Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-30T01:15:27.672Z Has data issue: false hasContentIssue false

The terrestrial invertebrate fauna of the Svalbard archipelago in a changing world: history of research and challenges

Published online by Cambridge University Press:  01 February 2013

Stephen James Coulson*
Affiliation:
Department of Arctic Biology, University Centre in Svalbard, PO box 156, N-9171 Longyearbyen, Svalbard, Norway
*
1Corresponding author (e-mail: steve.coulson@unis.no).

Abstract

The High Arctic represents a unique environment, an environment from where knowledge is limited and which is currently experiencing rapid change. The archipelago of Svalbard in the European High Arctic possesses a terrestrial and freshwater invertebrate fauna that is distinctive and diverse. However, the majority of studies concentrate on the fauna of the comparatively mild west coast. Very few investigations of the colder east coast exist. Furthermore, scientific investigations are relatively recent. Scientific records of the terrestrial invertebrate fauna begin in the mid-19th century with species inventories and community descriptions but experimental field-based studies and physiological investigations did not commence until the 1980s. Some 570 articles consider this fauna, 54% of which have appeared since 1990. There is hence a dramatic and rapid increase in our understanding, which is not only improving our comprehension of Arctic ecosystem functioning but also providing a baseline for environmental change studies. Due to a largely pristine environment, a political focus and relative ease of logistics, Svalbard is set to become a focus of such studies. This article considers the state of knowledge of the terrestrial and freshwater invertebrate fauna of Svalbard, current research, and discusses the threats to the distinctive communities.

Résumé

Le Haut-Arctique représente un environnement unique qui reste mal étudié et qui connaît actuellement des modifications rapides. L'archipel de Svalbard dans l'extrême Grand Nord européen possède des faunes d'invertébrés terrestres et aquatiques d'eau douce particulières et diversifiées. La plupart des études, cependant, s'intéressent à la faune de la côte occidentale dont le climat est relativement doux. Il existe très peu de travaux faits sur la côte orientale à climat plus froid. Ces travaux scientifiques sont aussi relativement récents. De plus, les études scientifiques de la faune invertébrée terrestre ont débuté au milieu du 19e siècle avec des inventaires d'espèces et des descriptions de communautés, mais les études expérimentales basées sur les travaux de terrain et les recherches physiologiques n'ont commencé que durant les années 1980. Il y a environ 570 articles qui traitent de cette faune, dont 54% ont paru depuis 1990. Il se produit donc un accroissement spectaculaire et rapide des connaissances qui est non seulement en train d'améliorer notre compréhension du fonctionnement des écosystèmes arctiques, mais qui fournit de plus les renseignements de base pour les études sur les changements environnementaux. À cause de son milieu en grande partie non altéré, de son intérêt politique et de la facilité relative de la logistique, Svalbard est destiné à devenir le point de convergence de telles études. Notre article traite de l’état des connaissances des faunes d'invertébrés terrestres et aquatiques d'eau douce de Svalbard, ainsi que des études courantes et il discute des menaces aux communautés particulières de l'archipel.

