google Scholar
Edwards, R. L., Chen, J. H. and Wasserburg, G. J. (1987). 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500 000 years. Earth and Planetary Science Letters 81, 175–92.CrossRefGoogle Scholar
Edmunds, W. M., Fellman, E. and Baba Goni, I. (1999). Environmental change, lakes and groundwater in the Sahel of northern Nigeria. Journal of the Geological Society London 156, 345–55.CrossRefGoogle Scholar
Elliot, M., Labeyrie, L. and Duplessy, J.-C. (2002). Changes in North Atlantic deep-water formation associated with Dansgaard-Oeschger temperature oscillations (10–100 ka). Quaternary Science Reviews 21, 1153–65.CrossRefGoogle Scholar
Elton, C. S. (1958). Ecology of Invasions by Animals and Plants. London, Chapman & Hall.CrossRefGoogle Scholar
EPICA community members (2004). Eight glacial cycles from an Antarctic ice core. Nature 429, 623–8.CrossRef
Eschenbach, W. W. (2004). Ecology: climate-change effect on Lake Tanganyika? Nature 430, 207–14.CrossRefGoogle ScholarPubMed
Esper, J., Cook, E. R. and Schweingruber, F. H. (2002). Low frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295, 2250–3.CrossRefGoogle ScholarPubMed
Esper, J., Frank, D. C. and Wilson, R. J. S. (2004). Climate reconstructions: low-frequency ambition and high frequency ratification. EOS 85 (12), 113–20.CrossRefGoogle Scholar
Fagan, B. (2004). The Long Summer: How Climate Changed Civilization. Granta, Basic Books.Google Scholar
Fairbanks, R. G. (1989). A 17 000 year glacio-eustatic sea-level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature 342, 637–42.CrossRefGoogle Scholar
Falkowski, P., Scholes, R. J., Boyle, E.et al. (2000). The global carbon cycle: a test of our knowledge of Earth as a system. Science 290, 291–6.CrossRefGoogle ScholarPubMed
Fang, X. M., Ono, Y., Fukusawa, H., Pan, B. T.et al. (1999) Asian summer monsoon instability during the past 60 000 years: magnetic susceptibility and pedogenic evidence from the western Chinese Loess Plateau. Earth and Planetary Science Letters 168, 219–32.CrossRefGoogle Scholar
FAO (2000). The State of World Fisheries and Aquaculture. Rome, Food and Agriculture Organization of the United Nations.
Feichter, J., Saussen, R., Grassl, H. and Fiebig, M. (2003). Comment on ‘Control of fossil-fuel particulate black carbon and organic matter, probably the most effective method of slowing global warming’ by M. Z. Jacobson. Journal of Geophysical Research 108, 10-1–10-2.CrossRefGoogle Scholar
Finney, B. P., Gregory-Eaves, I., Sweetman, J., Douglas, M. S. V., and Smol, J. P. (2000). Impacts of climatic change and fishing on Pacific salmon abundance over the past 300 years. Science 290, 795–9.CrossRefGoogle ScholarPubMed
Fiore, A. M., Jacob, D. J., Field, B. D., Streets, D. G. and Fernandes, S. D. (2002). Linking ozone pollution and climate change: the case for controlling methane. Geophysical Research Letters 29, 25-1–25-11.CrossRefGoogle Scholar
Fisher D. A. and Koerner, R. M. (2003). Holocene ice core climate history: a multi-variable approach. In Mackay, A. W., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold pp. 281–93.Google Scholar
Fleitmann, D., Burns, S. J., Mudelsee, M.et al. (2002). Holocene variability in the Indian Ocean Monsoon: a stalagmite-based high-resolution oxygen isotope record from southern Oman. PAGES News 10 (2), 7–8.Google Scholar
Flückiger, J., Dällenbach, A., Blunier, T.et al. (1999). Variations in atmospheric N2O concentration during abrupt climatic changes. Science 285, 227–30.CrossRefGoogle ScholarPubMed
Flückiger, J., Monnin, E., Stauffer, B.et al. (2001). High-resolution Holocene N2O ice core rcord and its relationship with CH4 and CO2. Global Biogeochemical Cycles 16, 10-1–10-7.Google Scholar
Flückiger, J., Monnin, E., Stauffer, B.et al. (2004). N2O and CH4 variations during the last glacial epoch: insight into global processes. Global Biogeochemical Cycles 18, GB1020.CrossRefGoogle Scholar
Foley, J., Kutzbach, J., Coe, M. and Levis, S. (1994). Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371, 52–4.CrossRefGoogle Scholar
Foley, J. A., Prentice, I. C., Ramankutty, N.et al. (1996). An integrated biosphere model of land surface processes, terrestrial carbon balance and vegetation dynamics. Global Biogeochemical Cycles 10, 603–28.CrossRefGoogle Scholar
Forster, P. M. de F. and Collins, M. (2004). Quantifying the water vapour feedback associated with post-Pinatubo global cooling. Climate Dynamics, 23, 207–14.CrossRefGoogle Scholar
Foster, D. R. (2002). Insights from historical geography to ecology and conservation: lessons from the New England landscape. Journal of Biogeography 29, 1269–75.CrossRefGoogle Scholar
Foster, D. R., Motzkin, G. and Slater, B. (1998). Land-use history as long-term broad-scale disturbance: regional forest dynamics in Central New England. Ecosystems 1, 96–119.CrossRefGoogle Scholar
Foster, D. R., Clayden, S., Orwig, D. A., Hall, B. and Barry, S. (2002). Oak, chestnut and fire: climatic and cultural controls of long term forest dynamics in New England, USA. Journal of Biogeography 29, 1359–79.CrossRefGoogle Scholar
Foster, D. R., Motzkin, G., Bernardos, D. and Cardoza, J. (2002). Wildlife dynamics in the changing New England landscape. Journal of Biogeography 29, 1337–1358.CrossRefGoogle Scholar
Foukal, P. (2003). Can slow variations in solar luminosity provide missing link between the sun and climate? EOS 84 (22), 205–8.CrossRefGoogle Scholar
Francis, R. C. and Hare, S. R. (1994). Decadal scale regime shifts in the large marine ecosystems of the north-east Pacific: a case for historical science. Fisheries Oceanography 3, 279–91.CrossRefGoogle Scholar
Frankus, P., Bradley, R. S., Abbott, M. B., Partridge, W. and Keimig, F. (2002). Paleoclimate studies of minerogenic sediments using annually resolved textural parameters. Geophysical Research Letters 29, 1988–2002.Google Scholar
Free, M. and Robock, A. (1999). Global warming in the context of the Little Ice Age. Journal of Geophysical Research-Atmospheres 104, 19057–70.CrossRefGoogle Scholar
Friborg, T., Soegaard, H., Chriistensen, T. R., Lloyd, C. R. and Panikov, N. S. (2003). Siberian wetlands: where a sink is a source. Geophysical Research Letters 30, (21) 2129.CrossRefGoogle Scholar
Frumkin, A., Carmi, I., Bopher, A.et al. (1999). A Holocene millennial-scale climatic cycle from a speleothem in Nahal Qanah Cave, Israel. The Holocene 9, 677–82.CrossRefGoogle Scholar
Fu, C. (2003). Potential impacts of human-induced land cover change on east Asia monsoon. Global and Planetary Change 37, 219–29.Google Scholar
Fu, Q., Johnson, C. M., Warren, S. G. and Seldel, D. J. (2004). Contribution of stratospheric cooling to satellite-inferred tropospheric temperature trends. Nature 429, 55–8.CrossRefGoogle ScholarPubMed
Funtowicz, S. O. and Ravetz, J. R. (1992). The emergence of Post-Normal Science. In Schomberg, , (ed.), Science, Politics and Morality. Dordrecht, Kluwer.Google Scholar
Funtowicz, S. O. and Ravetz, J. R. (1993). Science for the Post-Normal Age. Futures 25, 739–55.CrossRefGoogle Scholar
Gagan, M. K., Ayliffe, L. K., Beck, J. W.et al. (2000). New views of tropical paleoclimates from corals. Quaternary Science Reviews 19, 45–64.CrossRefGoogle Scholar
Gagan, M. K., Hendy, E. J., Haberle, S. G. and Hantaro, W. S. (2004). Post-glacial evolution of the Indo-Pacific Warm Pool and El Niño Southern oscillation. Quaternary International 118–119, 127–43.CrossRefGoogle Scholar
Gaillard, M.-J., Birks, H. J. B., Ihse, M. and Runborg, S. (1998). Pollen/landscape calibration based on modern pollen assemblages from surface-sediment samples and landscape mapping – a pilot study in south Sweden. In Gaillard, M.-J., Berglund, B., Frenzel, B. and Huckriede, U. (eds.). Quantification of land surface cleared of forest during the Holocene. Palaeoklimaforschung/Palaeoclimatic Research, 27, Stuttgart, Gustav Fischer Verlag, pp. 31–55.Google Scholar
Gaillard, M.-J., Dearing, J. A., El-Daoushy, F., Enell, F. and Håkansson, H. (1991). A late Holocene record of land use history, lake trophy and lake-level fluctuations at Lake Baresjø (south Sweden). Journal of Paleolimnology 6, 51–81.CrossRefGoogle Scholar
Galloway, J. N. (2004). The global nitrogen cycle: past, present and future. In Steffen, W., Sanderson, A., Tyson, P. D.et al. Global Change and the Earth System; A Planet Under Pressure. Berlin, Springer Verlag., pp. 122–3.Google Scholar
Galloway, J, N., Aber, J. D., Erisman, J. W.et al. (2003). The nitrogen cascade. Bioscience 53, 341–56.CrossRefGoogle Scholar
Ganachaud, A. and Wunsch, C. (2000). Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408, 453–7.CrossRefGoogle ScholarPubMed
Garstang, M., Ellery, W. N., McCarthy, T. S.et al. (1998). The contribution of aerosol- and water-borne nutrients to the Okovanga Delta ecosystem, Botswana. South African Journal of Science 94, 223–9.Google Scholar
Gasse, F. (2000). Hydrological changes in the African tropics since the last glacial maximum. Quaternary Science Reviews 19, 189–211.CrossRefGoogle Scholar
Gasse, F., Fontes, J. Ch., Plaziat, J. C.et al. (1987). Biological remains, geochemistry and stable isotopes for the reconstruction of environmental and hydrological changes in the Holocene lakes from north Sahara. Palaeogeography, Palaeoclimatology, Palaeoecology 60, 1–46.CrossRefGoogle Scholar
Gaston, K. J. (2000). Global patterns in biodiversity. Nature 405, 220–7.CrossRefGoogle ScholarPubMed
Gedalof, Z., Mantua, N. J. and Peterson, D. L. (2002). A multi-century perspective of variability in the Pacific decadal oscillation: new insights from tree rings and coral. Geophysical Research Letters 29 (24), 57-1–57-4.CrossRefGoogle Scholar
Gehrels, W. R. (2001). Discussion on sea-level changes over the past 1000 years in the Pacific. Journal of Coastal Research 17, 244–5.Google Scholar
Gehrels, W. R., Belknap, D. F., Black, D. F. and Newnham, R. M. (2002). Rapid sea-level rise in the Gulf of Maine, USA, since AD 1800. The Holocene 12, 383–9.CrossRefGoogle Scholar
Geist, H. J. and Lambin, E. F. (2002). Proximate causes and underlying driving forces of tropical deforestation. Bioscience 52, 143–50.CrossRefGoogle Scholar
Georgia, P. J. (2002a). The IPCC's ‘political’ scientist. CEI NewsCenter (www.cei.org). April 18.Google Scholar
Georgia, P. J. (2002b). Global-warming nonsense: an economics journal publishes Junk. CEI NewsCenter (www.cei.org). August 2.Google Scholar
Giannini, A., Saravanan, R. and Chang, P. (2003). Oceanic forcing of Sahel rainfall on interannual to interdacadal timescales. Science 302, 1027–30.CrossRefGoogle Scholar
Gildor, H. (2003). When Earth's freezer is left ajar. EOS 84 (23), 215.CrossRefGoogle Scholar
Gillett, N. P., Wehner, W. F., Tett, S. F. B. and Weaver, A. J. (2004). Testing the linearity of the response to combined greenhouse gas and sulphate aerosol forcing. Geophysical Research Letters 31, L14201.CrossRefGoogle Scholar
Gitz, V. and Ciais, P. (2003). Amplifying the effects of land-use change on future CO2 levels. Global Biogeochemical Cycles 17 (1), 24-1–24-15.CrossRefGoogle Scholar
Glenn, E., Stafford Smith, M. and Squires, V. (1998). On our failure to control desertification: implications for global change issues and a research agenda for the future. Environmental Science and Policy 1, 71–8.CrossRefGoogle Scholar
Goldewijk, K. K. (2003). Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemical Cycles 15, 417–34.CrossRefGoogle Scholar
Goldewijk, K. K. and Battjes, J. J. (1997). A Hundred Year Database for Integrated Environmental Assessments. Bilthoven, The Netherlands, National Institute of Public Health and Environment.Google Scholar
Goodwin, I. D. (2003). Unravelling climatic influences on late Holocene sea-level variability. In Mackay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene, London, Arnold, pp. 406–421.Google Scholar
Goolsby, D. A. (2000). Mississippi basin nitrogen flux believed to cause gulf hypoxia. EOS 29, 321–7.CrossRefGoogle Scholar
Govindaswamy, B., Duffy, P. B. and Coquard, J. (2003). High-resolution simulations of global climate, part 2: effects of increased greenhouse gases. Climate Dynamics 21, 391–404.CrossRefGoogle Scholar
Gregg, W. W., Conkright, M. E., Ginoux, P., O'Reilly, J. E. and Casey, N. W. (2003). Ocean primary production and climate: global decadal changes. Geophysical Research Letters 30 (15), 1809.CrossRefGoogle Scholar
Gregory, J. M., Huybrechts, P. and Raper, S. C. B. (2004). Threatened loss of the Greenland ice-sheet. Nature 428, 616.CrossRefGoogle ScholarPubMed
Gregory, P. J. and Ingram, J. S. (2000a). Global change and food and forest production: future scientific challenges. Agriculture, Ecosystems and Environment 82, 3–14.CrossRefGoogle Scholar
Gregory, P. J. and Ingram, J. S. (2000b). Food and forestry: global change and global challenges. Agriculture, Ecosystems and Environment 82, 1–2.CrossRefGoogle Scholar
Gregory, P. J, Ingram, J. S. I., Anderson, R.et al. (2002). Environmental consequences of alternative practices for intensifying crop production. Agriculture, Ecosystems and Environment 88, 279–90.CrossRefGoogle Scholar
Grissino-Mayer, H. D. (1996). A 2129-year annual reconstruction of precipitation for Northwestern New Mexico, USA. In Meko, D. M., Swetnam, T. W. and Dean, J. S. (eds.). Tree-Rings, Environment and Humanity. Tucson, University of Arizona Press, pp. 191–204.Google Scholar
Grissino-Mayer, H. D. and Watson, E. (2000). Tree-ring data document sixteenth century mega-drought over North America. EOS 81, 121–125.Google Scholar
Grossman, E. E., Fletcher, C. P. III and Richmond, B. M. (1998). The Holocene sea-level highstand in the equatorial Pacific: analysis of the insular palaeosea-level database. Coral Reefs 17, 309–27.CrossRefGoogle Scholar
Grove, J. M. (1988). The Little Ice Age, London, Methuen.CrossRefGoogle Scholar
Grove, J. M. (2001). The initiation of the ‘Little Ice Age’ in regions round the North Atlantic. Climatic Change 48, 53–82.CrossRefGoogle Scholar
Grubb, M., Vrolijk, C. and Brack, D. (1999). The Kyoto Protocol: A Guided Assessment. New York, Brookings.Google Scholar
Grubler, A. and Nakicenovic, M. E. (2001). Identifying dangers in an uncertain climate. Nature 412, 15.CrossRefGoogle Scholar
Grudd, H., Briffa, K., Karlen, W.et al. (2002). A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales. The Holocene 12, 657–67.CrossRefGoogle Scholar
Gu, L., Baldocchi, D. D., Wofsy, S. C.et al. (2003). Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science 299, 2035–8.CrossRefGoogle ScholarPubMed
Guiot, J., Pons, A., Beaulieu, J.-L. and Reille, M. (1989). A 140 000 year climatic reconstruction from two European pollen records. Nature 338, 309–13.CrossRefGoogle Scholar
Guo, Z., Biscaye, P., Wei, L.et al. (2000). Summer monsoon variations over the last 1.2 Ma from the weathering of loess-soil sequences in China. Geophysical Research Letters 27, 1751–4.CrossRefGoogle Scholar
Gyalistras, D., Schar, C., Davies, H. C. and Wanner, H. (1998). Future Alpine climate. In Views from the Alps. Boston, MIT Press, pp. 171–223.Google Scholar
Haan, D. and Raynaud, D. (1998) Ice core record of CO2 variations during the last two millennia: atmospheric implications and chemical interactions within the Greenland ice. Tellus Series B–Chemical and Physical Meteorology 50, 253–62.CrossRefGoogle Scholar
Haberle, S. G. and Lusty, A. C. (2000). Can climate influence cultural development? A view through time. Environment and History 6, 349–69.CrossRefGoogle Scholar
Hajdas, I., Bonani, G., Moreno, P. I. and Ariztegui, D. (2003). Precise radiocarbon dating of late-glacial cooling in mid-latitude South America. Quaternary Research 59, 70–8.CrossRefGoogle Scholar
Hall, B., Motzkin, G., Foster, D. R., Syfert, M. and Burk, J. (2002). Three hundred years of forest and land-use change in Massachusetts, USA. Journal of Biogeography 29, 1319–35.CrossRefGoogle Scholar
Hall, V. A. and Pilcher, J. R. (2002). Late-Quaternary Icelandic tephras in Ireland and Great Britain: detection, characterization and usefulness. The Holocene 12, 223–30.Google Scholar
Hammond, P. (1995). The current magnitude of biodiversity. In Heywood, V. (ed.). Global Biodiversity Assessment. Cambridge, Cambridge University Press.Google Scholar
Hansen, J. E. (2002). A brighter future. Climatic Change 52, 435–40.CrossRefGoogle Scholar
Hansen, J. E., Sato, M., Ruedy, R., Lacias, A. and Oinas, V. (2000). Global warming in the twenty-first century: an alternative scenario. Proceedings of the National Academy of Sciences 97, 9875–80.CrossRefGoogle Scholar
