Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-30T15:15:27.437Z Has data issue: false hasContentIssue false

Dissolution of Cr, Zn, Cd, and Pb Single- and Multi-Metal-Substituted Goethite: Relationship to Structural, Morphological, and Dehydroxylation Properties

Published online by Cambridge University Press:  01 January 2024

Navdeep Kaur
Affiliation:
Faculty of Agriculture, Food & Natural Resources, The University of Sydney, NSW 2006, Australia
Balwant Singh*
Affiliation:
Faculty of Agriculture, Food & Natural Resources, The University of Sydney, NSW 2006, Australia
Brendan J. Kennedy
Affiliation:
School of Chemistry, The University of Sydney, NSW 2006, Australia
*
* E-mail address of corresponding author: balwant.singh@sydney.edu.au

Abstract

The morphology, dehydroxylation, and dissolution properties of single- and multi-metal (Cr, Zn, Cd, and Pb)-substituted goethites prepared using hydrothermal methods are reported. The crystal morphology varied with the nature and the number of metals present in the system. The presence of Cr produced broader crystals while Zn, Cd, and Pb produced narrower crystals than pure goethite. The presence of multiple metals retards the crystal growth of the mineral. Metal substitution caused changes in the unit-cell parameters and the infrared (IR) spectra of the samples. The IR spectra were also sensitive to the morphology of the crystals. The separation of γO and δOH bending frequencies increased with increase in area and aspect ratio of the (100) crystal face. The dissolution-kinetics studies (1 M HCl, 40ºC) of single-metal-substituted goethite provided the following dissolution rate order: Zn- > Pb(II)- ≥ Pb(IV)- > unsubstituted > Cd- > Cr-goethite. More complex results were obtained for the multi-metal-substituted samples. In the di-metal-substituted goethites, incorporation of Cr suppressed the dissolution rate of Zn-substituted goethite by 85% and Cd suppressed the dissolution rate of Zn-substituted goethite by 53%. Similarly, incorporated Cr and Cd suppressed the dissolution rate of Pb(II)-substituted goethite by 50%. The dissolution rates of multi-metal-substituted goethite were linearly related to the steric strains derived from the lattice parameters of the mineral. Dissolution studies also showed that Cr, Zn, Cd, and Pb(IV) were distributed homogeneously throughout goethite crystals while Pb(II) was enriched in the near-surface regions of the crystals. Incorporation of Cr and Pb(II) increased, while Zn and Pb(IV) decreased the dehydroxylation temperature of single-metal-substituted goethites. Incorporation of Zn suppressed the effect of Cr on the dehydroxylation temperature in multi-metal-substituted goethites.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, M. Sileo, E.E. and Rueda, E.H., 2005 Effect of Mn (II) incorporation on the transformation of ferrihydrite to goethite Chemical Geology 216 8997 10.1016/j.chemgeo.2004.11.004.CrossRefGoogle Scholar
Alvarez, M. Rueda, E.H. and Sileo, E.E., 2007 Simultaneous incorporation of Mn and Al in the goethite structure Geochimica et Cosmochimica Acta 71 10091020 10.1016/j.gca.2006.11.012.CrossRefGoogle Scholar
Atkinson, R.J. Posner, A.M. and Quirk, J.P., 1968 Crystal nucleation in Fe(III) solutions and hydroxide gels Journal of Inorganic and Nuclear Chemistry 30 23712374 10.1016/0022-1902(68)80247-7.CrossRefGoogle Scholar
Cambier, P., 1986 Infrared study of goethites of varying crystallinity and particle size: I. Interpretation of OH and lattice vibration frequencies Clay Minerals 21 191200 10.1180/claymin.1986.021.2.08.CrossRefGoogle Scholar
Clay Minerals Society CMS Nomenclature Committee, 1971 Summary of national and international recommendations on clay mineral nomenclature Clays and Clay Minerals 19 129132 10.1346/CCMN.1971.0190210.CrossRefGoogle Scholar