Type
Review
Copyright
Copyright © Entomological Society of Canada 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, B.J., Bardgett, R.D., Ayres, E., Wall, D.H., Aislabie, J., Bamforth, S., et al. 2006. Diversity and distribution of Victoria Land biota. Soil Biology and Biochemistry, 38: 30033018.CrossRefGoogle Scholar
Alsos, I.G., Arnesen, G., Sandbakk, B.E., Elven, R. 2012. The flora of Svalbard [online]. Available from http://www.svalbardflora.net [accessed May 19, 2012].Google Scholar
Alsos, I.G., Eidesen, P.B., Ehrich, D., Skrede, I., Westergaard, K., Jacobsen, G.H., et al. 2007. Frequent long-distance plant colonization in the changing Arctic. Science, 316: 16011608.CrossRefGoogle ScholarPubMed
Arctic Climate Impact Assessment 2004. Impacts of a warming Arctic: Arctic climate impact assessment. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
Arctic Monitoring and Assessment Programme (AMAP) 2010. AMAP assessment 2009: persistent organic pollutants (POPs) in the Arctic. Science of the Total Environment Special Issue, 408: 28513051.Google Scholar
Arctic Monitoring and Assessment Programme (AMAP) 2011a. SWIPA 2011: snow, water, ice and permafrost in the Arctic. AMAP, Oslo, Norway.Google Scholar
Arctic Monitoring and Assessment Programme (AMAP) 2011b. AMAP assessment 2011: mercury in the Arctic. AMAP, Oslo, Norway.Google Scholar
Arlov, T.B. 2003. Svalbards Historie. Tapir Academic Press, Trondheim, Norway.Google Scholar
Ávila-Jiménez, M.L.Coulson, S.J. 2011a. Can snow depth predict the distribution of the High Arctic aphid Acyrthosiphon svalbardicum (Hemiptera: Aphididae) on Spitsbergen? BMC Ecology, 11: 25.CrossRefGoogle ScholarPubMed
Ávila-Jiménez, M.L.Coulson, S.J. 2011b. A Holarctic biogeographical analysis of the Collembola (Arthropoda, Hexapoda) unravels recent post-glacial colonization patterns. Insects, 2: 273296.CrossRefGoogle ScholarPubMed
Ávila-Jiménez, M.L., Gwiazdowicz, D.G., Coulson, S.J. 2011. On the gamasid (Acari: Parasitiformes) mite fauna of Svalbard: a revised checklist of a High Arctic archipelago. Zootaxa, 3091: 3341.CrossRefGoogle Scholar
Bardgett, R. 2005. The biology of soil. Oxford University Press, Oxford, United Kingdom.CrossRefGoogle Scholar
Bayartogtokh, B., Schatz, H., Ekrem, T. 2011. Distribution of the soil mites of Svalbard with redescriptions of three known species (Acari: Oribatida). International Journal of Acarology, 37: 467484.CrossRefGoogle Scholar
Bindesbol, A.M., Bayley, M., Damgaard, C., Holmstrup, M. 2009. Impacts of heavy metals, polyaromatic hydrocarbons, and pesticides on freeze tolerance of the earthworm Dendrobaena octaedra. Environmental Toxicology and Chemistry, 28: 23412347.CrossRefGoogle ScholarPubMed
Block, W., Webb, N.R., Coulson, S.J., Hodkinson, I.D. 1994. Thermal adaptation in a High Arctic collembolan Onychiurus arcticus. Journal of Insect Physiology, 40: 715722.CrossRefGoogle Scholar
Boheman, C.H. 1865. Bidrag til kännendom om Spetsbergens insektfauna. Öfversikt af Konglige Vetenskaps Akademiens Förhandlingar. B, 22: 536577.Google Scholar
Bokhorst, S., Phoenix, G.K., Bjerke, J.W., Callaghan, T.V., Huyer-Brugman, F., Berg, M.P. 2012. Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa. Global Change Biology, 18: 11521162.CrossRefGoogle Scholar
Briones, M.J.I., Ostle, N.J., McNamara, N.P., Poskitt, J. 2008. Functional shifts of grassland soil communities in response to soil warming. Soil Biology and Biochemistry, 41: 315322.CrossRefGoogle Scholar