Harremoes, P. and Turner, R. K. (2001). Methods for integrated assessment. Regional Environmental Change 2, 57–65.CrossRefGoogle Scholar
Harris, R. N. and Chapman, D. S. (2001). Mid-Latitude (30° – 60° N) climatic warming inferred from combining borehole temperatures with surface air temperatures. Journal of Geophysical Research 30 (21), 2116.Google Scholar
Harrison, S. P. and Digerfeldt, G. (1993). European lakes as palaeohydrological and palaeoclimatic indicators. Quaternary Science Reviews 12, 233–48.CrossRefGoogle Scholar
Harrison, S. P., Kohfield, K. E., Roelandt, C. and Claquin, T. (2001). The role of dust in climate changes today, at the last glacial maximum and in the future. Earth Science Reviews 54, 43–80.CrossRefGoogle Scholar
Harte, J. (2002). Toward a synthesis of the Newtonian and Darwinian worldviews. Physics Today, October 2002, 29–34.CrossRefGoogle Scholar
Harte, J., Ostling, A., Green, J. L. and Kinzig, A. (2004). Biodiversity conservation: climate change and extinction risk. Nature 430, in press.CrossRefGoogle ScholarPubMed
Harvey, L. D. (2000). Upscaling in global change research. Climatic Change 44, 223–63.CrossRefGoogle Scholar
Harvey, L. D. (2003). Characterizing and comparing the control run variability of eight coupled AOGCMs and of observations. Part 2: precipitation. Climate Dynamics 21, 647–58.CrossRefGoogle Scholar
Hassan, F. A. (1981). Historic Nile floods and their implications for climatic change. Science 212, 1142–5.CrossRefGoogle Scholar
Haug, D. and Kaupenjohann, M. (2001). Parameters, prediction, post-normal science and the precautionary principle – a roadmap for modelling for decision-making. Ecological Modelling 144, 45–60.CrossRefGoogle Scholar
Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C. and Roehl, U. (2001). Southward migration of the intertropical convergence zone through the Holocene. Science 293, 1304–8.CrossRefGoogle ScholarPubMed
Haug, G. H., Gunther, D., Peterson, L. C.et al. (2003). Climate and the Maya. PAGES News 11, 28–30.Google Scholar
Hay, S. I., Cox, J., Rogers, D. J.et al. (2002). Climate change and the resurgence of malaria in the east African highlands. Nature 415, 905–9.CrossRefGoogle ScholarPubMed
Hayne, M. and Chappell, J. (2001). Cyclone frequency during the last 5000 years at Curaçao Island, north Queensland. Palaeogeography, Palaeoclimatology, Palaeoecology 168, 207–19.CrossRefGoogle Scholar
Hays, J. D., Imbrie, J. and Shackleton, N. J. (1976). Variations in the Earth's orbit: pacemaker of the ice ages. Science 194, 1121–32.CrossRefGoogle ScholarPubMed
He, Y., Zhang, Z., Theakstone, W. H.et al. (2003). Changing features of the climate and glaciers in Chin's monsoonal temperate glacier region. Journal of Geophysical Research 108, D17, 2067.CrossRefGoogle Scholar
Hegerl, G. C., Crowley, T. J., Baum, S. K., Kim, K-Y. and Hyde, W. T. (2003). Detection of volcanic and greenhouse gas signals in paleo-reconstructions of northern hemisphere temperature. Geophysical Research Letters 30 (5), 46-1–46-4.CrossRefGoogle Scholar
Heikkila, M. and Seppä, H. (2003). A 11 000 yr palaeotemperature reconstruction from the southern boreal zone in Finland. Quaternary Science Reviews 22, 541–54.CrossRefGoogle Scholar
Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130 000 years. Quaternary Research 29, 142–52.CrossRefGoogle Scholar
Heintzenberg, J, Raes, F. and Schwartz, S. E. et al. (2003). Tropospheric aerosols. In Brasseur, G. P, Prinn, R. G. and Pszenny, A. P. (eds.). Atmospheric Chemistry in a Changing World. Berlin, Springer Verlag.CrossRefGoogle Scholar
Hendy, E. J., Gagan, M. K. and Lough, J. M. (2003). Chronological control of coral records using luminescent lines and evidence for non-stationary ENSO teleconnections in northeastern Australia. The Holocene 13, 187–99.CrossRefGoogle Scholar
Hendy, I. L., Kennett, J. P., Roark, E. B. and Ingram, B. L. (2002). Apparent synchroneity of sub-millennial scale climate events between Greenland and Santa Barbara Basin, California from 30–10 ka. Quaternary Science Reviews 21, 1167–84.CrossRefGoogle Scholar
Hinrichs, K-U., Hmelo, L. R. and Sylva, S. P. (2003). Molecular fossil record of elevated methane levels in late Pleistocene coastal Waters. Science 299, 1214–16.CrossRefGoogle ScholarPubMed
Hodell, D. A., Curtis, J. H. and Brenner, M. (1995). Possible role of climate in the collapse of Classic Maya civilization. Nature 375, 391–4.CrossRefGoogle Scholar
Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world's coral reefs. Marine & Freshwater Research 50, 839–66.CrossRefGoogle Scholar
Hoelzmann, P., Keding, B., Berke, H., Kroepelin, S. and Kruse, H.-J. (2001). Environmental change and archaeology: lake evolution and human occupation in the eastern Sahara during the Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 169, 193–217.CrossRefGoogle Scholar
Holland, T. (2003). The oracle is always right. The Telegraph, December 20, Books Section, p. 3.
Holzhauser, H. and Zumbuehl, H. J. (2002). Reconstruction of minimum glacier extensions in the Swiss Alps. PAGES Newsletter 10 (3), 23–5.Google Scholar
Howarth, R. W., Billen, G., Swaney, D.et al. (1996). Regional nitrogen budgets and riverine N and P fluxes for the drainage to the north Atlantic Ocean: natural and human influences. Biogeochemistry 35, 75–9.CrossRefGoogle Scholar
Hoyt, D. V. and Schattén, K. H. (1993). A discussion of plausible solar irradiance variations, 1700–1992. Journal of Geophysical Research 98, 18895–906.CrossRefGoogle Scholar
Huang, C. C., Zhao, S., Pang, J.et al. (2003). Climatic aridity and the relocations of the Zhou culture in the southern Loess Plateau of China. Climatic Change 61, 361–78.CrossRefGoogle Scholar
Huang, S. (2004). Merging information from different resources for new insights into climate change in the past and future. Geophysical Research Letters 31, L13205.CrossRefGoogle Scholar
Huang, S, Pollack, H. N. and Shen, P. Y. (2000). Temperature trends over the past five centuries from borehole temperatures. Nature 403, 756–8.CrossRefGoogle ScholarPubMed
Huang, Y., Street-Perrott, F. A., Metcalfe, S. E.et al. (2001). Climate change as the dominant control on glacial-Interglacial variations in C3 and C4 plant abundance. Science 293, 1648–51.CrossRefGoogle ScholarPubMed
Hughen, K. A., Eglinon, T. I., Xu, L. and Makou, M. (2004). Abrupt tropical vegetation response to rapid climate changes. Science 304, 1955–8.CrossRefGoogle ScholarPubMed
Hughen, K. A., Overpeck, J. T., Peterson, L. C. and Trumbore, S. (1996). Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380, 51–4.CrossRefGoogle Scholar
Hughen, K. A., Overpeck, J. T., Lehman, S. J.et al. (1998). Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391, 65–8.CrossRefGoogle Scholar
Hughen, K. A., Lehman, S., Southon, J.et al. (2004). 14C Activity and global carbon cycle changes over the past 50 000 years. Science 303, 202–7.CrossRefGoogle ScholarPubMed
Hughes, M. K. and Diaz, H. F. (1994). Was there a ‘Medieval Warm Period’ and if so, where and when? Climatic Change 26, 109–42.CrossRefGoogle Scholar
Hughes, M. K. and Funkhouser, G. (1998). Extremes of moisture availability reconstructed from tree rings for recent millennia in the Great Basin of western North America. In Innes, M. and Beniston, J. L. (eds.). The Impacts of Climate Variability on Forests. Berlin, Springer. pp. 99–107.Google Scholar
Hughes, T. P., Baird, A. H., Bellwood, D. R.et al. (2003). Climate change, human impacts and the resilience of coral reefs. Science 301, 929–33.CrossRefGoogle ScholarPubMed
Hulme, M. (2001). Climatic perspectives on Sahelian desiccation: 1973–1998. Global Environmental Change 11, 19–29.CrossRefGoogle Scholar
Hulme, M., Barrow, E. M., Arnell, N. W., Harrison, P. A., Johns, T. C. and Downing, T. E. (1999). Relative impacts of human-induced climate change and natural climate variability. Nature 397, 688–91.CrossRefGoogle Scholar
Hurrell, J. W., Kushnir, Y., Ottersen, G. and Visbeck, M. (2003). An overview of the North Atlantic Oscillation. Geophysical Monograph 134, 1–35.Google Scholar
IMAGE-team (2001). The IMAGE 2.2 Implementation of the SRES Scenarios. Bilthoven, the Netherlands, National Institute for Public health and Environment (RIVM).
Imbrie, J., and Kipp, N. G. (1971). A new micropaleontological method for paleoclimatology: application to a late Pleistocene Caribbean core. In Turekian, K. K. (ed.). The Late Cenozoic Glacial Ages. New Haven, CT, Yale University Press, pp. 71–181.Google Scholar
IPCC (1996). Climate Change 1995: The Science of Climate Change. Cambridge, Cambridge University Press.
IPCC TAR (2001). Climate Change 2001: Synthesis Report. Cambridge, Cambridge University Press.
Irigolen, X., Hulsman, J. and Harris, R. P. (2004). Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863–7.CrossRefGoogle Scholar
Irino, T., Ikehara, K., Katayama, H., Ono, Y. and Tada, R. (2001). East Asian monsoon signals recorded in the Japan Sea sediments. PAGES News 9 (2), 7–8.Google Scholar
Isdale, P. J., Stewart, B. J., Tickle, J. S. and Lough, J. M. (1998). Palaeohydrological variation in a tropical river catchment: a reconstruction using fluorescent bands in corals of the Great Barrier Reef, Australia. The Holocene 8, 1–8.CrossRefGoogle Scholar
Jackson, J. B. C., Kirby, M. X., Berger, W. H.et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–37.CrossRefGoogle ScholarPubMed
Jacobs, S. S., Giulivi, C. F. and Mele, P. A. (2002). Freshening of the Ross Sea during the late twentieth century. Science 297, 386–9.CrossRefGoogle Scholar
Jacobson, M. Z. (2002). Control of fossil-fuel particulate black carbon and organic matter, probably the most effective method of slowing global warming. Journal of Geophysical Research 107 (D19), 4410.CrossRefGoogle Scholar
Jaenisch, T. and Patz, J. (2002). Assessment of associations between climate and infectious diseases: a comparison of the reports of the intergovernmental panel on climate change (IPCC), the National Research Council (NRC), and United States Global Change Research Program (USGCRP). Global Change and Human Health 3, 67–72.CrossRefGoogle Scholar
Jäger J. (2004). Sustainability science. In Steffen, W., Sanderson, A., Tyson, P. D.et al. (eds.). Global Change and the Earth System; A Planet Under Pressure. Berlin, Springer Verlag, p. 296.Google Scholar
Jahnke, R. A. (2000). The Phosphorus cycle. In Jacobson, M. C., Carlson, R. J., Rodhe, H. and Orians, G. H. (eds.). Earth System Science: From Biogeochemical Cycles to Global Change. London, Academic Press. pp. 360–76.Google Scholar
Jayaraman, A. (1999). Results on direct radiative forcing of aerosols obtained over the tropical Indian Ocean. Current Science 76, 924–30.Google Scholar
Jayaraman, A. and Mitra, A. P. (2004). The Asian Brown Cloud. In Steffen, W., Sanderson, A., Tyson, P. D.et al. (eds.). Global Change and the Earth System; A Planet Under Pressure. Berlin, Springer Verlag, p. 110.Google Scholar
Jensen, M. N. (2003). Consensus on ecological impacts remains elusive. Science 299, 38.CrossRefGoogle ScholarPubMed
Jia, G. J., Epstein, H. E. and Walker, D. A. (2003). Greening of arctic Alaska, 1981–2001. Geophysical Research Letters 30 (20), 2067.Google Scholar
Johnsen, S. J., Dahl-Jensen, D., Gundestrup, N.et al. (2001). Oxygen isotope and paleotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journal of Quaternary Science 16, 299–307.CrossRefGoogle Scholar
Jones, G. S., Tett, S. F. B. and Stott, P. A. (2003) Causes of atmospheric temperature change 1960–2000: a combined attribution analysis. Geophysical Research Letters 5, 32-1–32-4.Google Scholar
Jones, P. D. and Mann, M. E. (2004). Climate over past millennia. Review of Geophysics 42, 2003RG000143.CrossRefGoogle Scholar
Jones, P. D., Briffa, K. R. and Osborn, T. J. (2003). Changes in the northern hemisphere annual cycle: implications for palaeclimatology? Journal of Geophysical Research 108 (D18), 4588.CrossRefGoogle Scholar
Jones, P. D., Briffa, K. R., Barnett, T. P. and Tett, S. F. B. (1998). High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control run temperatures. The Holocene 8, 455–71.CrossRefGoogle Scholar
Jones, P. D., Briffa, K. R., Osborn, T. J., Moberg, A. and Bergström, H. (2002). Relationships between circulation strength and the variability of growing season and cold-season climate in northern and central Europe. The Holocene 12, 643–56.CrossRefGoogle Scholar
Jones, R. N. (2001). An environmental risk assessment/management framework for climate change impact assessments. Natural Hazards 23, 197–230.CrossRefGoogle Scholar
Jones, R. T., Marshall, J. D., Crowley, S. F.et al. (2002). A high resolution, multi-proxy late-glacial record of climate change and intrasystem response in northwest England. Journal of Quaternary Science 17, 329–40.CrossRefGoogle Scholar
Joos, F., Gerber, S., Prentice, I. C., Otto-Bliesner, B. L. and Valdes, P. (2004). Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum. Global Biogeochemical Cycles 18, GB2002, 1–18.CrossRefGoogle Scholar
Joos, F., Plattner, G-K., Stocker, T. F., Koertzinger, A. and Wallace, D. W. R. (2003). EOS 84 (21), 197–201.CrossRef
Jouzel, J., Hoffmann, G., Koster, R. D. and Masson, V. (2000). Water isotopes in precipitation: data/model comparison for present-day and past climates. Quaternary Science Reviews 19, 363–79.CrossRefGoogle Scholar
Jouzel, J., Alley, R. B., Cuffey, K. M.et al. (1997). Validity of temperature reconstruction from water isotopes in ice cores. Journal of Geophysical Research 102, 26471–87.CrossRefGoogle Scholar
Kaiser, D. P. and Qian, Y. (2002). Decreasing trends in sunshine duration over China for 1954–1998: indications of increased haze pollution? Geophysical Research Letters 29 (21), 38-1–38-4.CrossRefGoogle Scholar
Kalnay, E. and Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature 423, 528–31.CrossRefGoogle ScholarPubMed
Kaplan, J. O., Bigelow, N. H., Prentice, I. C.et al. (2003). Climate change and Arctic ecosystems II: modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research 108 (D19), 8171.CrossRefGoogle Scholar
Karlsen, A. W., Cronin, T. M., Ishman, S. E.et al. (2004). Historical trends in Chesapeake Bay dissolved oxygen based on benthic Foraminifera from sediment cores. Estuaries 23, 488–508.CrossRefGoogle Scholar
Karpuz, N. K. and Jansen, E. (1992). A high-resolution diatom record of the last deglaciation from the SE Norwegian Sea; documentation of rapid climatic changes. Paleoceanography 7, 499–520.CrossRefGoogle Scholar
Kaspi, Y., Sayag, R. and Tziperman, E. (2004). A ‘triple sea-ice state’ mechanism for the abrupt warming and synchronous ice sheet collapses during Heinrich events. Paleoceanography 19, PA3004.CrossRefGoogle Scholar
Kassas, M. (1995). Desertification: a general review. Journal of Arid Environments 30, 15.CrossRefGoogle Scholar
Kates, R. W. and Parris, T. M. (2003). Long-term trends and a sustainability transition. Procedings of the National Academy of Sciences 100, 8062–7.CrossRefGoogle Scholar
Kaufman, D. S., Ager, T. A., Anderson, N. J.et al. (2004). Holocene thermal maximum in the western Arctic (0° and 180° W). Quaternary Science Reviews 23, 529–60.CrossRefGoogle Scholar
Kaufmann, R. K. and Stock, J. H. (2003). Testing hypotheses about mechanisms for the unknown carbon sink: a time series analysis. Global Biogeochemical Cycles 17 (2), 1072.CrossRefGoogle Scholar
Keith, D. W. (2001). Geoengineering. Nature 409, 420.CrossRefGoogle Scholar
Kennett, J., Cannariato, K. G., Hendy, I. L. and Behl, R. J. (2000). Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science 288, 128–33.CrossRefGoogle ScholarPubMed
Kennett, J. P., Cannariato, K. G., Hendy, I. L. and Behl, R. J. (2003). Methane Hydrates in Quaternary Climate Changes: the Clathrate Gun Hypothesis. New York, American Geophysical Union.CrossRefGoogle Scholar
Kerr, R. A. (2004). Getting warmer, however you measure it. Science 304, 805–7.CrossRefGoogle Scholar
Kessler, W. S. (2002). Is ENSO a cycle or a series of events? Geophysical Research Letters 29, 23.CrossRefGoogle Scholar
Khodri, M., Leclainche, Y., Ramstein, et al. (2001). Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature 410, 570–4.CrossRefGoogle ScholarPubMed
Kim, S. J. (2004). The effect of atmospheric CO2 and ice sheet topography on LGM climate. Climate Dynamics, 22, 639–51.CrossRefGoogle Scholar
Kitching, R. (2000). Biodiversity, hotspots and defiance. Trends in Ecology and Evolution 15, 484–5.CrossRefGoogle Scholar
