Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T17:00:46.128Z Has data issue: false hasContentIssue false

New species records for butterflies (Lepidoptera) on Herschel Island, Yukon, Canada, with notes on natural history

Published online by Cambridge University Press:  06 March 2013

Maria C. Leung*
Affiliation:
Wild Tracks Ecological Consulting, 39 Harbottle Road, Whitehorse, Yukon, Canada Y1A 5T2
Donald G. Reid
Affiliation:
Wildlife Conservation Society Canada, PO Box 31127, Whitehorse, Yukon, Canada Y1A 5T2
*
1Corresponding author (e-mail: Leungreid@northwestel.net).

Abstract

Comparisons of past and current butterfly species distributions are being used to gauge the effects of climatic change in various parts of the world. Historic butterfly records from Herschel Island, Yukon, Canada, presented an opportunity to do such a comparison in an Arctic tundra region known to have a diverse butterfly fauna. We compared historic species records (1916–1983) with newly collected ones (2007–2009) to assess possible changes in species distributions. Of the 21 species documented for Herschel Island, six were newly found and two were not reconfirmed. We postulate that warmer temperatures facilitated the apparent northerly range expansions of several species by making butterfly flight and dispersal possible. This is supported by interannual comparisons on a smaller time scale, 2007–2009. During this period, we observed accelerated butterfly phenology and higher relative abundance of butterflies associated with earlier snowmelt and with earlier and more intense early summer heating.

Résumé

Des comparaisons des distributions antérieures et actuelles d'espèces de papillons sont utilisées afin d’évaluer les effets des changements climatiques dans différentes parties du monde. Des inventaires historiques de papillons de l’île Herschel au Yukon (Canada) offrent une opportunité de faire une telle comparaison dans une région arctique de toundra connue pour la diversité de sa faune de papillons. Nous avons comparé les inventaires historiques (1916–1983) avec des inventaires récents (2007–2009) afin d’évaluer de possibles changements de distribution des espèces. Parmi les 21 espèces documentées pour l’île Herschel, il y avait six nouvelles espèces et deux qui n'ont pas été reconfirmées. Nous suggérons que les températures plus chaudes facilitent l'expansion nordique apparente de plusieurs espèces en permettant le vol et la dispersion des papillons. Ceci est supporté par les comparaisons interannuelles sur une plus petite échelle de temps, de 2007 à 2009. Durant cette période, nous avons observé une phénologie accélérée chez les papillons et une plus grande abondance relative des papillons associés avec une fonte des neiges hâtive et avec des chaleurs de début d’été plus hâtives et plus intenses.

Type
Biodiversity & Evolution – NOTE
Copyright
Copyright © Entomological Society of Canada 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arctic Monitoring and Assessment Programme 2011. Snow, water, ice and permafrost in the Arctic (SWIPA): climate change and the cryosphere. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway.Google Scholar
Burn, C.R. 2012. Climate. In Herschel Island: a natural and cultural history of Yukon's Arctic Island Qikiqtaryuk. Edited by C.R. Burn. Wildlife Management Advisory Council (North Slope), Yukon, Canada. Pp. 4853.Google Scholar
Cody, W.J. 2000. Flora of the Yukon Territory - Second edition. National Research Council Research Press, Ottawa, Ontario, Canada.Google Scholar
Crozier, L. 2004. Warmer winters drive butterfly range expansion by increasing survivorship. Ecology, 85: 231241.CrossRefGoogle Scholar
Guppy, C.S. 2010. Database of Yukon butterfly records. Excel spreadsheet. Canadian Wildlife Service, Environment Canada, Whitehorse, Yukon, Canada.Google Scholar
Hellman, J.L. 2001. Butterflies as model systems for understanding and predicting climate change. In Wildlife responses to climate change. Edited by S.H. Schneider and T.L. Root. Island Press, Washington, DC, United States of America. Pp. 93126.Google Scholar
Hill, J.K., Thomas, C.D., Fox, R., Telfer, M.G., Willis, S.G., Asher, J., et al. 2002. Responses of butterflies to twentieth century climate warming: implications for future ranges. Proceedings of the Royal Society London B, 269: 21632171.CrossRefGoogle ScholarPubMed
Hu, F.S., Higuera, P.E., Walsh, J.E., Chapman, W.L., Duffy, P.A., Brubaker, L.B., et al. 2010. Tundra burning in Alaska: linkages to climatic change and sea ice retreat. Journal of Geophysical Research, 115: G04002. doi:10.1029/2009JG001270.CrossRefGoogle Scholar
Kennedy, C.E., Smith, C.A.S., Cooley, D.A. 2001. Observations of change in the cover of Polargrass, Arctagrostis latifolia, and Arctic Lupine, Lupinus arcticus, in upland tundra on Herschel Island, Yukon Territory. Canadian Field-Naturalist, 115: 323328.Google Scholar
Kerr, J.T. 2001. Butterfly species richness patterns in Canada: energy, heterogeneity, and the potential consequences of climate change [online]. Conservation Ecology, 5: 10. Available from www.consecol.org/vol5/iss1/art10/ [accessed 15 December 2012].CrossRefGoogle Scholar
Kharouba, H.M., Algar, A.C., Kerr, J.T. 2009. Historically calibrated predictions of butterfly species’ range shift using global change as a pseudo-experiment. Ecology, 90: 22132222.CrossRefGoogle ScholarPubMed
Kittel, T.G.F., Baker, B.B., Higgins, J.V., Haney, J.C. 2010. Climate vulnerability of ecosystems and landscapes on Alaska's North Slope. Regional Environmental Change, 11: 249264.CrossRefGoogle Scholar
Layberry, R.A., Hall, P.W., Lafontaine, J.D. 1998. The butterflies of Canada. University of Toronto Press, Toronto, Canada.CrossRefGoogle Scholar
Myers-Smith, I.H., Hik, D.S., Kennedy, C., Cooley, D., Johnstone, J.F., Kenney, A.J., et al. 2011. Expansion of canopy-forming willows over the twentieth century on Herschel Island, Yukon Territory, Canada. Ambio, 40: 610623.CrossRefGoogle ScholarPubMed
Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37: 637669.CrossRefGoogle Scholar
Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J.K., Thomas, C.D., Descimon, H., et al. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399: 579583.CrossRefGoogle Scholar
Peterson, A.T., Martinez-Meyer, E., Gonzalez-Salazar, C., Hall, P.W. 2004. Modeled climate change effects on distributions of Canadian butterfly species. Canadian Journal of Zoology, 82: 851858.CrossRefGoogle Scholar
Pollard, E.Yates, T.J. 1993. Monitoring butterflies for ecology and conservation. Chapman and Hall, London, United Kingdom.Google Scholar
Scott, J.A. 1986. The butterflies of North America: a natural history and field guide. Stanford University Press, Stanford, California, United States of America.CrossRefGoogle Scholar
Smith, C.A.S., Kennedy, C.E., Hargrave, A.E., McKenna, K.M. 1989. Soil and vegetation survey of Herschel Island, Yukon Territory. Yukon Soil Report No. 1. Agriculture Canada, Land Resource Research Centre, Whitehorse, Yukon, Canada.Google Scholar
Warren, M.S., Hill, J.K., Thomas, J.A., Asher, J., Fox, R., Huntley, B., et al. 2001. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature, 414: 6569.CrossRefGoogle ScholarPubMed
Zhang, J. 2005. Warming of the arctic ice-ocean system is faster than the global average since the 1960s. Geophysical Research Letters, 32: L19602. doi:10.1029/2005GL024216.CrossRefGoogle Scholar