Brussaard, L., Pulleman, M.M., Ouédrago, E., Mando, A., Six, J. 2007. Soil fauna and soil function in the fabric of the food web. Pedobiologia, 50: 447462.CrossRefGoogle Scholar
Carlsson, A.M., Wilson, K., Irvine, R.J., Piertney, S.B., Halvorsen, O., Coulson, S.J., et al. 2012. Disease transmission in an extreme environment: nematode parasites infect reindeer during the Arctic winter. International Journal of Parasitology, 42: 789795.CrossRefGoogle Scholar
Chapin, F.S. III, Berman, M., Callaghan, T.C., Convey, P., Crépin, A.S., Danell, K., et al. 2005. Polar systems. In Ecosystems and human well-being: current state and trends, Volume 1. Edited by R. Hassan, R. Scholes, and N. Ash. Island Press, Washington, United States of America. Pp. 717743.Google Scholar
Cooper, E.J. 2011. Polar desert vegetation and plant recruitment in Murchisonfjord, Nordaustlandet, Svalbard. Geografiska Annaler Series A, 93: 243252.CrossRefGoogle Scholar
Coulson, S.J. 2007a. The terrestrial and freshwater invertebrate fauna of the High Arctic archipelago of Svalbard. Zootaxa, 1448: 4158.CrossRefGoogle Scholar
Coulson, S.J. 2007b. On the occurrence of Oryzaephilus mercator (Fauvel, 1889) (Coleoptera: Silvanidae) in Svalbard, Norway. Norwegian Journal of Entomology, 54: 2122.Google Scholar
Coulson, S.J. 2012. Checklist of the terrestrial and freshwater invertebrate fauna of Svalbard [online]. Available from http://www.unis.no/35_STAFF/staff_webpages/biology/steve_coulson/default.htm [accessed 12 December 2012].Google Scholar
Coulson, S.J., Ávila-Jiménez, M.L., Fjellberg, A., Snazell, R., Gwiazdowicz, D.J. 2011. On the Collembola, Araneae and Gamasida from the Kinnvika region of Nordaustlandet, Svalbard. Geografiska Annaler, 93: 253257.CrossRefGoogle Scholar
Coulson, S.J.Birkemoe, T. 2000. Long term cold tolerance in Arctic invertebrates: recovery after four years at below −20 °C. Canadian Journal of Zoology, 78: 20552058.CrossRefGoogle Scholar
Coulson, S.J., Fjellberg, A., Gwiazdowicz, D.J., Lebedeva, N.V., Melekhina, E.N., Solhøy, T., et al. 2013. Introduction of invertebrates into the High Arctic via imported soils: the case of Barentsburg in the Svalbard. Biological Invasions, 15: 15 . doi:10.1007/s10530-012-0277-y.CrossRefGoogle Scholar
Coulson, S.J., Fjellberg, A., Gwiazdowicz, D.J., Lebedeva, N.V., Melekhina, E.N., Solhøy, T., et al. In press. The invertebrate fauna of the anthropogenic soils in the High Arctic settlement of Barentsburg; Svalbard. Polar Research.Google Scholar
Coulson, S.J., Gabrielsen, G.W., Hübner, C., Loonen, M.J.J.E. 2010. Terrestrial ecosystems – a flagship programme for Ny-Ålesund. Brief Report Series 020. Norwegian Polar Institute, Tromsø, Norway.Google Scholar
Coulson, S.J., Hodkinson, I.D., Strathdee, A.T., Bale, J.S., Block, W., Worland, M.R., et al. 1993. Simulated climate change: the interaction between vegetation type and microhabitat temperatures at Ny Ålesund, Svalbard. Polar Biology, 13: 6770.CrossRefGoogle Scholar
Coulson, S.J., Hodkinson, I.D., Strathdee, A.T., Block, W., Webb, N.R., Bale, J.S., et al. 1995. Thermal environments of Arctic soil organisms during winter. Arctic and Alpine Research, 27: 365371.CrossRefGoogle Scholar
Coulson, S.J., Hodkinson, I.D., Webb, N.R., Block, W., Bale, J.S., Strathdee, A.T., et al. 1996. Effects of experimental temperature elevation on High-Arctic soil microarthropod populations. Polar Biology, 16: 147153.CrossRefGoogle Scholar