Knapp, P. A., Grissino-Mayer, H. D. and Soule, P. T. (2002). Climatic Regionalization and the spatio-temporal occurrence of extreme single-year drought events (1500–1998) in the Interior Pacific Northwest, USA. Quaternary Research 58, 226–33.CrossRefGoogle Scholar
Knapp, S. and Mallet, J. (2003). Refuting refugia? Science 300, 71–2.CrossRefGoogle ScholarPubMed
Knorr, G. and Lohmann, G. (2003). Southern Ocean origin for the resumption of Atlantic themonaline circulation during deglaciation. Nature 424, 532–6.CrossRefGoogle ScholarPubMed
Knox, J. (2000). Sensitivity of modern and Holocene floods to climate change. Quaternary Science Reviews 19, 439–57.CrossRefGoogle Scholar
Knutti, R., Stocker, T. F., Joos, F. and Plattner, G.-K. (2002). Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature 416, 719–23.CrossRefGoogle ScholarPubMed
Knutti, R., Stocker, T. F., Joos, F. and Plattner, G.-K. (2003). Probabilistic climate change projections using neural networks. Climate Dynamics 21, 257–72.CrossRefGoogle Scholar
Kohfield, K. E. and Harrison, S. P. (2000). How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets. Quaternary Science Reviews 19, 321–46.CrossRefGoogle Scholar
Koren, I., Kaufman, Y. J., Remer, L. A. and Martins, J. V. (2004). Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science 303, 1342–5.CrossRefGoogle ScholarPubMed
Körner, C. (2003). Slow in, rapid out – carbon flux studies and Kyoto targets. Science 300, 1242–3.CrossRefGoogle Scholar
Krakauer, N. Y. and Randerson, J. T. (2003). Do volcanic eruptions enhance or diminish net primary productivity? Evidence from tree rings. Global Biogeochemical Cycles 17 (4), 1118.CrossRefGoogle Scholar
Krajick, K. (2004). All downhill from here? Science 303, 1600–2.CrossRefGoogle Scholar
Kumar, K. K., Rajagopalan, B., and Cane, M. A. (1999). On the weakeneing relationship between the Indian monsoon and ENSO. Science 284, 2156–9.CrossRefGoogle ScholarPubMed
Kunkel, K. E., Easterling, D. R., Hubbard, K. and Redmond, K. (2004). Temporal variations in frost-free season in the United States: 1895–2000. Geophysical Research Letters 31, L0321.CrossRefGoogle Scholar
Kutzbach, J. E. and Guetter, P. J. (1986). The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18 000 years. Journal of Atmospheric Sciences 43, 1726–59.2.0.CO;2>CrossRefGoogle Scholar
Kutzbach, J. E. and Liu, Z. (1997). Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science 278, 440–3.CrossRefGoogle Scholar
Labeyrie, L., Cole, J., Alverson, K. and Stocker, T. (2003). The history of climate dynamics in the Late Quaternary. In Alverson, K., Bradley, R. S. and Pedersen, T. F. (eds). Paleoclimate, Global Change and the Future. Berlin, Springer Verlag, pp. 33–63.CrossRefGoogle Scholar
Lachenbruch, A. H. and Marshall, B. V. (1986). Changing climate: geothermal evidence from permafrost in the Alaskan Arctic. Science 234, 689–96.CrossRefGoogle ScholarPubMed
Lackner, K. S. (2003). A guide to CO2 sequestration. Science 300, 1677–8.CrossRefGoogle ScholarPubMed
Laj, C., Kissel, C., Mazaud, A., Channell, J. E. T. and Beer, J. (2000). North Atlantic paleointensity stack since 75 ka (NAPIS-75) and the duration of the Laschamp event. Philosophical Transactions Royal Society London 358, 1009–25.CrossRefGoogle Scholar
Laj, P., Ghermandi, G., Cecchi, R.et al. (1997). Distribution of Ca, Fe and S between soluble and insoluble material in the Greenland Ice Core Project ice core. Journal of Geophysical Research 102, 26615–24.CrossRefGoogle Scholar
Lamb, H. H. (1965). The early Medieval warm epoch and its sequel. Palaeogeography, Palaeoclimatology, Palaeoecology 1, 13–37.CrossRefGoogle Scholar
Lambert, F. H., Stott, P. A., Allen, M. R. and Palmer, M. A. (2004). Detection and attribution of changes in twentieth century land precipitation. Geophysical Research Letters 31, L10203.CrossRefGoogle Scholar
Lambin, E. F. and Geist, H. J. (2003). Regional differences in tropical deforestation. Environment 45 (6), 22–7.Google Scholar
Lambin, E. F., Geist, H. J. and Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environmental Resources 28, 1–14.CrossRefGoogle Scholar
Lambin, E. F., Turner, B. L., Geist, H. J. (2001). The causes of land-use and land-cover change: moving beyond the myths. Global Environmental Change 11, 261–69.CrossRefGoogle Scholar
Lamy, F., Kaiser, J., Ninnemann, U.et al. (2004). Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304, 1959–62.CrossRefGoogle ScholarPubMed
Lang, A. (2003). Phases of soil erosion-derived colluviation in the loess hills of South Germany. Catena 51, 209–21.CrossRefGoogle Scholar
Lang, A., Hatté, C., Rousseau, D.-D.et al. (2003). High-resolution chronologies for loess: comparing AMS 14C and optical dating results. Quaternary Science Reviews 22, 953–9.CrossRefGoogle Scholar
Langenfields, R. L., Francey, R. J., Pak, B. C.et al. (2002). Interannual growth rate variations in atmospheric CO2 and its δ13C, H2, CH4 and CO between 1992 and 1999 linked to biomass burning. Global Biogeochemical Cycles 16, 21-1–21-7.Google Scholar
Langeweg, F. and Gutierrez-Espeleta, E. E. (2001). Human security and vulnerability in a scenario context: challenges for UNEP's global environmental outlook. IHDP Update: Newsletter of the International Human Dimensions Programme on Global Environmental Change 2, 11–2.Google Scholar
Lapenis, A. G., Lawrence, G. B., Andreev, A. A.et al. (2004). Acidification of forest soil in Russia: from 1893 to present. Global Biogeochemical Cycles 18, GB1037, 11–13.CrossRefGoogle Scholar
Larson, D. O., Neff, H., Greybill, D. A., Michaelsen, J. and Ambos, E. (1996). Risk, climatic variability and the study of southwestern prehistory: an evolutionary perspective. American Antiquity 61, 217–41.CrossRefGoogle Scholar
Latif, M., Roeckner, E.Mikolajewicz, U. and Voss, R. (2000). Tropical stabilization of the thermohaline circulation in the greenhouse warming simulation. Journal of Climatology 13, 1809–13.2.0.CO;2>CrossRefGoogle Scholar
Lau, K.-M. and Weng, H. (1999). Interannual, decadal–interdecadal, and global warming signals in sea surface temperature during 1955–97. Journal of Climate 12, 1257–67.2.0.CO;2>CrossRefGoogle Scholar
Lauritzen, S.-E. (2003). Reconstructing Holocene climate records from speleothems. In McKay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 242–63.Google Scholar
Lauritzen, S.-E. and Lundberg, J. (1999). Calibration of the speleothem delta function: an absolute temperature record from the Holocene in northern Norway. The Holocene 9, 659–70.CrossRefGoogle Scholar
Lawton, J. H. and May, R. M. (1995) Extinction Rates. Oxford, Oxford University Press.Google Scholar
Lean, J., Beer, J. and Bradley, R. S. (1995). Reconstruction of solar irradiance since 1610: implications for climate change. Geophysical Research Letters 22, 3195–8.CrossRefGoogle Scholar
Lean, J., Skumanich, A. and White, O. (1992). Estimating the sun's radiative output during the Maunder Minimum. Geophysical Research Letters 19, 1591–4.CrossRefGoogle Scholar
Leatherman, S. P., Douglas, B. C. and LeBrecque, J. L. (2003). Sea level and coastal erosion require large-scale monitoring. EOS 84 (2), 13–16.CrossRefGoogle Scholar
Lee, K., Choi, S.-D., Park, G.-H.et al. (2003). An updated anthropogenic CO2 inventory in the Atlantic Ocean. Global Biogeochemical Cycles 17 (4), 116.CrossRefGoogle Scholar
Leemans, R. (2003). The IMAGE 2 Integrated assessment modelling framework. In Steffen, W., Sanderson, A., Tyson, P. D.et al. (eds.). Global Change and the Earth System; A Planet Under Pressure. Berlin, Springer Verlag, p. 206.Google Scholar
LeGrand, P. and Alverson, K. (2001). Variations in atmospheric CO2 during glacial cycles from an inverse ocean modeling perspective. Paleoceanography 16, 604–16.CrossRefGoogle Scholar
Lelieveld, J., Crutzen, P. J., Ramanathan, N.et al. (2001). The Indian Ocean Experiment: widespread pollution from south and southeast Asia. Science 291, 1031–6.CrossRefGoogle ScholarPubMed
Leng, M. J. (2003). Stable isotopes in lakes and lake sediment archives. In McKay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 124–39.Google Scholar
Leng, M. J. and Marshall, J. D. (2004). Paleoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 23, 811–31.CrossRefGoogle Scholar
Lenton, T. M. and Cannell, M. G. R. (2002). Mitigating the extent and rate of global warming. Climatic Change 52, 255–62.CrossRefGoogle Scholar
Levitus, S., Antonov, J. I., Boyer, T. P. and Stephens, C. (2000). Warming of the world ocean. Science 287, 2225–9.CrossRefGoogle Scholar
Lewis, M. (2003). Common sense. CEI NewsCenter (www.cei.org). June 4.Google Scholar
Lieberman, B. (2003). Ozone depletion's lessons for global Warming. CEI NewsCenter(www.cei.org). October 1.Google Scholar
Lindzen, R. S. and Giannitsis, C. (2002). Reconciling observations of global temperature changes. Geophysical Research Letters 29 (12), 10.CrossRefGoogle Scholar
Lindzen, R. S., Chou, M.-D. and Hou, A. Y. (2001). Does the Earth have an adaptive infrared Iris? Bulletin of the American Meteorological Society 82, 417–32.2.3.CO;2>CrossRefGoogle Scholar
Lintner, B. R. (2002). Characterizing the global CO2 interannual variability with empirical orthogonal function/principal component (EOF/PC) analysis. Geophysical Research Letters 29, 27-1–27-5.CrossRefGoogle Scholar
Lipp, J., Trimborn, P., Graf, W., Edwards, T. and Becker, B. (1995). Climate signals in a 2H and 13C chronology (1882–1989) from tree rings of Spruce (Picea abies L.), Schussbach Forest, Germany. In Dean, J. S., Meko, D. M. and Swetnam, T. W. (eds.). Tree rings, Environment and Humanity, Radiocarbon, 1996, 603–10.Google Scholar
Liski, J., Korotkov, V., Prins, C. F. L., Karjalainen, T., Victor, D. G. and Kauppi, P. E. (2003). Increased carbon sink in temperate and boreal forests. Climatic Change 61, 89–99.CrossRefGoogle Scholar
Liu, Z., Kutzbach, J. E. and Wu, L. (2000). Modeling climate shift of El Niño variability in the Holocene. Geophysical Research Letters 27, 2265–8.CrossRefGoogle Scholar
Liu, Z., Harrison, S. P., Kutzbach, J. and Otto-Bliesner, B. (2004). Global monsoons in the mid-Holocene and oceanic feedback. Climate Dynamics 22, 157–82.CrossRefGoogle Scholar
Livingstone, D. A. (2003). Global climate change strikes a tropical lake. Science 301, 468–9.CrossRefGoogle ScholarPubMed
Löffler, H. (2004). Origin of lake basins. In O'Sullivan, P. E. and Reynolds, C. S. (eds.). The Lake Handbook: Limnology and Limnetic Ecology, Oxford, Blackwell, vol. 1.Google Scholar
Lohmann, U. and Lesins, G. (2002). Stronger constraints on the anthropogenic indirect aerosol effect. Science 298, 1012–15.CrossRefGoogle ScholarPubMed
Lomborg, B. (2001). The Sceptical Environmentalist: Measuring the Real State of the World. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Long, D., Ballantyne, J. and Bertoia, C. (2002). Is the number of Antarctic icebergs really increasing? EOS 83 (42), 471–4.CrossRefGoogle Scholar
Lorius, C., Jouzel, J., Raynaud, D., Hansen, J. and Treut, H. (1990). The ice core record: climate sensitivity and future greenhouse warming. Nature 347, 139–45.CrossRefGoogle Scholar
Lotter, A. F. (1999). Late-glacial and Holocene vegetation history and dynamics as shown by pollen and plant macrofossil analyses in annually laminated sediments from Soppensee, central Switzerland. Vegetation History and Archaebotany 8, 165–84.CrossRefGoogle Scholar
Lotter, A. F. (2003). Multi-proxy climatic reconstructions. In Mackay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 373–83.Google Scholar
Lowe, J. A., Gregory, J. M. and Flather, R. A. (2001). Changes in the occurrence of storm surges around the United Kingdom under a future climate scenario using a dynamic storm surge model driven by the Hadley Centre climate models. Climate Dynamics 18, 179–88.CrossRefGoogle Scholar
Lowe, J. J. and Walker, M. J. C. (1997). Reconstructing Quatternary Environments, 2nd edn. Harlow, Pearson Prentice Hall.Google Scholar
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. and Wanner, H. (2004). European seasonal and annual temperature variability, trends, and extremes Since 1500. Science 303, 1499–1503.CrossRefGoogle ScholarPubMed
Luterbacher, J., Schmutz, C., Gyalistras, D., Xopalski, E. and Wanner, H. (1999). Reconstruction of monthly NAO and EU indices back to AD 1675. Geophysical Research Letters 26, 2745–8.CrossRefGoogle Scholar
MacArthur, R. H. (1995). Fluctuatuions of animal populations and a measure of community stability. Ecology 36, 533–6.CrossRefGoogle Scholar
Mackay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). (2003). Global Change in the Holocene. London, Arnold.Google Scholar
MacAyeal, D. R. (1993) Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic's Heinrich events. Paleoceanography 8, 775–84.CrossRefGoogle Scholar
MacCracken, M. C. (2002). Do the uncertainty ranges in the IPCC and US national assessments account adequately for possible overlooked climatic influences. Climatic Change 52, 11–23.Google Scholar
Mace, G. M., Gittleman, J. L. and Purvis, A. (2003). Preserving the tree of life. Science 300, 1707–9.CrossRefGoogle ScholarPubMed
Macklin, M. G. (1999). Holocene river environments in prehistoric Britain: human interaction and impact. Quaternary Proceedings 7, 521–30.Google Scholar
Macklin, M. G. and Lewin, J. (2003). River sediments, great floods and centennial-scale Holocene climate change. Journal of Quaternary Science 18, 101–5.CrossRefGoogle Scholar
Maggs, R., Wahid, A., Shamsi, S. R. A. and Ashmore, M. R. (1995). Effects of ambient air pollution on wheat and rice yield in Pakistan. Water, Air and Soil Pollution 85, 1311–6.CrossRefGoogle Scholar
Magny, M. (1993). Solar influences on Holocene climatic changes. Quaternary Research 40, 1–9.CrossRefGoogle Scholar
Maher, B. A. and Dennis, P. F. (2001). Evidence against dust-mediated control of glacial-interglacial changes in atmospheric CO2. Nature 411, 176–180.CrossRefGoogle ScholarPubMed
Maher, B. A. and Thompson, R. (1999). Palaeomonsoons I: the magnetic record of Paleoclimate in the terrestrial loess and palaeosol sequences. In Maher, B. A. and Thompson, R. (eds.). Quaternary Climates, Environments and Magnetism. Cambridge, Cambridge University Press, pp. 81–125.CrossRefGoogle Scholar
Mahowald, N., Kohfeld, K., and Mansson, M. (1999). Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. Journal of Geophysical Research 104, 895–916.CrossRefGoogle Scholar
Manabe, S. and Stouffer, R. J. (1995). Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature 378, 165–7.CrossRefGoogle Scholar
Manabe, S. and Stouffer, R. J. (2000). Study of abrupt climate change by a coupled ocean–atmosphere model. Quaternary Science Reviews 19, 285–99.CrossRefGoogle Scholar
Manley, G. (1974). Central England temperatures: monthly means 1659–1973. Quarterly Journal of the Royal Meteorological Society 100, 389–405.CrossRefGoogle Scholar
Mann, M. E. (2002a). The value of multiple proxies. Science 297, 1481–2.CrossRefGoogle Scholar
Mann, M. E. (2002b). Large-scale climate variability and connections with the Middle East in past centuries. Climatic Change 55, 287–314.CrossRefGoogle Scholar
Mann, M. E. and Jones, P. D. (2003). Global surface temperatures over the past two millennia. Geophysical Research Letters 30 (15), 5-1–5-4.CrossRefGoogle Scholar
Mann, M. E. and Schmidt, G. (2003). Ground vs. surface air temperature trends: implications for borehole surface temperature reconstructions. Geophysical Research Letters 30 (12), 1607.CrossRefGoogle Scholar
Mann, M. E., Bradley, R. S. and Hughes, M. K. (1998). Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392, 779–787.CrossRefGoogle Scholar
Mann, M. E., Bradley, R. S. and Hughes, M. K. (1999). Northern hemisphere temperatures during the past millennium: inferences, uncertainties and limitations. Geophysical Research Letters 26, 759–762.CrossRefGoogle Scholar
Mann, M. E., Bradley, R. S. and Hughes, M. K. (2004). Corrigendum: Global-scale temperature patterns and climate forcing over the past six centuries. Nature 430, 105.CrossRefGoogle Scholar
Mann, M. E., Rutherford, R. S., Bradley, R. S., Hughes, M. K. and Keimig, F. T. (2003). Optimal surface temperature reconstructions using terrestrial borehole data. Journal of Geophysical Research 109, D11107.Google Scholar
Mann, M. E., Amman, C., Bradley, R. S.et al. (2003). On past temperatures and anomalous late-twentieth century warmth. EOS 84 (27), 256–7.CrossRefGoogle Scholar
Mann, M. E., Gille, E., Bradley, R. S.et al. (2000). Annual temperature patterns in past centuries: an interactive presentation. Earth Interactions 4, 1–29.2.3.CO;2>CrossRefGoogle Scholar