Cornell, R.M. Posner, A.M. and Quirk, J.P., 1974 Crystal morphology and the dissolution of goethite Journal of Inorganic and Nuclear Chemistry 36 19371946 10.1016/0022-1902(74)80705-0.CrossRefGoogle Scholar
Dudka, S. and Adriano, D.C., 1997 Environmental impacts of metal ore mining and processing: A review Journal of Environmental Quality 26 590602 10.2134/jeq1997.00472425002600030003x.CrossRefGoogle Scholar
Fey, M.V. and Dixon, J.B., 1981 Synthesis and properties of poorly crystalline hydrated aluminous goethites Clays and Clay Minerals 29 91100 10.1346/CCMN.1981.0290202.CrossRefGoogle Scholar
Ford, R.G. and Bertsch, P.M., 1999 Distinguishing between surface and bulk dehydration-dehydroxylation reactions in synthetic goethites by high-resolution thermogravimetric analysis Clays and Clay Minerals 47 329337 10.1346/CCMN.1999.0470309.CrossRefGoogle Scholar
Forsyth, J.B. Hedley, J.G. and Johnson, C.E., 1968 The magnetic structure and hyperfine field of goethite (α-FeOOH) Journal of Physics C1 179188.Google Scholar
Gallagher, K.J. and Phillips, D.N., 1968 Proton transfer studies in the ferric oxyhydroxides. Part1. Hydrogen exchange between alpha-FeOOH and water Transactions of the Faraday Society 64 785795 10.1039/TF9686400785.CrossRefGoogle Scholar
Gerth, J., 1990 Unit cell dimensions of pure and trace metal-associated goethites Geochimica et Cosmochimia Acta 54 363371 10.1016/0016-7037(90)90325-F.CrossRefGoogle Scholar
Goss, C.J., 1987 The kinetics and reaction mechanism of the goethite to hematite transformation Mineralogical Magazine 51 437451 10.1180/minmag.1987.051.361.11.CrossRefGoogle Scholar
Huynh, T. Tong, A.R. Singh, B. and Kennedy, B.J., 2002 Studies of synthetic copper containing goethite 17th World Congress of Soil Science, Bangkok, Thailand, 14–20 August 2002 .Google Scholar
Huynh, T. Tong, A.R. Singh, B. and Kennedy, B.J., 2003 Cd-substituted goethites — A structural investigation by synchrotron X-ray diffraction Clays and Clay Minerals 51 397402 10.1346/CCMN.2003.0510405.CrossRefGoogle Scholar
Jonas, K. and Solymer, K., 1970 Preparation, X-ray, derivatographic and infrared study of aluminium substituted goethites Acta Chimica Academiae Scientiarum Hungaricae 66 383394.Google Scholar
Kabai, J., 1973 Determination of specific activation energies of metal oxides and metal oxide hydrates by measurement of the rate of dissolution Acta Chimica Academiae Scientiarum Hungaricae 78 5773.Google Scholar
Kaur, N. Grafe, M. Singh, B. and Kennedy, B.J., 2009 Simultaneous incorporations of Cr, Zn, Cd and Pb in the goethite structure Clays and Clay Minerals 57 234250 10.1346/CCMN.2009.0570210.CrossRefGoogle Scholar
Kaur, N. Singh, B. Kennedy, B.J. and Grafe, M., 2009 The preparation and characterization of vanadium substituted goethite: the importance of temperature Geochimica et Cosmochimia Acta 73 582593 10.1016/j.gca.2008.10.025.CrossRefGoogle Scholar
Landers, M. and Gilkes, R.J., 2007 Dehydroxylation and dissolution of nickeliferous goethite in New Caledonian lateritic Ni ore Applied Clay Science 35 162172 10.1016/j.clay.2006.08.012.CrossRefGoogle Scholar
Lim-Nunez, R. Gilkes, R.J., Schultz, L.G. van Olphen, H. Mumpton, F.A., 1987 Acid dissolution of synthetic metal containing goethites and hematites Proceedings of the International Clay Conference, Denver, 1985 USA The Clay Minerals Society, Bloomington, Indiana 197204.Google Scholar
Luo, Y.-R. Kerr, J.A. and Lide, D.R., 2006 Bond dissociation energies CRC Handbook of Chemistry and Physics USA Taylor and Francis, Boca Raton, Florida.Google Scholar
Manceau, A. Schlegel, M.L. Musso, M. Sole, V.A. Gauthier, C. Petit, P.E. and Trolard, F., 2000 Crystal chemistry of trace elements in natural and synthetic goethite Geochimica et Cosmochimica Acta 64 36433661 10.1016/S0016-7037(00)00427-0.CrossRefGoogle Scholar