Coulson, S.J., Leinaas, H.P., Ims, R.A., Søvik, G. 2000. Experimental manipulation of the winter surface ice layer: the effects on a High Arctic soil microarthropod community. Ecography, 23: 299314.CrossRefGoogle Scholar
Coulson, S.J.Refseth, D. 2004. The terrestrial and freshwater invertebrate fauna of Svalbard (and Jan Mayen). In A catalogue of the terrestrial and marine animals of Svalbard. Skrifter 201. Edited by P. Prestrud, H. Strøm, and H. Goldman. Norwegian Polar Institute, Tromsø, Norway. Pp. 57122.Google Scholar
D'Andrea, L., Broennimann, O., Kozlowski, G., Guisan, A., Morin, X., Keller-Senften, J., et al. 2009. Climate change, anthropogenic disturbance and the northward range expansion of Lactuca serriola (Asteraceae). Journal of Biogeography, 36: 15731587.CrossRefGoogle Scholar
De Smet, W.H. 1993. Report on rotifers from Barentsøya, Svalbard (78°30′N). Fauna Norvegica, Series A, 14: 126.Google Scholar
De Smet, W.H., Van Rompu, E.A., Beyens, L. 1988. Contribution to the rotifers and aquatic Tardigrada of Edgeøya (Svalbard). Fauna Norvegica Series A, 9: 1930.Google Scholar
Dollery, R., Hodkinson, I.D., Jónsdóttir, I.S. 2006. Impact of warming and timing of snow melt on soil microarthropod assemblages associated with Dryas-dominated plant communities on Svalbard. Ecography, 29: 111119.CrossRefGoogle Scholar
Eckerstorfer, M.Christiansen, H.H. 2011. Topographical and meteorological control on snow avalanching in the Longyearbyen area, central Svalbard 2006–2009. Geomorphology, 134: 186196.CrossRefGoogle Scholar
Elven, R.Elvebakk, A. 1996. Part 1. Vascular plants. In A catalogue of Svalbard plants, fungi, algae, and cyanobacteria. Edited by A. Elvebakk and P. Prestrud. Norsk Polarinstitutt, Oslo, Norway. Pp. 955.Google Scholar
Emerson, B.C., Cicconardi, F., Fanciulli, P.P., Shaw, P.J.A. 2011. Phylogeny, phylogeography, phylobetadiversity and the molecular analysis of biological communities. Philosophical Transactions of the Royal Society Series B, 366: 23912402.CrossRefGoogle ScholarPubMed
European Commission. 2012. Research and innovation infrastructures [online]. Available from http://ec.europa.eu/research/infrastructures/index_en.cfm?pg=esfri [accessed May 19, 2012].Google Scholar
Evenset, A.Christensen, G.N. 2011. Environmental impacts of expedition cruise ship traffic around Svalbard. Akvaplan-niva report number 4823–1. Akvaplan-niva AS, Tromsø, Norway.Google Scholar
Fisker, K.V., Sorensen, J.G., Holmstrup, M. 2011. No costs on freeze tolerance in genetically copper adapted earthworm populations (Dendrobaena octaedra). Comparative Biochemistry and Physiology C, 154: 204207.Google ScholarPubMed
Fjellberg, A. 1997. Collembola from Nordaustlandet, Svalbard. Fauna Norvergica Series B, 44: 7175.Google Scholar
Forbes, B.C. 1995. Effects of surface disturbance on the movement of native and exotic plants under a changing climate. Ecosystems Research Report 10. European Commission, Brussels, Belgium. Pp. 209219.Google Scholar
Franzen, M.Ockinger, E. 2012. Climate-driven changes in pollinator assemblages during the last 60 years in an Arctic mountain region in northern Scandinavia. Journal of Insect Conservation, 16: 227238.CrossRefGoogle Scholar
Gataullin, V., Mangerud, J., Svendsen, J.I. 2001. The extent of the Late Weichselian ice sheet in the southeastern Barents Sea. Global Planet Change, 31: 453474.CrossRefGoogle Scholar