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. and Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society 78, 1069–79.2.0.CO;2>CrossRefGoogle Scholar
Marchal, O., Stocker, T. F., Joos, F.et al. (1999). Modelling the concentration of atmospheric CO2 during the Younger Dryas climate event. Climate Dynamics 15, 341–54.CrossRefGoogle Scholar
Markgraf, V. (ed.). (2001). Interhemispheric climate linkages. New York, Academic Press.Google Scholar
Marsh, N. D. and Svensmark, H. (2000). Low cloud properties influenced by cosmic rays. Physics Review Letters 85, 5004–7.CrossRefGoogle ScholarPubMed
Marsh, N. D. and Svensmark, H. (2004). Comment on ‘Solar influences on cosmic rays and clous formation: a reassessment’ by Bomin Sun and Raymond S. Bradley. Journal of Geophysical Research 109, D1425.CrossRefGoogle Scholar
Marshall, J. D., Jones, R. T., Crowley, S. F., Oldfield, F., Nash, S. and Bedford, A. (2002). A high resolution late-glacial isotopic record from Hawes Water, northwest England. Climate oscillations: calibration and comparison of palaetemperature proxies. Palaeogeography, Palaeoclimatology, Palaeoecology 185, 25–40.CrossRefGoogle Scholar
Martens, P. (1998). Health and Climate: Modelling the Impacts of Global Warming and Ozone Depletion. London, Earthscan.Google Scholar
Martinson, D. G., Pisias, N. G., Hays, J. D., Imbrie, J., Moore, T. C. and Shackleton, N. J. (1987). Age dating and the orbital theory of the ice ages: development of a high resolution 0–300 000 year chronostratigraphy. Quaternary Research 27, 1–29.CrossRefGoogle Scholar
Maslin, M., Pike, J., Stickley, C and Ettwein, V. (2003). Evidence of Holocene climate variability in marine sediments. In Mackay, A. W., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.) Global Change in the Holocene. London, Arnold, pp. 185–209.Google Scholar
Maslin, M. and Thomas, E. (2003). Balancing the deglacial carbon budget: the hydrate factor. Quaternary Science Reviews 22, 1729–36.CrossRefGoogle Scholar
Mason, B. (2004). Climate change: the hot hand of history. Nature 427, 582–3.CrossRefGoogle ScholarPubMed
Matthews, H. D.Weaver, A. J.Meissner, K. J.Gillett, N. P. and Eby, M. (2004,). Natural and anthropogenic climate change: incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Climate Dynamics 22, 461–79.CrossRefGoogle Scholar
May, R. M. (1973). Stability and Complexity in Model Ecosystems. Princeton, NJ, Princeton University Press.Google ScholarPubMed
Mayewski, P. A., Meeker, L. D., Twickler, M. S.et al. (1997). Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110 000-year-long glaciochemical series. Journal of Geophysical Research 102, 26345–66.CrossRefGoogle Scholar
Maynard, K., Royer, J.-F. and Chauvin, F. (2002). Impact of greenhouse warming on the west African summer monsoon. Climate Dynamics 19, 499–514.Google Scholar
McCann, K. S. (2000). The diversity-stability debate. Nature 405, 228–33.CrossRefGoogle ScholarPubMed
McCarroll, D. and Loader, N. J. (2004). Stable isotopes in tree rings. Quaternary Science Reviews 23, 771–801.CrossRefGoogle Scholar
McCarroll, D. and Pawelleck, F. (2001). Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. The Holocene 11, 517–26.CrossRefGoogle Scholar
McDermott, F. (2004). Paleo-climate reconstructions from stable isotope variations in speleothems: a review. Quaternary Science Reviews 23, 901–18.CrossRefGoogle Scholar
McGlone, M. S. (1995). Late glacial landscape and vegetation change during the Younger Dryas climatic oscillation in New Zealand. Quaternary Science Reviews 14, 867–81.CrossRefGoogle Scholar
McGregor, H. V. and Gagan, M. K. (2004). Western Pacific δ18O records of anomalous Holocene variability in the El Niño Southern Oscillation. Geophysical Research Letters 31 (15), L11204.CrossRefGoogle Scholar
McGuffie, K. and Henderson-Sellers, A. (1999). A Climate Modelling Primer, 2nd Edition. New York, Wiley.Google Scholar
McIntyre, S. and McKitrick, R. (2003). Corrections to the Mann et al. (1998) proxy data base and northern hemispheric average temperature series. Energy and Environment 14, 751–71.CrossRefGoogle Scholar
McManus, J. F., François, R., Gherardi, J.-M., Keigwin, L. D. and Brown-Leger, S. (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–7.CrossRefGoogle ScholarPubMed
McNeill, B. I., Matear, R. J., Key, R. M., Bullister, J. L. and Sarmiento, J. L. (2003). Anthropogenic CO2 uptake by the ocean based on the global chlorofluorocarbon data Set. Science 299, 235–8.CrossRefGoogle Scholar
Mearns, L. O., Giorgi, F., McDaniel, L. and Shields, C. (2003). Climate scenarios for the southeastern US Based on GCM and regional model simulations. Climatic Change 60, 7–35.CrossRefGoogle Scholar
Meehl, G. A. and Arblaster, J. M. (2003). Mechanisms for projected future changes in south Asian monsoon precipitation. Climate Dynamics 21, 659–75.CrossRefGoogle Scholar
Meissner, K. J., Weaver, A. J., Matthews, H. D. and Cox, P. M. (2003). The role of land surface dynamics in glacial inception: a study with the Uvic Earth System Model. Climate Dynamics 21, 515–37.CrossRefGoogle Scholar
Menon, S., Hansen, J., Nazarenko, L. and Luo, Y. (2002). Climate effects of black carbon aerosols in China and India. Science 297, 250–2.CrossRefGoogle ScholarPubMed
Menzel, A. (2002). Phenology: its importance to the global change community. Climate Change 54, 379–85.CrossRefGoogle Scholar
Menzel, A. and Estrella, N. (2001). Past phenological changes. In Walther, G. R., Burga, C. A. and Edwards, P. J. (eds.). Fingerprints of Climate Change – Adapted Behaviour and Shifting Species Ranges. New York, Kluwer.Google Scholar
Messerli, B., Grosjean, M., Hofer, T., Nuñez, L. and Pfister, C. (2000). From nature-dominated to human-dominated environmental changes. Quaternary Science Reviews 19, 459–79.CrossRefGoogle Scholar
Meybeck, M. and Ragu, A. (1997). Presenting the GEMS-GLORI, a compendium for world river discharges to the oceans. International Association of Hydrological Sciences 243, 3–14.Google Scholar
Meybeck, M. and Vörösmarty, C. (2004). Human-driven changes to continental aquatic systems. In Steffen, W., Sanderson, A., Tyson, P.et al. (eds.). Global Change and the Earth System: A Planet Under Pressure. Berlin, Springer Verlag. pp. 112–113.Google Scholar
Mickley, L. J., Jacob, D. J., Field, B. D. and Rind, D. (2004). Climate response to the increase in tropospheric ozone since preindustrial times: a comparison between ozone and equivalent CO2 forcings. Journal of Geophysical Research 109, D05106.CrossRefGoogle Scholar
Midgley, G. F., Hannah, L., Millar, D., Rutherford, M. C. and Powrie, L. W. (2002). Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Global Ecology and Biogeography 11, 445–51.CrossRefGoogle Scholar
Mikolajewicz, U., Crowley, T. J., Schiller, A. and Voss, R. (1997). Modelling teleconnections between the North Atlantic and North Pacific during the Younger Dryas. Nature 387, 384–7.CrossRefGoogle Scholar
Milankovitch, M. M. (1941). Canon of insolation and the ice-age problem. Beograd: Koninglich Serbische Akademie. [English translation by the Israel program for Scientific Translations, published by the US Department of Commerce, and the National Science Foundation, Washington DC (1969)].Google Scholar
Miller, L. and Douglas, B. C. (2004). Mass and volume contributions to twentieth-century global sea-level rise. Nature 428, 406–9.CrossRefGoogle ScholarPubMed
Milly, P. C. D., Wetherald, R. T., Dunne, K. A. and Delworth, T. L. (2002). Increasing risk of floods in a changing climate. Nature 415, 514–7.CrossRefGoogle Scholar
Mirza, M., Mirza, Q., Warrick, R. A. and Ericksen, N. J. (2003). The implications of climate change on floods of the Ganges, Brahmaputra and Meghna Rivers in Bangladesh. Climatic Change 57, 287–318.CrossRefGoogle Scholar
Mitchell, J. F. B., Karoly, D. J., Hegerl, G. C.et al. In IPCC TAR (2001). Detection of Climate Change and Attribution of Causes. Cambridge, Cambridge University Press, pp. 697–738.Google Scholar
Mitrovica, J. X., Tamisea, M. E., Davis, J. L. and Milne, G. A. (2001). Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409, 1026–29.CrossRefGoogle ScholarPubMed
Mitsuguchi, T., Matsumoto, E., Abe, O., Uechida, T. and Isdale, P. J. (1996). Mg/Ca thermometry in coral skeletons. Science 274, 961–3.CrossRefGoogle ScholarPubMed
Mix, A. C., Bard, E. and Schneider, R. (2001). Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quaternary Science Reviews 20, 627–57.CrossRefGoogle Scholar
Mock, C. J. (2002). Documentary records of past climate and tropical cyclones from the southeastern United States. PAGES Newsletter 10 (3), 20–21.Google Scholar
Monnin, E., Indermühle, A., Dällenbach, A.et al. (2001). Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112– 114.CrossRefGoogle ScholarPubMed
Mooney, H. A., Canadell, J., Chapin, F. S. III, et al. (1999). Ecosystem physiology responses to global change. In Walker, B., Steffen, W.Canadell, J. and Ingram, J. (eds.). The terrestrial biosphere and global change. Implications for Natural and Managed Ecosystems. Cambridge, Cambridge University Press.Google Scholar
Moore, G. W. K., Holdsworth, G. and Alverson, K. (2001). Extra-tropical responses to ENSO 1736–1985 as expressed in an ice core from the Saint Elias Mountain range in northwestern North America. Geophysical Research Letters 28, 3457–61.CrossRefGoogle Scholar
Moore, G. W. K., Holdsworth, G. and Alverson, K. (2002). Climate change in the north Pacific region over the past three centuries. Nature 420, 401–3.CrossRefGoogle ScholarPubMed
Morgan, V., Delmotte, M., Ommen, T.et al. (2002). Relative timing of deglacial climate events in Antarctica and Greenland. Science 297, 1862–4.CrossRefGoogle ScholarPubMed
Mörner, N.-A. (2004). Estimating future sea-level changes from past records. Global and Planetary Change 40, 49–54.CrossRefGoogle Scholar
Mörner, N.-A., Tooley, M. and Possnert, G. (2004). New perspectives for the future of the Maldives. Global and Planetary Change 40, 177–182.CrossRefGoogle Scholar
Morrill, C., Overpeck, J. T. and Cole, J. E. (2003). A synthesis of abrupt changes in the Asian summer monsoon since the last glaciation. The Holocene 13, 465–76.CrossRefGoogle Scholar
Mosier, A. R., Bleken, M. A., Chaiwanakupt, P.et al. (2002). Policy implications of human-accelerated nitrogen cycling. Biogeochemistry 57–58, 477–516.CrossRefGoogle Scholar
Moy, C. M., Seltzer, G. O., Rodbell, D. T. and Anderson, D. M. (2002). Variability of El Niño/southern oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–5.CrossRefGoogle ScholarPubMed
Mueller, D. R., Vincent, W. F. and Jeffries, M. O. (2003). Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophysical Research Letters 30 (20), CRY 1-1–1-4.CrossRefGoogle Scholar
Müller, P. J., Kirst, G., Ruhland, G., Storch, I. and Rosell-Mélé, A. (1998). Calibration of alkenone paleotemperature index Uk37 based on core tops from the eastern South Atlantic and the global ocean (60° N–60° S). Geochimica et Cosmochimica Acta 62, 1757–71.CrossRefGoogle Scholar
Muller, R. A. and MacDonald, G. J. (1997). Glacial cycles and astronomical forcing. Science 277, 215–18.CrossRefGoogle Scholar
Munk, W. (2003). Ocean freshening, sea-level rising. Science 300, 2041–3.CrossRefGoogle ScholarPubMed
Murray, I. (2003a). Hockey stick slapped: climate change's bellisles? CEI NewsCenter(www.cei.org). November 3.Google Scholar
Murray, I. (2003b). Tackling junk science. CEI NewsCenter(www.cei.org). July 2.Google Scholar
Murray, I. (2003c). Are we all ‘damn fools’? CEI NewsCenter(www.cei.org). September 22.Google Scholar
Myers, N., Mittermeier, R., Mittermeier, C., da Fonseca, G.-A. and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853–8.CrossRefGoogle ScholarPubMed
Nachtergaele, F. (2002). Land degradation assessment in drylands (LADA project). LUCC Newsletter 8, 15.Google Scholar
Nakagawa, T., Kitagawa, H., Yasuda, Y.et al. (2003). Asynchronous climate changes in the North Atlantic and Japan during the last termination. Science 299, 688–91.CrossRefGoogle ScholarPubMed
Nakicenovic, N. and Swart, R. (2001). Special Report on Emission Scenarios. Cambridge, Cambridge University Press.Google Scholar
Neelin, J. D., Chou, C. and Su, H. (2003). Tropical drought regions in global warming and El Niño teleconnections. Geophysical Research Letters 30 (24), 5-1–5-4.CrossRefGoogle Scholar
Neff, U., Burns, S. J., Mangini, A., Mudalsee, M., Fleitmann, D. and Matter, A. (2001). Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411, 290–3.CrossRefGoogle ScholarPubMed
Nemani, R. R., Keeling, C. D., Hashimoto, H.et al. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–62.CrossRefGoogle ScholarPubMed
Nials, F. L., Gregory, D. A., Graybill, D. A. (1989). Salt river stream flow and Hohokam irrigation systems. In Graybill, D. A., Gregory, D. A., Nials, F. L., Gasser, R., Miksicek, C. and Szuter, C. (eds.). The 1982–1992 excavations at Las Colinas: Environment and Subsistence 5. Arizona State Museum Archaeological Series. Tuson AZ, University of Arizona, pp. 59–78.Google Scholar
Nicholls, R. J. and Small, C. (2002). Improved estimates of coastal population and exposure to Hazards released. EOS 83 (28), 301–5.CrossRefGoogle Scholar
Nicholson, S. E. (1982). The Sahel: a Climatic Perspective. Paris, Club du Sahel.Google Scholar
Nicoll, N. (2004). Recent environmental change and prehistoric human activity in Egypt and northern Sudan. Quaternary Science Reviews, 23, 561–80.CrossRefGoogle Scholar
Niggermann, S., Mangini, A., Richter, D. K. and Würth, G. (2003). A Paleoclimate record of the last 17 600 years in stalagmites from the B7 cave, Sauerland, Germany. Quaternary Science Reviews 22, 555–67.CrossRefGoogle Scholar
Nobre, C. A. (2004). The large-scale biosphere–atmosphere experiment in Amazonia. In Steffen, W., Sanderson, A., Tyson, P. D.et al. (eds.). Global Change and the Earth System; a Planet Under Pressure. Berlin, Springer Verlag, p. 278.Google Scholar
Nobre, C. A., Wickland, D. and Kabat, P. I. (2001). The large scale biosphere–atmosphere experiment in Amazonia. IGBP Global Change Newsletter 45, 2–4.Google Scholar
Norby, R. J. (2004). Forest responses to a future CO2 enriched atmosphere. In Steffen, W., Sanderson, A., Tyson, P. D.et al. (eds.). Global Change and the Earth System; a Planet Under Pressure. Berlin, Springer Verlag, pp. 158–9.Google Scholar
Noren, A. J., Bierman, P. R., Steig, E. J., Lini, A. and Southron, J. (2002). Millennial-scale storminess variability in the northeastern United States during the Holocene epoch. Nature 419, 821–4.CrossRefGoogle ScholarPubMed
Nosengo, N. (2003). Fertilized to death. Nature 425, 894–5.CrossRefGoogle Scholar
Nott, J. and Hayne, M. (2001). High frequency of ‘super-cyclones’ along the Great Barrier Reef over the past 5000 years. Nature 413, 508–12.CrossRefGoogle Scholar
Nuñez, L., Grosjean, M. and Cartajena, I. (2002). Human occupations and climate change in the Puna de Atacama, Chile. Science 298, 821–4.CrossRefGoogle ScholarPubMed
Nunn, P. D. (1998). Sea-level changes over the past 1000 years in the Pacific. Journal of Coastal Research 14, 23–30.Google Scholar
Nurse, L. and Sem, G. (2001). Small island states. In McCarthy, J., Canziani, O., Leary, N., Dokken, D. and White, K. (eds.). Climate Change 2001: Impacts, Adaptation and Vulnerability. Cambridge, Cambridge University Press.Google Scholar
Oechel, W. C., Vourlitis, G. L., Hastings, S. J.et al. (2000). Oscillation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406, 978–81.CrossRefGoogle Scholar
Ogi, M., Yamazaki, K. and Yoshihiro, T. (2003). Solar cycle modulation of the seasonal linkage of the North Atlantic oscillation (NAO). Geophysical Research Letters 30 (22), 8-1–8-4.CrossRefGoogle Scholar
Okhouchi, N., Eglinton, T. I., Keigwin, L. D. and Hayes, J. M. (2002). Spatial and temporal offsets between proxy records in a sediment drift. Science 298, 1224–6.CrossRefGoogle Scholar
Oldfield, F. (1993). Forward to the past: changing approaches to Quaternary palaeoecology. In Chambers, F. M. (ed.) Climate Change and Human Impact on the Landscape. Chapman and Hall, London, pp. 13–22.CrossRefGoogle Scholar
Oldfield, F. (in press) Towards developing synergistic linkages between the biophysical and the cultural; a palaeo-environmental perspective. In Hornborg, A., Butzer, K. W., Crumley, C. L., McNeill, J. R. and Martinez-Allier, J. (eds.). World System History and global Environmental change. New York, Columbia University Press.