Primentel, G.C. and McClellan, A.L., 1960 The Hydrogen Bond London W.H. Freeman and Company, San Francisco.Google Scholar
Ressler, T., 1998 WinXAS: a program for x-ray absorption spectroscopy data analysis under MS-Windows Journal of Synchrotron Radiation 5 118122 10.1107/S0909049597019298.CrossRefGoogle ScholarPubMed
Ruan, H.D. and Gilkes, R.J., 1995 Acid dissolution of synthetic aluminous goethite before and after transformation to hematite by heating Clay Minerals 30 5565 10.1180/claymin.1995.030.1.06.CrossRefGoogle Scholar
Schulze, D.G. and Schwertmann, U., 1984 The influence of aluminium on iron oxides. X. Properties of Al-substituted goethites Clay Minerals 19 521539 10.1180/claymin.1984.019.4.02.CrossRefGoogle Scholar
Schulze, D.G. and Schwertmann, U., 1987 The influence of aluminum on iron-oxides. 13. Properties of goethites synthesized in 0.3 M KOH at 25-Degrees-C Clay Minerals 22 8392 10.1180/claymin.1987.022.1.07.CrossRefGoogle Scholar
Schwarzmann, E. and Sparr, H., 1969 Die Wasserstoff-bruckenbindung in Hydroxiden mit Diasporstruktur Zeitschrift fur Naturforschung 24b 811 10.1515/znb-1969-0105.CrossRefGoogle Scholar
Schwertmann, U., 1984 The influence of aluminium on iron oxides: IX. Dissolution of Al-goethites in 6M HCl Clay Minerals 19 919 10.1180/claymin.1984.019.1.02.CrossRefGoogle Scholar
Schwertmann, U., 1984 The double dehydroxylation peak of goethite Thermochimica Acta 78 3946 10.1016/0040-6031(84)87130-0.CrossRefGoogle Scholar
Schwertmann, U., 1991 Solubility and dissolution of ironoxides Plant and Soil 130 125 10.1007/BF00011851.CrossRefGoogle Scholar
Schwertmann, U. Cambier, P. and Murad, E., 1985 Properties of goethites of varying crystallinity Clays and Clay Minerals 33 369378 10.1346/CCMN.1985.0330501.CrossRefGoogle Scholar
Schwertmann, U. Gasser, U. and Sticher, H., 1989 Chromium-for-iron substitution in synthetic goethites Geochimica et Cosmochimica Acta 53 12931297 10.1016/0016-7037(89)90063-X.CrossRefGoogle Scholar
Shannon, R.D., 1976 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallographica A32 751767 10.1107/S0567739476001551.CrossRefGoogle Scholar
Sileo, E.E. Ramos, A.Y. Magaz, G.E. and Blesa, M.A., 2004 Long-range vs. short-range ordering in synthetic Cr-substituted goethites Geochimica et Cosmochimica Acta 68 30533063 10.1016/j.gca.2004.01.017.CrossRefGoogle Scholar
Singh, B. and Gilkes, R.J., 1992 Properties and distribution of iron oxides and their association with minor elements in the soils of south-western Australia Journal of Soil Science 43 7798 10.1111/j.1365-2389.1992.tb00121.x.CrossRefGoogle Scholar
Singh, B. Sherman, D.M. Gilkes, R.J. Wells, M.A. and Mosselmans, J.F.W., 2002 Incorporation of Cr, Mn and Ni into goethite (alpha-FeOOH): mechanism from extended X-ray absorption fine structure spectroscopy Clay Minerals 37 639649 10.1180/000985502374066.CrossRefGoogle Scholar
Stiers, W. and Schwertmann, U., 1985 Evidence for manganese substitution in synthetic goethite Geochimica et Cosmochimica Acta 49 19091911 10.1016/0016-7037(85)90085-7.CrossRefGoogle Scholar
Vega, F.A. Covelo, E.F. Andrade, M.L. and Marcet, P., 2004 Relationships between heavy metals content and soil properties in minesoils Analytica Chimica Acta 524 141150 10.1016/j.aca.2004.06.073.CrossRefGoogle Scholar
Wells, M.A., 1997 Mineral, chemical and magnetic properties of synthetic, metal-substituted goethite and hematite .Google Scholar
Wells, M.A. Fitzpatrick, R.W. and Gilkes, R.J., 2006 Thermal and mineral properties of Al-, Cr-, Mn-, Ni- and Ti-substituted goethite Clays and Clay Minerals 54 176194 10.1346/CCMN.2006.0540204.CrossRefGoogle Scholar
Wilcox, D. Dove, B. McDavid, D. and Greer, D., 1995 UTHSCASA Image Tool for Windows USA The University of Texas Health Science Centre, San Antonio, Texas.Google Scholar