Greenslade, P.Convey, P. 2012. Exotic Collembola on subantarctic islands: pathways, origins and biology. Biological Invasions, 14: 405417.CrossRefGoogle Scholar
Gwiazdowicz, D.J., Solhøy, T., Coulson, S.J., Lebedeva, N., Melekhina, E. 2012. Vulgarogamasus immanis (Acari; Mesostigmata) in Svalbard. Polish Polar Research, 33: 3539.CrossRefGoogle Scholar
Hagen, D., Eide, D.E., Erikstad, L., Coulson, S., Andersen, R. 2010. Kulldrift i Lunckefjell på Svalbard. Konsekvensutredning for tema landskap, vegetasjon og planteliv, dyreliv og geologiske forekomster/fossiler. Norsk Institutt for Naturforskning Report 521. Norsk Institutt for Naturforskning, Trondheim, Norway.Google Scholar
Hagen, D., Eide, N.E., Fangel, K., Flyen, A.C., Vistad, O.I. 2012. Sårbarhetsvurdering og bruk av lokaliteter på Svalbard. Sluttrapport fra forskningsprosjektet “Miljøeffekter av ferdsel”. Norsk Institutt for Naturforskning Report 785. Norsk Institutt for Naturforskning, Trondheim, Norway.Google Scholar
Hanssen-Bauer, I., Kristensen Solås, M., Steffensen, E.L. 1990. The climate of Spitsbergen. Norwegian Meteorological Institute, Oslo, Norway.Google Scholar
Harrisson, P.M., Rothery, P., Block, W. 1991. Drying processes in the Antarctic collembolan Cryptopygus antarcticus (Willem). Journal of Insect Physiology, 37: 883890.CrossRefGoogle Scholar
Heikinheimo, O. 1968. Notes on the arthropod fauna of Spitsbergen. II: 10. The aphid fauna of Spitsbergen. Annals Entomologica Fennica, 34: 8293.Google Scholar
Henttonen, H., Fuglei, E., Gower, C.N., Haukisalmi, V., Ims, R.A., Niemimaa, J., et al. 2001. Echinococcus multilocularis on Svalbard: introduction of an intermediate host has enabled the local life-cycle. Parasitology, 12: 547552.Google Scholar
Hertzberg, K.Leinaas, H.P. 1998. Drought stress as a mortality factor in two pairs of sympatric species of Collembola at Spitsbergen, Svalbard. Polar Biology, 19: 302306.CrossRefGoogle Scholar
Hisdal, V. 1985. Geography of Svalbard. Norwegian Polar Institute, Oslo, Norway.Google Scholar
Hodkinson, I.D. In press. Terrestrial and freshwater invertebrates. In The Arctic biodiversity assessment. Conservation of Arctic Flora and Fauna International Secretariat, Akureyri, Iceland.Google Scholar
Hodkinson, I.D., Coulson, S.J., Webb, N.R. 2003. Community assembly on proglacial chronosequences in the High Arctic: vegetation and soil development in north west Svalbard. Journal of Ecology, 91: 651653.CrossRefGoogle Scholar
Holmgren, A.E. 1869. Bidrag till kannedomen om Beeren Eilands och Spetsbergens insekt fauna. Kungliga Svenska Vetenskapsakademiens Handlingar, 8: 156.Google Scholar
Holmstrup, M., Aubail, A., Damgaard, C. 2008. Exposure to mercury reduces cold tolerance in the springtail Folsomia candida. Comparative Biochemistry and Physiology Series C, 148: 172177.Google ScholarPubMed
Holmstrup, M., Bayley, M., Sjursen, H., Højer, R., Bossen, S., Friis, K. 2000. Interactions between environmental pollution and cold tolerance of soil invertebrates: a neglected field of research. Cryo-letters, 21: 309314.Google ScholarPubMed
Høye, T.T.Forchhammer, M.C. 2008. Phenology of High-Arctic arthropods: effects of climate on spatial, seasonal and inter-annual variation. Advances in Ecological Research, 40: 299324.CrossRefGoogle Scholar
Høye, T.T.Hammel, J.U. 2010. Climate change and altitudinal variation in sexual size dimorphism or arctic wolf spiders. Climate Research, 41: 259265.CrossRefGoogle Scholar