Oldfield, F. and Alverson, K. (2003). The societal relevance of palaeoenvironmental research. In Alverson, K., Bradley, R. S. and Pedersen, T. F. (eds.). Paleoclimate, Global Change and the Future. Berlin, Springer Verlag, pp. 1–11.CrossRefGoogle Scholar
Oldfield, F. and Appleby, P. A. (1984). Empirical testing of 210Pb-dating models for lake sediments. In Haworth, E. Y. and Lund, J. W. G. (eds.). Lake Sediments and Environmental History. Leicester, Leicester University Press, pp. 93–124.Google Scholar
Oldfield, F, Asioli, A, Accorsi, C. A.et al. (2003a). A high resolution late-Holocene palaeo-environmental record from the central Adriatic Sea. Quaternary Science Reviews 22, 319–42.CrossRefGoogle Scholar
Oldfield, F. and Dearing, J. A. (2003). The role of human activities in past environmental change. In Alverson, K. D., Bradley, R. S. and Pedersen, T. F. (eds.). Paleoclimate, Global Change and the Future. Berlin, Springer Verlag, pp. 142–62.CrossRefGoogle Scholar
Oldfield, F., Richardson, N, and Appleby, P. G. (1995). The dating of recent ombrotrophic peat accumulation and evidence for changes in mass balance. The Holocene 5, 141–8.CrossRefGoogle Scholar
Oldfield, F., Thompson, R., Crooks, P. R. J.et al. (1997). Radiocarbon dating of a recent high-latitude peat profile: Stor Åmyran, N.Sweden. The Holocene 7, 283–90.CrossRefGoogle Scholar
Oldfield, F., Wake, R., Boyle, J.et al. (2003b). The late-Holocene history of Gormire Lake (NE England) and its catchment: a multiproxy reconstruction of past human impact. The Holocene 13, 677–90.CrossRefGoogle Scholar
Oppenheimer, M. (1998). Global warming and the stability of the west Antarctic ice sheet. Nature 393, 523–32.CrossRefGoogle Scholar
Oppenheimer, M. and Alley, R. B. (2004). The west Antarctic ice sheet and long term climate policy. Climatic Change, 64, 1–10.CrossRefGoogle Scholar
Oppo, D. W., McManus, J. F. and Cullen, J. L. (2003). Palaeo-oceanography: deepwater variability in the Holocene epoch. Nature 422, 277.CrossRefGoogle ScholarPubMed
O'Reilly, C. M., Alin, S. R., Plisnier, P.-D, Cohen, A. S. and McKee, B. A. (2003). Climate-change effect on Lake Tanganyika. Nature 424, 766–8.CrossRefGoogle ScholarPubMed
Ortlieb, L. (2000). The documentary historical record of El Niño events in Peru: an update of the Quinn record (sixteenth through nineteenth centuries). In Diaz, H. and Markgraf, V. (eds.). El Niño and the Southern Oscillation: Variability, Global and Regional Impacts. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Osborne, T. M., Lawrence, D. M., Slingo, J. M., Challinor, A. J. and Wheeler, T. R. (2004). Influence of vegetation on the local climate and hydrology in the tropics: sensitivity to soil parameters. Climate Dynamics, 23, 45–61.CrossRefGoogle Scholar
Osorio, I. G. (2003). The international green agenda. Foundation Watch, November, pp. 1–7.Google Scholar
Overland, J. E., Spillane, M. C. and Soreide, N. N. (2004). Integrated analysis of physical and biological pan-Arctic change. Climatic Change 63, 291–322.CrossRefGoogle Scholar
Overpeck, J. T. (1996). Varved sediment records of recent seasonal to millennial scale environmental variability. In Jones, P. D., Bradley, R. S. and Jouzel, J. (eds.). Climate Variations and Forcing Mechanisms of the Last 2000 Years. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Overpeck, J., Hughen, K., Hardy, D.et al. (1997). Arctic environmental change of the last four centuries. Science 278, 1251–7.CrossRefGoogle Scholar
Overpeck, J., Rind, D., Lacis, A. and Healy, R. (1996). Possible role of dust-induced regional warming in abrupt climate change during the last glacial period. Nature 384, 447–9.CrossRefGoogle Scholar
Overpeck, J., Whitlock, C. and Huntley, B. (2003). Terrestrial biosphere dynamics in the climate system: past and Future. In Alverson, K. D., Bradley, R. S. and Pedersen, T. F. (eds.). Paleoclimate, Global Change and the Future. Berlin, Springer Verlag, pp. 81–103.CrossRefGoogle Scholar
Ozanne, C. M. P., Anhuf, D., Boulter, S. L.et al. (2003). Biodiversity meets the atmosphere: a global view of forest canopies. Science 301, 183–6.CrossRefGoogle ScholarPubMed
Pal, J. S., Giorgi, F. and Bi, X. (2004). Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophysical Research Letters 31, L13202.CrossRefGoogle Scholar
Palmer, T. N. and Raisanen, J. (2002). Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415, 512–4.CrossRefGoogle Scholar
Parmesan, C. and Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42.CrossRefGoogle ScholarPubMed
Parris, T. M. and Kates, R. W. (2003). Characterizing a sustainability transition. Proceedings of the National Academy of Sciences 100, 8068–73.CrossRefGoogle ScholarPubMed
Parry, M., Arnell, N., McMichael, A., et al. (2001). Millions at risk: defining critical climate change threats and targets. Global Environmental Change 11, 181–3.CrossRefGoogle Scholar
Paul, F. (2002). Combined technologies allow rapid analysis of glacier changes. EOS 83 (23), 253–61.CrossRefGoogle Scholar
Pauling, A., Luterbacher, J. and Wanner, H. (2003). Evaluation of proxies for European and North Atlantic temperature field reconstructions. Geophysical Research Letters 30 (15), 2-1–2-4.CrossRefGoogle Scholar
Paulsen, D. E., Li, H.-C. and Ku, T.-L. (2003). Climate variability in central China over the last 1270 years revealed by high-resolution stalagmite records. Quaternary Science Reviews 22, 691–701.CrossRefGoogle Scholar
Pearson, R. G., Dawson, T. P., Berry, P. M. and Harrison, P. A. (2002). SPECIES: a spatial evaluation of climate impacts on the envelope of species. Ecological Modelling 154, 289–300.CrossRefGoogle Scholar
Pedersen, T. F., François, R., François, L., Alverson, K. and McManus, J. (2003). The late Quaternary history of biogeochemical cycling of carbon. In Alverson, K., Bradley, R. S. and Pedersen, T. F. (eds). Paleoclimate, Global Change and the Future. Berlin, Springer Verlag, pp. 63–79.CrossRefGoogle Scholar
Penner, J. E. (2003). Comment on ‘Control of fossil-fuel particulate black carbon and organic matter, probably the most effective method of slowing global warming’ by M. Z. Jacobson. Journal of Geophysical Research 108, 14-1–14-5.CrossRefGoogle Scholar
Penner, J. E., Dong, X. and Chen, Y. (2004). Observational evidence of a change in radiative forcing due to the indirect aerosol effect. Nature 427, 231–4.CrossRefGoogle ScholarPubMed
Penner, J. E., Zhang, S. Y. and Chuang, C. C. (2003). Soot and smoke aerosol may not warm climate. Journal of Geophysical Research 108 (D24), 4731.CrossRefGoogle Scholar
Penuelas, J. and Boada, M. (2003). A global change-induced biome shift in the Montseny mountains (NE Spain). Global Change Biology 9, 131–40.CrossRefGoogle Scholar
Peterson, B. J., Holmes, R. M., McClelland, J. W.et al. (2002). Increasing river discharge to the Arctic ocean. Science 298, 2171–3.CrossRefGoogle ScholarPubMed
Peterson, G., Allen, C. R. and Holling, C. S. (1998). Ecological resilience, biodiversity and scale. Ecosystems 1, 6–18.CrossRefGoogle Scholar
Petit, J. R., Jouzel, J., Raynaud, D.et al. (1999). Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica. Nature 399, 429–36.CrossRefGoogle Scholar
Petit, R. J., Aguinagalde, I., Beaulieu, J.-L.et al. (2003). Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300, 1563–5.CrossRefGoogle Scholar
Petit-Maire, N. (1999). Variabilité naturelle des environnements terrestres: les deux extrèmes climatiques (1800 ± 2000 and 8000 ± 1000 yrs BP). Earth and Planetary Sciences 328, 273–9.Google Scholar
Petschel-Held, G. (2001). Actors and their environment – syndromes of land-use change in developing countries. International Geosphere Biosphere Programme. Global Change NewsLetter 48, 27.Google Scholar
Pfister, C. (1992). Monthly temperature and precipitation in central Europe 1525–1979: quantifying documentary evidence on weather and its effects. In: Bradley, R. S. and Jones, P. D. (eds.). Climate Since AD 1500. London, Routledge.Google Scholar
Pfister, C., Brazdil, R. and Barriendos, M. (2002). Reconstructing past climate and natural disasters in europe using documentary evidence. PAGES News 10 (3), 6–8.Google Scholar
Pfister, C. and Wanner, H. (eds.). (2002). PAGES News 10 (3), 2, and 8–26.
Philipona, R., Dürr, B., Marty, C., Ohmura, A. and Wild, M. (2004). Radiative forcing – measured at Earth's surface – corroborates the increasing greenhouse effect. Geophysical Research Letters 31, L03202.CrossRefGoogle Scholar
Pielke, R. A. (2002). Overlooked issues in the US national climate and IPCC assessments – an Editorial essay. Climatic Change 52, 1–11.Google Scholar
Pielke, R. A. and Chase, T. N. (2004). Comment on ‘Contributions of anthropogenic and natural forcing to recent tropopause height changes’. Science 303, 1771.CrossRefGoogle ScholarPubMed
Pilkey, O. H. and Cooper, J. A. G. (2004). Society and sea-level rise. Science 303, 1781–2.CrossRefGoogle ScholarPubMed
Pimm, S. L., Russell, G. J., Gittleman, J. L. and Brooks, T. M. (1995). The future of biodiversity. Science 269, 347–50.CrossRefGoogle ScholarPubMed
Pinot, S., Ramstein, G., Harrison, S. P.et al. (1999). Tropical Paleoclimates of the last glacial maximum: comparison of Paleoclimate Modelling Intercomparison project (PMIP): simulations and palaeodata. Climate Dynamics 15, 857–74.CrossRefGoogle Scholar
Pittock, A. B. (2002). What we know and don't know about climate change: reflections on the IPCC TAR. Climatic Change 53, 393–411.CrossRefGoogle Scholar
Plattner, G.-K., Joos, F. and Stocker, T. F. (2002). Revision of the global carbon budget due to changing air-sea oxygen fluxes. Global Biogeochemical Cycles 16, 43-1–43-8.CrossRefGoogle Scholar
Podgorny, I. A., Li, F. and Ramanathan, V. (2003). Large aerosol radiative forcing due to the 1997 Indonesian forest fire. Geophysical Research Letters 30, 28-1–27-4.CrossRefGoogle Scholar
Pollack, H. N. and Smerdon, J. E. (2004). Borehole climate reconstructions; spatial structure and hemispheric averages. Journal of Geophysical Research 109, D11106.CrossRefGoogle Scholar
Popper, K. R. (1963). Conjectures and refutations. London, Routledge & Keegan Paul.Google Scholar
Prentice, I. C., Farquhar, G. D., Fasham, M. J. R. et al. (2001). The carbon cycle and atmospheric CO2. In Houghton, J., et al. (eds). Climate Change 2001: the Scientific Basis. Contribution of Working Group I to the IPCC Third Assessment Report. Cambridge, Cambridge University Press, pp. 183–237.Google Scholar
Prentice, I. C., Jolly, D. and BIOME 6000 members (2000). Mid-Holocene and glacial maximum vegetation geography of the northern continents and Africa. Journal of Biogeography 27, 507–19.CrossRefGoogle Scholar
Prentice, I. C., Sykes, M. T., Lautenschlager, M.et al. (1993). Modelling the global vegetation patterns and terrestrial carbon storage at the last glacial maximum. Global Ecology and Biogeography Letters 3, 67–76.CrossRefGoogle Scholar
Pretty, J. N., Morrison, J. L. L. and Hine, R. E. (2002). Reducing food poverty by increasing agricultural sustainability in developing countries. Agriculture, Ecosystems and Environment 88, 1–18.Google Scholar
Procopio, A. S., Artaxo, P., Kaufman, Y. J., Remer, L. A., Schafer, J. S. and Holben, B. N. (2004). Multiyear analysis of Amazonian biomass burning smoke radiative forcing of climate. Geophysical Research Letters 31, L03108.CrossRefGoogle Scholar
Purvis, A. and Hector, A. (2000). Getting the measure of biodiversity. Nature 405, 212–9.CrossRefGoogle ScholarPubMed
Ramrath, A., Sadori, L. and Negendank, J. F. W. (2000). Sediments from Lago di Mezzano, central Italy: a record of late glacial/Holocene climatic variations and anthropogenic impact. The Holocene 10, 87–95.CrossRefGoogle Scholar
Rahmstorf, S. (2002). Ocean circulation and climate during the past 120 000 years. Nature 419, 207–14.CrossRefGoogle ScholarPubMed
Rahmstorf, S. (2003). Timing of abrupt climate change: a precise clock. Geophysical Research Letters 30 (10), 17-1–17-4.CrossRefGoogle Scholar
Rahmstorf, S. and Alley, R. B. (2002). Stochastic resonance in glacial climates. EOS 83, 129–135.CrossRefGoogle Scholar
Rahmstorf, S. and Ganapolski, A. (1999). Long term global warming scenarios computed with an efficient coupled climate model. Climatic Change 43, 353–67.CrossRefGoogle Scholar
Raisanen, J., Hansson, U., Ullerstig, A.et al. (2003). European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Climate Dynamics 21, 13–31.Google Scholar
Ramanathan, V., Crutzen, P. J., Lelieveld, J.et al. (2001). The Indian Ocean Experiment: an integrated assessment of climate forcing and effects of the great Indo-Asian haze. Journal of Geophysical Research 106, 28371–98.CrossRefGoogle Scholar
Ramankutty, N. and Foley, J. A. (1999). Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochemical Cycles 13, 997–1027.CrossRefGoogle Scholar
Raymo, M. (1992). Global climate change: a three million year perspective. In Kukla, G. J. and Went, E. (eds.). Start of a Glacial. Berlin, Springer Verlag.CrossRefGoogle Scholar
Raymond, C. F. (2002). Ice sheets on the move. Science 298, 2147–8.CrossRefGoogle ScholarPubMed
Raynaud, D., Blunier, T., Ono, Y., and Delmas, R. J. (2003). The late Quaternary history of atmospheric trace gases and aerosols: interactions between climate and biogeochemical cycles. In Alverson, K. D., Bradley, R. S. and Pedersen, T. F. (eds.). Paleoclimate, Global Change and the Future. Berlin, Springer-Verlag, pp. 13–31.CrossRefGoogle Scholar
Reddy, M. S. and Venkataram, C. (2002). Inventory of aerosol and sulphur dioxide emissions from India, Parts I and II. Atmospheric Environment 36, 677–712.CrossRefGoogle Scholar
Redman, C. L. (1999) Human Impact on Ancient Environments. Tuscon AZ, The University of Arizona Press.Google Scholar
Reeburgh, W. S. (1997). Figures summarizing the global cycles of biogeochemically important elements. Bulletin of the Ecological Society of America 78, 260–7.Google Scholar
Reichenau, T. G. and Esser, G. (2003). Is interannual fluctuation of atmospheric CO2 dominated by combined effects of ENSO and volcanic aerosols? Global Biogeochemical Cycles 17 (4), 1094.CrossRefGoogle Scholar
Reichert, B. K., Schnurr, R. and Bengtsson, L. (2002). Global ocean warming tied to anthropogenic forcing. Geophysical Research Letters, 29, 20-1–20-4.CrossRefGoogle Scholar
Ren, G, and Zhang, L. (1998). A preliminary mapped summary of Holocene pollen data for northeast China. Quaternary Science Reviews 17, 669– 88.CrossRefGoogle Scholar
Renberg, I. (1990). A 126 000 year perspective of the acidification of Lille Oresjon, southwest Sweden. Philosophical Transactions of the Royal Society of London Series B 327, 357–61.CrossRefGoogle Scholar
Renssen, H., Goosse, H. and Fichefet, T. (2003). On the non-linear response of the ocean thermohaline circulation to global deforestation. Geophysical Research Letters 30 (2), 10.CrossRefGoogle Scholar
Revenga, C., Brunner, J., Henninger, N., Kassem, K. and Payne, R. (2000). Pilot Analysis of Global Ecosystems: Freshwater Systems. Washington DC, World Resources Institute.Google Scholar
Rex, M., Salawitch, der Gathen P.et al. (2004). Arctic ozone loss and climate change. Geophysical Research Letters 31, L04416.CrossRefGoogle Scholar
Ribbe, J. (2004). Oceanography: the southern supplier. Nature 427, 23–4.CrossRefGoogle ScholarPubMed
Ridgwell, A. J. (2003). Implication of the glacial CO2 ‘iron hypothesis’ for Quaternary climate change. Geochemistry, Geophysics, Geosystems – Research Letters 4 (9), 1–10.Google Scholar