Hughes, K.A.Convey, P. 2010. The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Global Environmental Change, 20: 96112.CrossRefGoogle Scholar
Hughes, K.A., Convey, P., Maslen, N.R., Smith, R.I.L. 2010. Accidental transfer of non-native soil organisms into Antarctica on construction vehicles. Biological Invasions, 12: 875891.CrossRefGoogle Scholar
Hullé, M., Bonhomme, J., Maurice, D., Simon, J.C. 2008. Is the life cycle of High Arctic aphids adapted to climate change? Polar Biology, 31: 10371042.CrossRefGoogle Scholar
Humlum, O., Christiansen, H.H., Juliussen, H. 2007. Avalanche-derived rock glaciers in Svalbard. Permafrost and Periglacial Processes, 18: 7588.CrossRefGoogle Scholar
Isard, S.A., Schaetzl, R.J., Andresen, J.A. 2007. Soils cool as climate warms in the great lakes region: 1951–2000. Annals of the Association of American Geographers, 97: 467476.CrossRefGoogle Scholar
Jaedicke, C., Thiis, T., Sandvik, A.D., Gjessing, Y. 2000. Drifting snow in complex terrain – comparison of measured snow distribution and simulated wind field. In Snow engineering: recent advances and developments. Edited by E. Hjorth-Hansen, I. Holand, S. Løset and H. Norem. Balkerna, Rotterdam, The Netherlands. Pp. 6573.Google Scholar
Jónsdóttir, I.S. 2005. Terrestrial ecosystems on Svalbard: heterogeneity, complexity and fragility from an Arctic island perspective. Proceedings of the Royal Irish Academy, 105: 155165.CrossRefGoogle Scholar
Kaczmarek, L., Zawierucha, K., Smykla, J., Michalczyk, L. 2012. Tardigrada of the Revdalen (Spitsbergen) with the descriptions of two new species: Bryodelphax parvuspolaris (Heterotardigrada) and Isohypsibius coulsoni (Eutardigrada). Polar Biology, 35: 10131026.CrossRefGoogle Scholar
Kevan, P.G. 1975. Sun-tracking solar furnaces in High Arctic flowers: significance for pollination and insects. Science, 189: 723726.CrossRefGoogle ScholarPubMed
Konestabo, H.S., Michelsen, A., Holmstrup, M. 2007. Responses of springtail and mite populations to prolonged periods of soil freeze–thaw cycles in a sub-arctic ecosystem. Applied Soil Biology, 36: 136146.CrossRefGoogle Scholar
Krumpàl, M., Cyprich, D., Zejda, J., Ambros, M. 1991. The occurance of field vole (Microtus arvalis Pallas 1778) and its acarofauna on Spitsbergen (Svalbard). Biologia, 46: 881885.Google Scholar
Lebedeva, N.V.Lebedev, V.D. 2008. Transport of oribatid mites to the polar areas by birds. In Integrative Acarology: Proceedings of the 6th European Congress. Edited by M. Bertrand, S. Kreiter, K.D. McCoy, A. Migeon, M. Navajas, M.S. Tixier, and L. Vial. European Association of Acarologists, Vienna, Austria. Pp. 359367.Google Scholar
Liška, J.Soldán, Z. 2004. Alien vascular plants recorded from the Barentsburg and Pyramiden settlements, Svalbard. Preslia, 76: 279290.Google Scholar
Mace, G., Masundire, H., Baillie, J., Ricketts, T., Brooks, T., Hoffmann, M., et al. 2005. Biodiversity. In Ecosystems and human well-being: current state and trends, Volume 1. Edited by R. Hassan, R. Scholes, and N. Ash. Island Press, Washington, District of Columbia, United States of America. Pp. 77122.Google Scholar
Majka, C.G.Klimaszewski, J. 2008. Introduced Staphylinidae (Coleoptera) in the Maritime Provinces of Canada. The Canadian Entomologist, 140: 4872.CrossRefGoogle Scholar
Maraldo, K.Holmstrup, H. 2009. Enchytraeids in a changing climate: a mini-review. Pedobiologia, 53: 161167.CrossRefGoogle Scholar
Ministry of Justice and the Police 2009. Stortingsmeldning number 22, Svalbard (2008–2009), Norwegian Government Stoltenberg II. Department Public Publications, Oslo, Norway.Google Scholar
Norwegian Meteorological Institute 2012. Historical meteorological observations [online]. Available from http://retro.met.no/observasjoner/svalbard/ [accessed May 19, 2012].Google Scholar
Odasz, A.M. 1994. Nitrate reductase-activity in vegetation below an arctic bird cliff, Svalbard, Norway. Journal of Vegetation Science, 5: 913920.CrossRefGoogle ScholarPubMed
Potts, T.Hoel, A.H. 2011. Integrated coastal and estuarine management in Arctic coastal systems. In Treatise on estuarine and coastal science. Volume 11. Edited by E. Wolanski and D.S. McLusky. Elsevier Science, Burlington, Massachusetts, United States of America. Pp. 265288.CrossRefGoogle Scholar
Reich, P.B., Tilman, D., Isbell, F., Mueller, K., Hobbie, S.E., Flynn, D.F.B., et al. 2012. Impacts of biodiversity loss escalate through time as redundancy fades. Science, 336: 589592.CrossRefGoogle ScholarPubMed
Rennert, K.J., Roe, G., Putkonen, J., Bitz, C.M. 2009. Soil thermal and ecological impacts of rain on snow events in the circumpolar Arctic. Journal of Climate, 22: 23012315.CrossRefGoogle Scholar
Rogers, J.C., Yang, L., Li, L. 2005. The role of Fram Strait winter cyclones on sea ice flux and on Spitsbergen air temperatures. Geophysical Research Letters, 32: L06709 . doi:10.1029/2004GL022262.CrossRefGoogle Scholar
Rotschky, G., Schuler, T.V., Haarpaintner, J., Kohler, J., Isaksson, E. 2011. Spatio-temporal variability of snowmelt across Svalbard during the period 2000–08 derived from QuikSCAT/SeaWinds scatterometry. Polar Research, 30: 5963.CrossRefGoogle Scholar
Rundgren, S. 2007. Lumbricidae in Iceland. Insect Systematics and Evolution Supplement, 61: 121159.Google Scholar
Schäffer, S., Pfingstl, T., Koblmüller, S., Winkler, K.A., Sturmbauer, C., Krisper, G. 2010. Phylogenetic analysis of European Scutovertex mites (Acari, Oribatida, Scutoverticidae) reveals paraphyly and cryptic diversity: a molecular genetic and morphological approach. Molecular Phylogenetics and Evolution, 55: 677688.CrossRefGoogle ScholarPubMed
Scheffrahn, R.H., Krecek, J., Ripa, R., Luppichini, P. 2009. Endemic origin and vast anthropogenic dispersal of the West Indian dry wood termite. Biological Invasions, 11: 787799.CrossRefGoogle Scholar
Sjursen, H.Holmstrup, M. 2004. Cold and drought stress in combination with pyrene exposure: studies with Protaphorura armata (Collembola: Onychiuridae). Ecotoxicology and Environmental Safety, 57: 145152.CrossRefGoogle ScholarPubMed
Sjursen, H., Michelsen, A., Holmstrup, M. 2005. Effects of freeze–thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil. Applied Soil Ecology, 28: 7993.CrossRefGoogle Scholar
Skogseth, R., Haugin, P.M., Jakobsen, M. 2005. Watermass transformations in Storfjorden. Continental Shelf Research, 25: 667695.CrossRefGoogle Scholar
Solhøy, T. 1981. Terrestrial invertebrates of the Faroe Islands IV. Slugs and snails (Gastropoda): checklist distribution and habitats. Fauna Norvegica Series A, 2: 1427.Google Scholar
Speight, M.R., Hunter, M.D., Watt, A.D. 1999. Ecology of insects: concepts and applications. Blackwell Science Ltd, Oxford, United Kingdom.Google Scholar
Stekolshchikov, A.V.Buga, S.V. 2009. Aphid fauna of the Arctic and subarctic regions. Redia, 92: 101104.Google Scholar