Ridgwell, A. J. and Watson, A. J. (2002). Feedback between Aeolian dust, climate, and atmospheric CO2 in glacial time. Paleoceanography 17 (4). 11-1–11-7.CrossRefGoogle Scholar
Rignot, E. and Thomas, R. H. (2002). Mass balance of polar ice sheets. Science 297, 1502–6.CrossRefGoogle ScholarPubMed
Riley, J. (2001a). Indicator quality for assessment of impact of multidisciplinary systems. Agriculture, Ecosystems and Environment 8, 121–8.CrossRefGoogle Scholar
Riley, J.(2001b). Multidisciplinary indicators of impact and change: key issues for identification and summary. Agriculture, Ecosystems and Environment 8, 245–59.CrossRefGoogle Scholar
Rind, D. (2000). Relating paleoclimate data and past temperature gradients: some suggestive rules. Quaternary Science Reviews 19, 381–90.CrossRefGoogle Scholar
Rind, D. (2003). The Sun's role in climate variations. Science 296, 673–7.CrossRefGoogle Scholar
Rind, D., Lean, J. and Healy, R. (1999). Simulated time-dependent climate response to solar radiative forcing since 1600. Journal of Geophysical Research-Atmospheres 104, 1973–90.CrossRefGoogle Scholar
Roberts, H. M., Wintle, A. G., Maher, B. A. and Hu, M. (2001). Holocene sediment-accumulation rates in the western Loess Plateau, China, and a 2500-year record of agricultural activity, revealed by OSL dating. The Holocene 11, 477–83.CrossRefGoogle Scholar
Roderick, M. L. and Farquhar, G. D. (2004). The pan Evaporation paradox. In Steffen, W., Sanderson, A., Tyson, P. D.et al. (eds.). Global Change and the Earth System; a Planet Under Pressure. Berlin, Springer Verlag, p. 167.Google Scholar
Roderick, M. L., Farquhar, G. D., Berry, S. L. and Noble, I. R. (2001). On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 128, 21–30.CrossRefGoogle Scholar
Rodhe, H., Dentner, F. and Schulz, M. (2002). The global distribution of acidifying wet deposition. Environmental Science and Technology 36, 4382–8.CrossRefGoogle ScholarPubMed
Romanovsky, V., Burgess, M., Smith, S., Yoshikawa, K. and Brown, J. (2002). Permafrost temperature records: indicators of climate change. EOS 83 (50), 589–94.CrossRefGoogle Scholar
Root, T. L., Price, J. T., Hall, K. R.et al. (2003). Fingerprints of global warming on wild animals and plants. Nature 421, 57–60.CrossRefGoogle ScholarPubMed
Rosen, A. M. (1995). The social response to environmental change in early Bronze age Canaan. Journal of Anthropological Archaeology 14, 26–44.CrossRefGoogle Scholar
Rosen, A. M. and Rosen, S. A. (2001). Determinist or not determinist? Climate, environment and archaeological explanation in the Levant. In Wolff, S. (ed.) Studies in the Archaeology of Israel and Neighbouring Lands. Chicago, University of Chicago Press.Google Scholar
Rothlisberger, R., Mulvaney, R., Wolff, E. W.et al. (2002). Dust and sea salt variability in central east Antarctica (Dome C) over the last 45kyrs and its implications for southern high latitude climate. Geophysical Research Letters 29 (20), 24-1–24-4. (Correction published in 2003, 30 (5), 10.).CrossRefGoogle Scholar
Rowe, D., Guilderson, T. P., Dunbar, R. B.et al. (2003). Late Quaternary lake-level changes constrained by radiocarbon and stable isotope studies on sediment cores from Lake Titicaca, South America. Global and Planetary Change 38, 273–90.CrossRefGoogle Scholar
Ruddiman, W. F. (2003a). Orbital insolation, ice volume and greenhouse gases. Quaternary Science Reviews 22, 1597–1629.CrossRefGoogle Scholar
Ruddiman, W. F.(2003b). The anthropogenic greenhouse era began thousands of years ago. Climatic Change 61, 261–93.CrossRefGoogle Scholar
Ruddiman, W. F.(2004). The role of greenhouse gases in orbital scale climate changes. EOS 85 (1). 1–7.CrossRefGoogle Scholar
Ruddiman, W. F. and Raymo, M. E. (2003). A methane-based timescale for Vostok ice. Quaternary Science Reviews 22, 141–55.CrossRefGoogle Scholar
Ruddiman, W. F. and Thompson, J. S. (2001). The case for human causes of increased atmospheric CH4 over the last 5000 years. Quaternary Science Reviews 20, 1769–77.CrossRefGoogle Scholar
Rundgren, M. and Beerling, D. (1999). A Holocene CO2 record from the stomatal index of subfossil Salix herbacea L. leaves from northern Sweden. The Holocene 9, 509–13.CrossRefGoogle Scholar
Rundgren, M. and Björk, S. (2003). Late-glacial and early Holocene variations in atmospheric CO2 concentration indicated by high-resolution stomatal index data. Earth and Planetary Science Letters 213, 191–204.CrossRefGoogle Scholar
Rutherford, S. and Mann, M. E. (2004). Correction to ‘Optimal surface temperature reconstructions using terrestrial borehole data’. Journal of Geophysical Research 109, D11107.CrossRefGoogle Scholar
Saarinen, T. (1999). Paleomagnetic dating of late Holocene sediments in Fennoscandia. Quaternary Science Reviews 18, 889–97.CrossRefGoogle Scholar
Saaroni, H., Ziv, B., Edelson, J. and Alpert, P. (2003). Long-term variations in summer temperatures over the eastern Mediterranean. Geophysical Research Letters 30 (18), 1946.CrossRefGoogle Scholar
Sabine, C. L., Felly, R. A., Gruber, N.et al. (2004). The ocean sink for anthropogenic CO2. Science 305, 367–71.CrossRefGoogle ScholarPubMed
Sahagian, D. (2000). Global physical effects of anthropogenic hydrological alterations: sea-level and water redistribution. Global and Planetary Change 25, 39–48.CrossRefGoogle Scholar
Saloranta, T. M. (2001). Post-normal science and the global climate issue. Climate Change 50, 395–404.CrossRefGoogle Scholar
Saltzman, B. (1985). Paleoclimatic modeling. In Hecht, A. D. (ed.). Paleoclimate Analysis and Modeling. Wiley, Chichester. pp. 341–96.Google Scholar
Sanchez, P. A. (2000). Linking climate change research with food security and poverty reduction in the tropics. Agriculture, Ecosystems and Environment 82, 371–83.CrossRefGoogle Scholar
Sanderson, A. (2004). The Gulf of Mexico dead zone. In Steffen, W., Sanderson, A., Tyson, P.et al. (eds.). Global Change and the Earth System: a Planet Under Pressure. Berlin, Springer Verlag, p. 184.Google Scholar
Santer, B. D., Berger, A., Eddy et al. (1993). How can palaeodata be used to evaluate forcing mechanisms responsible for past climate changes? In Eddy, J. A. and Oeschger, H., (eds.). Global Changes in the Perspective of the Past. Chichester, Wiley, pp. 343–67.Google Scholar
Santer, B. D., Wehner, M. F., Wigley, T. M. L.et al. (2003). Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301, 479–83.CrossRefGoogle ScholarPubMed
Santer, B. D., Wehner, M. F., Wigley, T. M. L.et al. (2004). Response to Comment on ‘Contributions of anthropogenic and natural forcing to recent tropopause height changes.’ Science 303, 1771.CrossRefGoogle Scholar
Sarmiento, J. L. and Gruber, N. (2002). Sinks for anthropogenic carbon. Physics Today 56 (5), 30–6.CrossRefGoogle Scholar
Sarmiento, J. L., Gruber, N., Brezinski, M. A. and Dunne, J. P. (2004). High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60.CrossRefGoogle ScholarPubMed
Sarnthein, M., Kennett, J. P., Allen, J. R. M.et al. (2002). Decadal-to-millennial-scale climate variability – chronology and mechanisms: summary and recommendations. Quaternary Science Reviews 21, 1121–8.CrossRefGoogle Scholar
Saunders, M. A. and Quian, B. (2002). Seasonal predictability of the winter NAO from North Atlantic sea surface temperatures. Geophysical Research Letters 29 (22), 2049.CrossRefGoogle Scholar
Schaeffer, M., Selten, F. M. and Opsteegh, J. D. (2002). Intrinsic limits to predictability of abrupt regional climate change in IPCC SRES scenarios. Geophysical Research Letters 29 (16), 14-1–14-4.CrossRefGoogle Scholar
Schafer, J. S., Eck, T. F., Holben, B. N.et al. (2002). Observed reductions of total solar irradiance by biomass-burning aerosols in the Brazilian Amazon and Zambian Savanna. Geophysical Research Letters 29, 4-1–27-8.CrossRefGoogle Scholar
Schär, C., Vidale, P. L., Luthi, D.et al. (2004). The role of increasing temperature variability in European summer heatwaves. Nature 427, 332–6.CrossRefGoogle ScholarPubMed
Schellnhuber, H. J. (1999). ‘Earth system’ analysis and the second Copernican revolution. Nature 402, C19–23.CrossRefGoogle Scholar
Schellnhuber, H. J. (2002). Coping with Earth system complexity and irregularity. In Steffen, W., Jäger, J., Carson, D. and Bradshaw, C. (eds.). Challenges of a Changing Earth; Proceedings of the Global Change Open Science Conference. IGBP Global Change Series. Berlin, Springer Verlag, pp. 151–6.CrossRefGoogle Scholar
Schiermeier, Q. (2003). Alpine thaw breaks ice over permafrost's role. Nature 424, 712–3.CrossRefGoogle ScholarPubMed
Schiermeier, Q.(2004a). Modellers deplore ‘short-termism’ on climate. Nature 428, 593.CrossRefGoogle Scholar
Schiermeier, Q.(2004b). Global warming anomaly may succomb to microwave study. Nature 429, 7.Google Scholar
Schiermeier, Q.(2004c). A rising tide. Nature 428, 114.CrossRefGoogle Scholar
Schilman, B., Bar-Matthews, M., Almogi-Labin, A. and Luz, B. (2001). Global climate instability reflected by eastern Mediterranean marine records during the late Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 176, 157–76.CrossRefGoogle Scholar
Schimel, D. and Baker, D. (2002). Carbon cycle: the wildfire factor. Nature 420, 29–30.CrossRefGoogle ScholarPubMed
Schimel, D. S., House, J. I., Hubbarde, K. A.et al. (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414, 169–72.CrossRefGoogle ScholarPubMed
Schimmelmann, A., Lange, C. B. and Meggers, B. J. (2003). Palaeoclimatic and archaeological evidence for a ~200 recurrence of floods and droughts linking California, Mesoamerica and South America over the last 2000 years. The Holocene 13, 763–78.CrossRefGoogle Scholar
Schindler, D. W. (2001). The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Canadian Journal of Fisheries and Aquatic Sciences 59, 18–29.CrossRefGoogle Scholar
Schindler, D. W. and Curtis, P. J. (1997). The role of DOC in protecting freshwater subjected to climatic warming and acidification from UV exposure. Biogeochemistry 36, 1–8.CrossRefGoogle Scholar
Schmittner, A., Appenzeller, C. and Stocker, T. F. (2000). Enhanced Atlantic freshwater exported during El Niño. Geophysical Research Letters 27, 1163–6.CrossRefGoogle Scholar
Schmittner, A., Saenko, O. A. and Weaver, A. J. (2003). Coupling of the hemispheres in observations and simulations of glacial climate change. Quaternary Science Reviews 22, 659–671.CrossRefGoogle Scholar
Schmittner, A., Yoshimori, M. and Weaver, A. J. (2002). Instability of glacial climate in a model of the ocean-atmosphere-cryosphere system. Science 295, 145–149.CrossRefGoogle Scholar
Schmutz, C., Luterbach, J., Gyalistras, D., Xopalski, E. and Wanner, H. (2000). Can we trust proxy-based NAO reconstructions? Geophysical Research Letters 27, 1135–8.CrossRefGoogle Scholar
Schneider, S. H. (2001). Earth systems engineering and management. Nature 409, 417–21.CrossRefGoogle ScholarPubMed
Schneider, S. H.(2002). Can we estimate the likelihood of climatic changes at 2100? Climatic Change 52, 441–51.CrossRefGoogle Scholar
Scholes, M. C., Matrai, P. A., Andreae, M. O., Smith, K. A. and Manning, M. R. (2003). Biosphere–Atmosphere interactions. In Brasseur, G. P., Prinn, R. G. and Pszenny, A. P. (eds.). Atmospheric Chemistry in a Changing World. Berlin, Springer Verlag, pp. 19–71.CrossRefGoogle Scholar
Scholes, R. (2002) The past, present and future of carbon on land. In Steffen, W., Jäger, J., Carson, D. and Bradshaw, C. (eds.). Challenges of a Changing Earth; Proceedings of the Global Change Open Science Conference. IGBP Global Change Series. Berlin, Springer Verlag, pp. 81–5.CrossRefGoogle Scholar
Schubert, S. D., Suarez, M. J., Pegion, P. J., Koster, R. D. and Bacmeister, J. T. (2004). On the cause of the 1930's dust bowl. Science 303, 1855–9.CrossRefGoogle Scholar
Schulze, E. D. and Mooney, H. A. (1993). Biodiversity and Ecosystem Function. Berlin, Springer Verlag.CrossRefGoogle Scholar
Schwander, J., Eicher, U. and Ammann, B. (2000). Oxygen isotopes of lake marl at Gerzensee and Leysin (Switzerland), covering the Younger Dryas and two minor oscillations and their correlation to the GRIP ice core. Palaeogeography, Palaeoclimatology, Palaeoecology 159, 213–14.CrossRefGoogle Scholar
Schwartz, P. and Randall, D. (2004). Abrupt Climate Change. Report prepared by Global Business Network (GBN) for the Department of Defense. At www.gbn.org/ArticleDisplayServlet.srv?aid=26231.Google Scholar
Seki, O., Ishiwatari, R. and Matsumoto, K. (2002). Millennial scale oscillations in NE Pacific surface waters over the last 82kyr: new evidence from alkenones. Geophysical Research Letters 29 (23), 2144.CrossRefGoogle Scholar
Serreze, M. C., Walsh, J. E., Chapin, F. S. IIIet al. (2000). Observational evidence of recent change in the northern high-latitude environment. Climatic Change 46, 159–207.CrossRefGoogle Scholar
Severinghaus, J. P. and Brook, E. J. (1999). Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286, 930–4.CrossRefGoogle ScholarPubMed
Severinghaus, J. P., Jouzel, J., Caillon, N.et al. (2004). Comment on ‘Greenland–Antarctica phase relations and millennial time-scale climate fluctuations in the Greenland ice-cores’ by C. Wunsch. Quaternary Science Reviews, 23, 2053–4.CrossRefGoogle Scholar
Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. and Bender, M. L. (1998). Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–6.CrossRefGoogle Scholar
Shackleton, N. J., Fairbanks, R. G., Chiu, T. and Parrenin, F. (2004). Absolute calibration of the Greenland timescale: implications for Antarctic timescales and for δ14C. Quaternary Science Reviews, 23, 1513–22.CrossRefGoogle Scholar
Shackleton, N. J., Hall, M. A. and Vincent, E. (2000). Phase relationships between millenial-scale events 64 000–24 000 years ago. Paleoceanography 15, 565–9.CrossRefGoogle Scholar
Shackleton, N. J. and Opdyke, N. D. (1973). Oxygen isotope and paleomagnetic stratigraphy of Pacific core V28–238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quaternary Research 3, 39–55.CrossRefGoogle Scholar
Shackleton, N. J., Sanchez-Goñi, , Pailler, D. and Lancelot, Y. (2003). Marine isotope substage 5e and the Eemian interglacial. Global and Planetary Change 36, 151–5.CrossRefGoogle Scholar
Shah, M. (2002). Food in the twenty-first century: global climate of disparities. In Steffen, W., Jäger, J., Carson, D. and Bradshaw, C. (eds.). Challenges of a Changing Earth; Proceedings of the Global Change Open Science Conference. IGBP Global Change Series. Berlin, Springer Verlag, pp. 31–8.CrossRefGoogle Scholar
Shemesh, A., Rosqvist, G., Rietti-Shati, M.et al. (2001). Holocene climate change in Swedish Lapland inferred from an oxygen isotope record of lacustrine biogenic silica. The Holocene 11, 447–54.CrossRefGoogle Scholar
Shennan, I. (1989). Holocene crustal movements and sea-level changes in Great Britain. Journal of Quaternary Science 4, 77–89.CrossRefGoogle Scholar
Shennan, I. and Horton, B. (2002). Holocene land- and sea-level changes in Great Britain, Journal of Quaternary Science 17, 511–26.CrossRefGoogle Scholar
Shennan, S. (2003). Holocene climate and human populations: an archaeological approach. In Mackay, A. W., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 36–48.Google Scholar
Shindell, D. T. (2003). Whither Arctic climate? Science 299, 215–6.CrossRefGoogle ScholarPubMed
Shindell, D. T., Schmidt, G. A., Mann, M. E. and Faluvegi, G. (2004). Dynamic winter climate response to large tropical volcanic eruptions since 1600. Journal of Geophysical Research 109, D05104.CrossRefGoogle Scholar