Strathdee, A.T.Bale, J.S. 1995. Factors limiting the distribution of Acyrthosiphon svalbardicum (Hemiptera: Aphididae) on Spitsbergen. Polar Biology, 15: 375380.CrossRefGoogle Scholar
Strathdee, A.T., Bale, J.S., Block, W.C., Webb, N.R., Hodkinson, I.D., Coulson, S.J. 1993. Extreme adaptive life-cycle in a High Arctic aphid, Acyrthosiphon svalbardicum. Ecological Entomology, 18: 254258.CrossRefGoogle Scholar
Stroeve, J.C., Serreze, M.C., Holland, M.M., Kay, J.E., Malanik, J., Barrett, A.P. 2012. The Arctic's rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110: 10051027.CrossRefGoogle Scholar
Summerhayes, V.S.Elton, C.S. 1923. Contributions to the ecology of Spitsbergen and Bear Island. Journal of Ecology, 11: 214286.CrossRefGoogle Scholar
Summerhayes, V.S.Elton, C.S. 1928. Further contributions to the ecology of Spitsbergen. Journal of Ecology, 15: 193268.CrossRefGoogle Scholar
Svalbard Environmental Act 2001. LOV 2001-06-15 nr 79: Lov om miljøvern på Svalbard (svalbardmiljøloven). Available from http://www.lovdata.no/all/hl-20010615-079.html [accessed January 17, 2013].Google Scholar
Svenning, M.A.Gullestad, N. 2002. Adaptations to stochastic environmental variations: the effects of seasonal temperatures on the migratory window of Svalbard Arctic charr. Environmental Biology of Fishes, 64: 165174.CrossRefGoogle Scholar
Sysselmannen 2012. Reiselivsstatistikk for Svalbard 2011. Governor of Svalbard (Sysselmannen på Svalbard), Longyearbyen, Norway.Google Scholar
Thor, S. 1930. Beitrage zur Kenntnis der invertebraten Fauna von Svalbard. Skrifter om Svalbard og Ishavet 27. Norwegian Polar Institute, Oslo, Norway.Google Scholar
Van der Putten, W.H., Macel, M., Visser, M.E. 2010. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philosophic Transactions of the Royal Society Series B, 365: 20252034.CrossRefGoogle ScholarPubMed
Walter, G.R. 2010. Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society Series B, 365: 20192024.CrossRefGoogle Scholar
Wang, L., Wolken, G.J., Sharp, M.J., Howell, S.E.L., Derksen, C., Brown, R.D., et al. 2011. Integrated pan-Arctic melt onset detection from satellite active and passive microwave measurements, 2000–2009. Journal of Geophysical Research, 116: D22103 . doi:10.1029/2011JD016256.CrossRefGoogle Scholar
Ware, C., Bergstrom, D.M., Müller, E., Alsos, I.G. 2011. Humans introduce viable seeds to the Arctic on footwear. Biological Invasions, 14: 567577.CrossRefGoogle Scholar
Webb, N.R., Coulson, S.J., Hodkinson, I.D., Block, W., Bale, J.S., Strathdee, A.T. 1998. The effects of experimental temperature elevation on populations of cryptostigmatic mites in High Arctic soils. Pedobiologia, 42: 298308.Google Scholar
Westergaard, K.B., Alsos, I.G., Popp, M., Flatberg, K.I., Brochmann, C. 2011. Glacial survival may matter after all: nunatak signatures in the rare European populations of two west-Arctic species. Molecular Ecology, 20: 376393.CrossRefGoogle ScholarPubMed
Zmudczyńska, K., Olejniczak, I., Zwolicki, A., Iliszko, L., Convey, P., Stempniewicz, L. 2012. The influence of allochtonous nutrients delivered by colonial seabirds on soil collembolan communities on Spitsbergen. Polar Biology, 35: 12331245 . doi:10.1007/s00300-012-1169-4.CrossRefGoogle Scholar
Zmudczyńska, K., Zwolicki, A., Barcikowski, M., Barcikowski, A., Stempniewicz, L. 2009. Spectral characteristics of the Arctic ornithogenic tundra vegetation in Hornsund area, SW Spitsbergen. Polish Polar Research, 30: 249262.CrossRefGoogle Scholar