Shindell, D. T., Schmidt, G. A., Mann, M. E., Rind, D. and Waple, A. (2001). Solar forcing of regional climate change during the Maunder Minimum. Science 294, 2149–52.CrossRefGoogle ScholarPubMed
Shotyk, W., Cheburkin, A. K., Appleby, P. G., Frankhauser, A. and Kramers, J. D. (1996). Two thousand years of atmospheric arsenic, antimony, and lead deposition recorded in an ombrotrophic peat bog profile, Jura Mountains, Switzerland. Earth Planetary Science Letters 145, E1–7.CrossRefGoogle Scholar
Shotyk, W., Weiss, D., Appleby, P. G.et al. (1998). History of atmospheric lead deposition since 12 370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science 281, 1635–40.CrossRefGoogle ScholarPubMed
Showstack, R. (2003). Montreal protocol benefits cited. EOS 84 (39), 395.Google Scholar
Siddall, M., Rohling, E. J., Almogi-Labin, A.et al. (2003). Sea-level fluctuation during the last glacial cycle. Nature 423, 853–8.CrossRefGoogle Scholar
Sigman, D. M. and Boyle, E. A. (2000). Glacial/Interglacial variations in atmospheric carbon dioxide. Nature 407, 859–69.CrossRefGoogle ScholarPubMed
Singh, G., Wasson, R. J. and Agrawal, D. P. (1990). Vegetational and seasonal climatic changes since the last full glacial in the Thar Desert, northwestern India. Review of Palaebotany and Palynology 64, 351–8.CrossRefGoogle Scholar
Smith, L. C., Sheng, Y., Forster, R. R.et al. (2003). Melting of small Arctic ice caps observed from ERS scatterometer time series. Geophysical Research Letters 30 (20), 2034.CrossRefGoogle Scholar
Smith, S. V., Renwick, W. H., Bartley, J. D. and Buddemeier, R. W. (2002). Distribution and significance of small artificial water bodies across the United States landscape. The Science of the Total Environment 299, 21–36.CrossRefGoogle ScholarPubMed
Smol, J. P., Cumming, B. F., Dixit, A. S. and Dixit, S. S. (1998). Tracking recovery in acidified lakes: a palaeolimnological perspective. Restoration Ecology 6, 318–26.CrossRefGoogle Scholar
Snowball, I. F. and Sandgren, P. (2002). Geomagnetic field variations in northern Sweden during the Holocene quantified from varved lake sediments and their implications for cosmogenic nuclide production rates. The Holocene 15, 517–30.CrossRefGoogle Scholar
Soden, B. J., Wetherald, R. T., Stenchikov, G. L. and Robock, A. (2002). Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapour. Science, 296, 727–30.CrossRefGoogle Scholar
Solomon, S. (2004). The hole truth. Nature 427, 289–91.CrossRefGoogle ScholarPubMed
Somoza, L., Gardner, J. M., Diaz-del-Rio, V.et al. (2002). Numerous methane gas-related sea floor structures identified in Gulf of Cadiz. EOS 83 (47), 541–9.CrossRefGoogle Scholar
Soon, W. and Baliunas, S. (2003). Lessons and Limits of Climate History: Was the Twentieth Century Climate Unusual? Washington DC, The George C. Marshall Institute.Google Scholar
Soon, W., Baliunas, S., Idso, C., Idso, S. and Legates, D. R. (2003). Reconstructing climatic and environmental changes of the past 1000 years: a reappraisal. Energy and Environment 14, 233– 96.CrossRefGoogle Scholar
Solanki, S. K. and Krivova, N. A. (2002). Can solar variability explain global warming since 1970? Journal of Geophysical Research 108, 7-1–7-8.Google Scholar
Sorvari, S., Korhola, A. and Thompson, R. (2002). Lake diatom responses to recent Arctic warming in Finnish Lapland. Global Change Biology 8, 171–81.CrossRefGoogle Scholar
Sowers, T. (2001). The N2O record spanning the penultimate deglaciation from the Vostok ice core. Journal of Geophysical Research-Atmospheres 106, 31903–14.CrossRefGoogle Scholar
Sowers, T., Alley, R. and Jubenville, J. (2003). Ice core records of atmospheric N2O covering the last 106 000 years. Science 301, 945–8.CrossRefGoogle ScholarPubMed
Spahni, R., Schwander, J., Flückinger, J., Stauffer, B., Chappellaz, J. and Raynaud, D. (2003). The attenuation of fast atmospheric CH4 variations recorded in polar ice cores. Geophysical Research Letters 30 (11), 1571.CrossRefGoogle Scholar
Stager, J. C., Mayewski, P. A. and Meeker, L. D. (2002). Cooling cycles, Heinrich Event 1 and the desiccation of Lake Victoria. Palaeogeography, Palaeoclimatology, Palaeoecology 183, 169–78.CrossRefGoogle Scholar
Stahle, D. W., Cook, E. R., Cleaveland, M. K.et al. (2000) Tree-ring data document sixteenth century megadrought over North America. EOS 81, 121–5.CrossRefGoogle Scholar
Staubwasser, M., Sirocko, F., Grootes, P. M. and Segl, M. (2003). Climate change at 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophysical Research Letters, 30 (8), 1425.CrossRefGoogle Scholar
Steffen, W. and Crutzen, P. J. (2003). How long have we been in the Anthropocene era? Climatic Change 61, 251–7.Google Scholar
Steffen, W., Sanderson, A., Tyson, P.et al. (2004). Global Change and the Earth System: a Planet Under Pressure. Berlin, Springer Verlag.Google Scholar
Stenni, B., Masson-Delmotte, , V Johnsen, S.et al. (2001) An oceanic cold reversal during the last deglaciation. Science 293, 2074–7.CrossRefGoogle ScholarPubMed
Stevens, C. J., Dise, N. B., Mountford, J. O. and Gowing, D. J. (2004). Impact of nitrogen deposition on the species richness of grasslands. Science 303, 1876–7.CrossRefGoogle ScholarPubMed
Stine, S. (1994). Extreme and persistent drought in California and Patagonia during medieval time. Nature 369, 546–9.CrossRefGoogle Scholar
Stive, M. J. F. (2003). How important is global waming for coastal erosion? Climatic Change 61, 1–13.Google Scholar
Stocker, T. F. (1998). The seesaw effect. Science 282, 61–2.CrossRefGoogle Scholar
Stocker, T. F.(2003). Global change: south dials north. Nature 424, 496–9.CrossRefGoogle ScholarPubMed
Stocker, T. F. and Johnsen, S. J. (2003). A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18 (4), 11-1–11-9.CrossRefGoogle Scholar
Stocker, T. F. and Schmittner, A. (1997). Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature 388, 862–5.CrossRefGoogle Scholar
Stone, J. O., Balco, G. A., Sugden, D. E.et al. (2003). Holocene deglaciation of Marie Byrd land, west Antarctica. Science 299, 99–102.CrossRefGoogle ScholarPubMed
Stone, R. S., Dutton, E. G., Harris, J. M. and Longenecker, D. (2002). Earlier spring snowmelt in northern Alaska as an indicator of climate change. Journal of Geophysical Research D: Atmospheres 107, 10-1–10-15.CrossRefGoogle Scholar
St-Onge, G., Stoner, J. S. and Hillaire-Marcel, C. (2003). Holocene paleomagnetic records from the St. Lawrence Estuary, eastern Canada: centennial- to millennial-scale geomagnetic modulation of cosmogenic isotopes. Earth and Planetary Science Letters 209, 113–30.CrossRefGoogle Scholar
Stott, P. A. and Kettleborough, J. A. (2002). Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature 416, 723–6.CrossRefGoogle ScholarPubMed
Stott, P. A., Allen, M. R. and Jones, G. S. (2003). Estimating signal amplitudes in optimal fingerprinting. Part II: application to general circulation models. Climate Dynamics 21, 493–500.CrossRefGoogle Scholar
Stott, L., Poulsen, C., Lund, S. and Thunell, R. (2002). Super ENSO and global climate oscillations at millennial timescales. Science 297, 222–6.CrossRefGoogle Scholar
Stott, P. A., Tett, S. F. B., Jones, G. S.et al. (2001). Attribution of twentieth century temperature change to natural and anthropogenic causes. Climate Dynamics 17, 1–21.CrossRefGoogle Scholar
Streets, D. G., Jiang, K., Hu, X.et al. (2001). Recent Reductions in China's greenhouse gas emissions. Science 284, 1835–7.CrossRefGoogle Scholar
Stuiver, M., Braziunas, T. F., Becker, B. and Cromer, B. (1991). Climatic, solar, oceanic and geomagnetic influences on late glacial and 14C/12C change. Quaternary Research 35, 1–24.CrossRefGoogle Scholar
Stuiver, M. and Reimer, P. J. (1993). Extended 14C data base and revised Calib 3.0 14C age calibration program. Radiocarbon 35, 215–30.CrossRefGoogle Scholar
Stuiver, M., Reimer, P. J., Bard, E.et al. (1998). INTCAL98 radiocarbon age calibration, 24 000 – 0 cal BP. Radiocarbon 40, 1041–83.CrossRefGoogle Scholar
Stute, M., Forster, M., Frischkorn, H.et al. (1995). Cooling of tropical Brazil (5 °C) during the last glacial maximum. Science 269, 379–83.CrossRefGoogle ScholarPubMed
Stute, M. and Talma, S. (1998). Glacial temperatures and moisture transport regimes reconstructed from noble gas and δ18O, Stampriert aquifer, Namibia. In Isotope Techniques in the Study of Past and Current Environmental Changes in the Hydrosphere and the Atmosphere. Vienna, IAEA, Proceedings of Vienna Symposium, pp. 307–28.Google Scholar
Sugita, S., Gaillard, M.-J. and Broström, A. (1999). Landscape openness and pollen records: a simulation approach. The Holocene 9, 409–21.CrossRefGoogle Scholar
Sun, B. and Bradley, R. S. (2002). Solar influences on cosmic rays and cloud formation: a reassessment. Journal of Geophysical Research 107, D14, 4211, AAC 5–1.CrossRefGoogle Scholar
Sun, B. and Bradley, R. S. (2004). Reply to comment on ‘Solar influences on cosmic rays and cloud formation: A reassessment’. Journal of Geophysical Research 109, D14206.CrossRefGoogle Scholar
Svensmark, H. and Friis-Christensen, E. (1996). Variation of cosmic ray flux and global cloud coverage – a missing link in solar–climate relationships. Journal of Atmospheric and Solar-Terrestrial Physics 59, 1225–32.CrossRefGoogle Scholar
Svensen, H., Planke, S., Malthe-Sorenssen, A.et al. (2004). Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Natue 429, 542–5.CrossRefGoogle ScholarPubMed
Swetnam, T. W. (1993). Fire history and climate change in Giant Sequoia groves. Science 262, 885–8.CrossRefGoogle ScholarPubMed
Swiss Biodiverity Forum (2003). Visions in Biodiversity Research. Towards a New, Integrative Biodiversity Science. Bern, Swiss Academy of Sciences.
Sykes, M., Prentice, I. C., Smith, B., Cramer, W. and Venevsky, S. (2001). An introduction to the European terrestrial ecosystem modelling activity. Global Ecology and Biogeography 10, 581–94.CrossRefGoogle Scholar
Szeicz, J. M., Haberle, S. G. and Bennett, K. D. (2003). Dynamics of north Patagonian rainforests from fine-resolution pollen, charcoal and tree-ring analysis, Chonos Archipelago, southern Chile. Austral Ecology 28, 413–26.CrossRefGoogle Scholar
Taberlet, P. and Cheddadi, R. (2002). Quaternary refugia and persistence of biodiversity. Science 297, 2009–10.CrossRefGoogle ScholarPubMed
Tada, R., Irino, T. and Koizumi, I. (1999) Land–ocean linkage over orbital and millennial timescales recorded in the late Quaternary sediments of the Japan Sea. Paleoceanography 14, 236–47.CrossRefGoogle Scholar
Talbot, M. (1990). A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology (Isotope Geosciences Section) 80, 261–79.CrossRefGoogle Scholar
Taylor, K. C., Hammer, C. U., Alley, R. B.et al. (1993). Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores. Nature 366, 549–52.CrossRefGoogle Scholar
Taylor, K. C., White, J. W. C., Severinghaus, J. P.et al. (2003). Abrupt climate change around 22ka on the Siple coast of Antarctica. Quaternary Science Reviews 23, 7–15.CrossRefGoogle Scholar
Teller, J. T., Leverington, D. W. and Mann, J. W. (2002). Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Science Reviews 21, 879–87.CrossRefGoogle Scholar
TEMPO Members (1996). Potential role of vegetation feedback in the climate sensitivity of high-latitude regions: a case study at 6000 years BPGlobal Biogeochemical Cycles 10, 727–37.CrossRef
Tett, S. F. B., Jones, G. S., Stott, P. A.et al. (2002). Estimation of natural and anthropogenic contributions to twentieth century temperature change. Journal of Geophysical Research 107, ACL 10-1–10-24.CrossRefGoogle Scholar
Tett, S. F. B., Stott, P. A., Allen, M. R., Ingram, W. J. and Mitchell, J. F. B. (1999). Causes of twentieth-century temperature change near the Earth's surface. Nature 399, 569–72.CrossRefGoogle Scholar
Thomas, C. D., Cameron, A., Green, R. E.et al. (2004). Extinction risk from climate change. Nature 427, 145–8.CrossRefGoogle ScholarPubMed
Thomas, J. A., Telfer, M. G., Roy, D. B.et al. (2004). Comparative losses of British butterflies, birds and plants and the global extinction crisis. Science 303, 1879–81.CrossRefGoogle ScholarPubMed
Thompson, L. G. (1995). Late glacial stage and Holocene tropical Ice core records from Huascaran, Peru. Science 269, 46–50.CrossRefGoogle ScholarPubMed
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Henderson, K. A. and Lin, P. N. (2000). The tropical ice core record of ENSO. In Diaz, H. F. and Markgraf, V. (eds.). El Niño and the Southern Oscillation: Multiscale Variability and Global and Regional Impacts. Cambridge, Cambridge University Press, pp. 325–56.CrossRefGoogle Scholar
Thompson, L. G., Mosley-Thompson, E., Davis, M. Eet al. (2002). Kilimanjaro ice core record: evidence of Holocene climate change in tropical Africa. Science 298, 598–2.CrossRefGoogle ScholarPubMed
Thorne, P. W., Jones, P. D., Tett, S. F. B.et al. (2003). Probable causes of late twentieth century tropospheric temperature trends. Climate Dynamics 21, 573–91.CrossRefGoogle Scholar
Thuiller, W., Araujo, M. B., Pearson, R. G.et al. (2004). Uncertainty in predictions of extinction risk. Nature 430, 34.CrossRefGoogle ScholarPubMed
Tilman, D. (2000). Causes, consequences and ethics of biodiversity. Nature 405, 208–11.CrossRefGoogle ScholarPubMed
Timmerman, A., Oberhuber, J., Bacher, A.et al. (1999). Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398, 694–7.CrossRefGoogle Scholar
Trenberth, K. E. (2000). Conceptual framework for changes of rainfall and extremes of the hydrological cycle with climate change. PAGES Newsletter 8 (1), 13; CLIVAR Exchanges 5 (1), 12–3.Google Scholar
Trenberth, K. E. (2004). Rural land-use change and climate. Nature 427, 213.CrossRefGoogle ScholarPubMed
Trenberth, K. E., Overpeck, J. T. and Solomon, S. (2004). Exploring drought and its implications for the future. EOS 85 (3) 27.CrossRefGoogle Scholar
Tricot, C. and Berger, A. (1988). Sensitivity of present-day climate to astronomical forcing. In Wanner, H. and Siegenthaler, U. (eds.). Long and Short-Term Variability of Climate. New York, Springer Verlag.CrossRefGoogle Scholar
Tsuda, A., Takeda, S., Saito, H.et al. (2003). A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom. Science 300, 958–61.CrossRefGoogle ScholarPubMed
Tudhope, A.,W., Chilcott, C. P., McCulloch, M. T.et al. (2001) Variability in the El Niño-southern oscillation through a glacial–interglacial cycle. Science 291, 1511–17.CrossRefGoogle ScholarPubMed
Turner, B. L. II, Kasperson, R. E., Matson, P. A.et al. (2003). A framework of vulnerability analysis in sustainability science. Proceedings of the National Academy of Science 100, 8074–9.CrossRefGoogle ScholarPubMed
Turner, B. L. II, Kasperson, R. E., Meyer, W. B.et al. (1990). Two types of global environmental change. Global Environmental Change 4, 15–22.Google Scholar
Tyson, P. D., Lee-Thorp, J., Holmgren, K. and Thackeray, J. F. (2002). Changing gradients of climate change in Southern Africa during the past millennium: implications for population movements. Climatic Change 52, 129–35.CrossRefGoogle Scholar
Tzedakis, C. (2003). Timing and duration of last interglacial conditions in Europe: a chronicle of changing chronology. Quaternary Science Reviews 22, 763–8.CrossRefGoogle Scholar
UKCIP (2002). Climate Change Scenarios for the United Kingdom. The UKCIP02 Briefing Report. At: www.ukcip.org.uk/ukcip.html.
Urban, F. E., Cole, J. E. and Overpeck, J. T. (2000). Influence of mean climate change on climate variability from a 155 year tropical Pacific coral record. Nature 407, 989–93.Google ScholarPubMed
Valdes, P. J. (2003). Holocene climate modelling. In McKay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 20–35.Google Scholar
Asselt, M. B.A and Rotmans, J. (2002). Uncertainty in integrated assessment modelling: from positivism to pluralism. Climatic Change 54, 75–105.CrossRefGoogle Scholar
Plassche, O., (2000). North Atlantic climate–ocean variations and sea-level in Long Island Sound, Connecticut, since 500 cal. yr. ADQuaternary Research 53, 89–97.CrossRefGoogle Scholar
Plassche, O., Borge, K. and Jong, A. F. M. (1998). Sea level-climate correlation during the past 1400 yr. Geology 26, 319–22.2.3.CO;2>CrossRefGoogle Scholar
Plassche, O., Schrier, G., Weber, S. L., Gehrels, W. R. and Wright, A. J. (2003). Sea-level variability in the northwest Atlantic during the past 1500 years: a delayed response to solar forcing. Geophysical Research Letters 30 (18). 1-1–1-4.Google Scholar
Geel, B., Buurman, J. and Waterbolk, H. T. (1996). Archaeological and palaeoecological indications of an abrupt climate change in the Netherlands and evidence for climatological teleconnections around 2650 BP. Journal of Quaternary Science 11, 451–60.3.0.CO;2-9>CrossRefGoogle Scholar
Geel, B., Plicht, J. and Renssen, J. (2002). Major Δ14C excursions during the late glacial and early Holocene: changes in ocean ventilation or solar forcing of climate change? Quaternary International 105, 71–76.CrossRefGoogle Scholar
Vecsei, A. and Berger, W. H. (2004). Increase of atmospheric CO2 during deglaciation: constraints on the coral reef hypothesis from patterns of deposition. Global Biogeochemical Cycles 18, GB1035.CrossRefGoogle Scholar
Vellinga, M. and Wood, R. A. (2002). Global climatic impacts of a collapse of the Atlantic Thermohaline circulation. Climatic Change 54, 251–67.CrossRefGoogle Scholar
Vellinga, M. and Wood, R. A. (2004). Timely detection of anthropogenic change in the Atlantic meridional overturning circulation. Geophysical Research Letters 31, L14203.CrossRefGoogle Scholar
Verburg, P., Hecky, R. E. and Kling, H. (2003). Ecological consequences of a century of warming in Lake Tanganyika. Science 301, 505–7.CrossRefGoogle ScholarPubMed
Verschuren, D. (2003). Global change: the heat on Lake Tanganyika. Nature 424, 731–2.CrossRefGoogle ScholarPubMed
Verschuren, D., Laird., K. R. and Cumming, B. F. (2000) Rainfall and drought in equatorial east Africa during the past 1100 years. Nature 403, 410–14.CrossRefGoogle ScholarPubMed
Vinnikov, K. and Grody, N. C. (2003). Global warming trend of mean tropospheric temperature observed by satellites. Science 302, 269–272.CrossRefGoogle ScholarPubMed
Vinther, B. M., Andersen, K. K. and Hansen, A. W. (2003). Improving the Gribraltar/Reykjavik NAO index. Geophysical Research Letters 30 (23), 8-1–8-4.CrossRefGoogle Scholar
Vitousek, P. M., Mooney, H. A., Lubchenco, J. and Melillo, J. (1997). Human domination of the Earth's ecosystems. Science 277, 494–9.CrossRefGoogle Scholar
Voelker, A. H. L. and workshop participants. (2002). Global distribution of centennial-scale records for marine isotope stage (MIS) 3: a database. Quaternary Science Reviews 21, 1185–1214.CrossRefGoogle Scholar
Voldoire, A. and Royer, J. F. (2004). Tropical deforestation and climate variability. Climate Dynamics 22, 857–74.CrossRefGoogle Scholar
Grafenstein, U., Eicher, U., Erlenkauser, , Ruch, P., Schwander, J. and Ammann, B. (2000). Isotope signature of the Younger Dryas and two minor oscillations at Gerzensee (Switzerland): palaeoclimatic and palaeolimnological interpretation based on bulk and biogenic carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology 159, 215–29.CrossRefGoogle Scholar
Grafenstein, U., Erlenkauser, H., Brauer, A., Jouzel, J. and Johnson, S. (1999). A mid-European decadal isotope-climate record from 15 500 to 5000 years BP. Science 284, 1654–7.CrossRefGoogle Scholar
Grafenstein, U., Erlenkeuser, H., Muller, J., Jouzel, J. and Johnsen, S. (1998). The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Climate Dynamics 14, 73–81.CrossRefGoogle Scholar
Storch, H. and Stehr, N. (2000). Climate change in perspective. Nature 405, 615.CrossRefGoogle Scholar
Vörösmarty, C. J. and Sahagian, D. (2000). Anthropogenic disturbance of the terrestrial water cycle. BioScience 50, 753–65.CrossRefGoogle Scholar
Vörösmarty, C. J., Green, P., Salisbury, J. and Lammers, R. B. (2000). Global water resources: vulnerability from climate change and population growth. Science 289, 284–8.CrossRefGoogle ScholarPubMed
Vörösmarty, C. J., Meybeck, M., Fekete, B.et al. (2003). Anthropogenic sediment retention: major global impact from registered river impoundments. Global and Planetary Change, 39, 169–90.CrossRefGoogle Scholar
Vörösmarty, C. J., Sharma, K., Fekete, B.et al. (1997). The storage and aging of continental run-off in large reservoir systems. Ambio 26, 210–9.Google Scholar
Vose, R. S., Karl, T. R., Easterling, D. R., Williams, C. N. and Menne, M. J. (2004). Impact of land-use change on climate. Nature 427, 213–4.CrossRefGoogle ScholarPubMed
Waelbroeck, C., Duplessy, J.-C., Michel, E., Labeyrie, L., Paillard, D. and Duprat, J. (2001). The timing of the last deglaciation in North Atlantic climate records. Nature 412, 724–7.CrossRefGoogle ScholarPubMed
Wagner, G., Beer, J., Laj, C.et al.(2000a) Chlorine-36 evidence for the Mono Lake event in the Summit GRIP ice core. Earth and Planetary Science Letters 181, 1–6.CrossRefGoogle Scholar
Wagner, G., Masarik, J., Beer, J.et al. (2000b). Reconstruction of the geomagnetic field between 20 and 60 kyr BP from cosmogenic radionuclides in the GRIP ice core. Nuclear Instruments and Methods in Physics Research B 172, 597–604.CrossRefGoogle Scholar
Waldhardt, R. (2003). Biodiversity and landscape – summary, conclusions and perspectives. Agriculture, Ecosystems and Environment 98, 305–9.CrossRefGoogle Scholar
Walker, K. J., Pywell, R. F., Warman, E. A., Fowbert, J. A., Bhogal, A. and Chambers, B. J. (2003). The importance of former land use in defining successful re-creation of lowland heath in southern England. Biological Conservation, 116, 289–303.CrossRefGoogle Scholar
Walliser, D. E., Jin, K., Kang, I.-S.et al. (2003). AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Climate Dynamics 21, 391–404.Google Scholar
Walsh, K. J. E., Nguyen, K.-C. and McGregor, J. L. (2003). Fine-resolution regional climate model simulations of the impact of climate change on tropical cyclones near Australia. Climate Dynamics 21, 47–56.Google Scholar
Walther, G.-R., Post, E., Convey, P.et al. (2002). Ecological responses to recent climate changes. Nature 416, 389–95.CrossRefGoogle Scholar
Wang, C. (2004). A modelling study on the climate impacts of black carbon aerosols. Journal of Geophysical Research 109 (D3), 10.Google Scholar
Wang, N., Thompson, L. G., Davis, M. E., Mosley-Thompson, E., Yao, T. and Pu, J. (2003). Influence of variations in NAO and SO on air temperature over the northern Tibetan Plateau as recorded by δ18O in the Malan ice core. Geophysical Research Letters 30 (22),.Google Scholar
Wang, X. and Key, J. R. (2003). Recent trends in Arctic surface, cloud and radiation properties from space. Science 299, 1725–7.CrossRefGoogle ScholarPubMed
Wang, Y. J., Cheng, H., Edwards, R. L.et al., (2001). A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, 2345–8.CrossRefGoogle ScholarPubMed
Wang, Z. and Mysak, L. A. (2002). Simulation of the last glacial inception and rapid ice sheet growth in the McGill Paleoclimate Model. Geophysical Research Letters 29, (23), 2102.CrossRefGoogle Scholar
Wanner, H. and Luterbacher, J. (2002). The LOTRED approach – a first step towards a ‘Palaeoreanalysis’ for Europe. PAGES Newsletter 10(3), 9–11.Google Scholar
Wardle, D. A., Walker, L. R. and Bardgett, R. D. (2004). Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305, 509–13.CrossRefGoogle ScholarPubMed
Wasson, R. J. and Claussen, M. (2002). Earth system models: a test using the mid-Holocene in the southern hemisphere. Quaternary Science Reviews 21, 819–24.CrossRefGoogle Scholar
Watson, A. J., Bakker, D. C. E., Ridgwell, A. J., Boyd, P. W. and Law, C. S., (2000). Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407, 730–3.CrossRefGoogle ScholarPubMed
Watson, R. T. and the core writing team (eds.) (2001). Climate Change 2001: Synthesis Report: Contribution of Working Groups I, II and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press.Google Scholar
Watts, W. A., Allen, J. R. M., Huntley, B. and Fritz, S. C. (1996). Vegetation history and climate of the last 15 000 years at Laghi di Monticchio, southern Italy. Quaternary Science Reviews 15, 113–32.CrossRefGoogle Scholar
Weaver, A. J., Saenko, O. A., Clark, P. U. and Mitrovica, J. X. (2003). Meltwater pulse 1A from Antarctica as a trigger of the Bølling–Allerød warm interval. Science 299, 1709–12.CrossRefGoogle ScholarPubMed
Weiss, H. (1997). Late third millennium abrupt climate change and social collapse in west Asia and Egypt. In Dalfes, H. N., Kukla, G. and Weiss, H. (eds.) Third Millennium BC Climate Change and Old World Collapse. NATO ASI Series, pp. 711–22.CrossRefGoogle Scholar
Weiss, H. and Bradley, R. S. (2001). What drives societal collapse? Science 291, 609–10.CrossRefGoogle ScholarPubMed
Weiss, H., Courtney, M.-A., Wetterstrom, W.et al. (1993). The genesis and collapse of third millennium north Mesopotamian civilization. Science 261, 995–1004.CrossRefGoogle ScholarPubMed
WGBU (1996). World in Transition: Ways Towards Global Environmental Solutions. Annual Report 1995, German Advisory Council on Global Change. Berlin, Springer Verlag.
White, R. and Engelen, G. (1997). Cellular automata as the basis for integrated dynamic regional modelling. Environment and Planning B: Planning and Design 24, 235–46.CrossRefGoogle Scholar
Whittaker, R. J., Willis, K. J. and Field, R. (2001). Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28, 453–70.CrossRefGoogle Scholar
Wigley, T. M. L. and Raper, S. C. B. (2001). Interpretation of high projections for global-mean warming. Science 293, 451–4.CrossRefGoogle ScholarPubMed
Wilkinson, C. R. (ed.) (2000). Status of Coral Reefs of the World 2000. Townsville, Australia, Global Coral Reef Monitoring Network, Australian Institute of Marine Science.Google Scholar
Willard, D. A., Cronin, T. M. and Verardo, S. (2003). Late-Holocene climate and ecosystem history from Chesapeake Bay sediment cores, USA. The Holocene 13, 201–14.CrossRefGoogle Scholar
Wilson, E. O. (1988). Biodiversity. Washington DC, National Academy of Science.Google Scholar
Wilson, K. (2000). Global warming and the spread of disease: the debate heats up. Trends in Ecology and Evolution 15, 488.CrossRefGoogle ScholarPubMed
Wintle, A. G. (1993). Luminescence dating of Aeolian sands: an overview. In Pye, K. (ed.). The Dynamics and Environmental Context of Aeolian Sedimentary Systems. London, Geological Society, Special Publication No. 72. pp. 49–58.Google Scholar
Wintle, A. G., Clarke, M. L., Musson, F. M., Orford, J. D. and Devoy, R. J. N. (1998). Luminescence dating of recent dunes on Inch Spit, Dingle Bay, southwest Ireland. The Holocene 8, 331–9.CrossRefGoogle Scholar
Wohlfart, J., Harrison, S. P. and Braconnot, P. (2004). Synergistic feedbacks between open ocean and vegetation on mid- and high-latitude climates during the mid-Holocene. Climate Dynamics 22, 223–38.CrossRefGoogle Scholar
Wolff, E. W., Moore, J. C., Clausen, H. B. and Hammer, C. U. (1997). Climatic implications of background acidity and other chemistry derived from electrical studies of the Greenland Ice Core Project ice core. Journal of Geophysical Research 102, 26325–32.CrossRefGoogle Scholar
Wolfram, S. (2002). A new kind of science. Champaign, IL, Wolfram Media.Google Scholar
Woodroffe, C. D., Beech, M. R. and Gagan, M. K. (2003). Mid–Late Holocene El Niño variability in the equatorial Pacific from coral microatolls. Geophysical Research Letters 30 (7), 101–4.CrossRefGoogle Scholar
Woods, J. J., Schloss, J. A., Mosteller, J. et al. (2000). Water level decline in the Ogallala Aquifer. A report on KWO-KGS contract 99–132, Kansas Geological Survey open-file report 2000–29B (v2.0). At /www.kgs.ukans/HighPlains/2000-29B/Decdir.htm.
World Resources Institute. (2000). World Resources: People and Ecosystems: The Fraying Web of Life. Oxford, Oxford University Press.
Wright, H. E. and Thorpe, J. (2003). Climatic change and the origin of agriculture in the Near East. In Mackay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 49–62.Google Scholar
Wu, H., Guo, Z. and Peng, C. (2003). Land use induced changes of organic carbon storage in soils of China. Global Change Biology 9, 305–15.CrossRefGoogle Scholar
Wuebbles, D. J. and Hayhoe, K. (2002). Atmospheric methane and global change. Earth Science Reviews 57, 177–210.CrossRefGoogle Scholar
Wuebbles, D. J., Jain, A., Edmonds, J., Harvey, D. and Hayhoe, K. (1999). Global change: state of the science. Environmental Pollution 100, 57–86.CrossRefGoogle ScholarPubMed
Wunsch, C. (2004). Quantitative estimate of the Milankovitch-forced contribution to observed Quaternary climate change. Quaternary Science Reviews, 23, 1001–12.CrossRefGoogle Scholar
Xiao, J. L., Porter, S. C., An, Z. S., Kumai, H. and Yoshikawa, S. (1995). Grain size of quartz as an indicator of winter monsoon strength on the loess plateau of central China during the last 130 000 yr. Quaternary Research 43, 22–9.CrossRefGoogle Scholar
Xu, L. (1999). From GCMs to river flow: a review of downscaling methods and hydrological modelling approaches. Progress in Physical Geography 23, 229–39.CrossRefGoogle Scholar
Xu, Q. (2001). Abrupt change of mid-summer climate in central east China by the influence of atmospheric pollution. Atmospheric Environment 35, 5029–40.CrossRefGoogle Scholar
Yasuda, Y. (ed.) (2002). The origins of pottery and agriculture. New Delhi, Lustre Press.Google Scholar
Ye, D., Dong, W. and Jiang, Y. (2003). The northward shift of climatic belts in China during the last 50 years. IGBP Global Change Newsletter 53, 7–9.Google Scholar
Yevich, R. and Logan, J. A. (2003). An assessment of biofuel use and burning of agricultural waste in the developing world. Global Biogeochemical 17 (4), 6-1–6-21.Google Scholar
Yokohama, Y., Deckker, P. D., Lambeck, K., Johnston, P. and Fifield, L. K. (2001). Sea-level at the last glacial maximum: evidence from northwestern Australia to constrain ice volumes for oxygen isotope stage 2. Palaeogeography, Palaeoclimatology, Palaeoecology 165, 281–97.CrossRefGoogle Scholar
Yu, Z. and Ito, E. (1999). Possible solar forcing of century-scale drought frequency in the northern Great Plains. Geology 27, 263–6.2.3.CO;2>CrossRefGoogle Scholar
Zhang, K., Douglas, B. C. and Leatherman, S. P. (2003). Global warming and coastal erosion. Climatic Change 64, 41–58.CrossRefGoogle Scholar
Zielinski, G. A. (2000). Use of paleo-records in determining variability within the volcanism-climate system. Quaternary Science Reviews 19, 417–38.CrossRefGoogle Scholar
Zielinski, G. A., Mayewski, P. A., Meeker, L. D.et al. (1994). Record of explosive volcanism since 70 000 BC from the GISP 2 Greenland ice core and its implications for the volcano-climate system. Science 267, 256–8.Google Scholar
Zillen, L. (2003). Century-scale Holocene geomagnetic field variations and apparent polar wander paths reconstructed from varved lake sediments in Sweden. In: Zillen, L.Setting the Holocene Clock Using Varved Lake Sediments in Sweden. Lundqua Thesis 50. Lund University.Google Scholar
Zillen, L. M., Wastegard, S. and Snowball, I. F. (2002). Calendar year ages of three mid-Holocene tephra layers identified in varved lake sediments in west central Sweden. Quaternary Science Reviews 21, 1583–91.CrossRefGoogle Scholar
Zolitschka, B. (1998). A 14 000 year sediment yield record from western Germany based on annually laminated sediments. Geomorphology 22, 1–17.CrossRefGoogle Scholar
Zolitschka, B. (2003). Dating based on freshwater- and marine-Laminated sediments. In McKay, A., Battarbee, R. W., Birks, H. J. B. and Oldfield, F. (eds.). Global Change in the Holocene. London, Arnold, pp. 92–106.Google Scholar
Zong, Y. and Chen, X. (2000). The 1998 flood on the Yangtze, China. Natural Hazards 22, 165–84.CrossRefGoogle Scholar
Carbon Dioxide Information Centerwww.cdiac.esd.ornl.gov/trends/trends.htm
Department of Environment, Food and Rural Affairs, UKwww.defra.gov.uk/environment/climatechange/
Global Change Data and Information System/US Global Change Research Program Gateway to Global Change Data and Informationwww.globalchange.gov/
Global Change Master Directorywww.gcmd.gsfc.nasa.gov/
The National Academies – Global Change Websitewww.dels.nas.edu/ccgc/
UK Riverswww.ukrivers.net/climate.html
US Environmental Protection Agencywww.epa.gov/globalwarming
US Global Change Research Information Officewww.gcrio.org
US National Science Foundation – Global Change Research Programswww.geo.nsf.gov/egch/
WGBU German Advisory Council of Global Changewww.wbgu.de/wbgu_home_engl.html
UK Climate Impacts Programmewww.ukcip.org.uk/
Capital Research Institutewww.capitalresearch.org
Center for the Study of Carbon Dioxide and Global Changewww.co2science.org
Competitive Enterprise Institutewww.cei.org
Cooler Heads Coalitionwww.globalwarming.org/
George Marshall Institutewww.marshall.org
Global Climate Coalitionwww.globalclimate.org/index.htm
Global Warming Information Centerwww.nationalcenter.org/Kyoto.html
John Dalywww.johndaly.com/
Lavoisier Groupwww.lavoisier.com.au
Philip Stottwww.probiotech.fsnet.co.uk/
Science and Environmental Policy Project (SEPP)www.sepp.org
Skepticism.net (with many links)www.skepticism.net/global_warming/
Skepticism.Netwww.skepticism.net/faq/environment/global_warming/

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Frank Oldfield, University of Liverpool
  • Book: Environmental Change
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139165266.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Frank Oldfield, University of Liverpool
  • Book: Environmental Change
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139165266.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Frank Oldfield, University of Liverpool
  • Book: Environmental Change
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139165266.018
Available formats
×