Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T09:53:28.828Z Has data issue: false hasContentIssue false

Chemostratigraphy of predominantly siliciclastic Neoproterozoic successions: a case study of the Pocatello Formation and Lower Brigham Group, Idaho, USA

Published online by Cambridge University Press:  01 May 2009

Loren H. Smith
Affiliation:
Botanical Museum, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
Alan J. Kaufman
Affiliation:
Botanical Museum, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
Andrew H. Knoll
Affiliation:
Botanical Museum, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
Paul Karl Link
Affiliation:
Department of Geology, Idaho State University, Pocatello, ID 83209, USA

Abstract

Isotopic chemostratigraphy has proven successful in the correlation of carbonate-rich Neoproterozoic successions. In successions dominated by siliciclastic rocks, chemostratigraphy can be problematic, but if thin carbonates punctuate siliciclastic strata, useful isotopic data may be obtained. The upper Pocatello Formation and lower Brigham Group of southeastern Idaho provide an opportunity to assess the potential and limitations of isotopic chemostratigraphy in overwhelmingly siliciclastic successions. The 5000 m thick succession consists predominantly of siliciclastic lithologies, with only three intervals that contain thin intercalated carbonates. Its depositional age is only broadly constrained by existing biostratigraphic, sequence stratigraphic and geochronometric data. The lowermost carbonates include a cap dolomite atop diamictites and volcanic rocks of the Pocatello Formation. The δ13C values of these carbonates are distinctly negative ( −5 to −3), similar to carbonates that overlie Neoproterozoic glaciogenic rocks worldwide. Stratigraphically higher carbonates record a major positive δ13C excursion to values as high as +8.8 within the carbonate member of the Caddy Canyon Quartzite. The magnitude of this excursion is consistent with post-Sturtian secular variation recorded elsewhere in the North American Cordillera, Australia, Svalbard, Brazil and Namibia, and exceeds the magnitude of any post-Varanger δ13C excursion documented to date. In most samples, Sr-isotopic abundances have been altered by diagenesis and greenschist facies metamorphism, but a least-altered value of approximately 0.7076 supports a post-Sturtian and pre-Marinoan/Varanger age for upper Pocatello and lower Brigham rocks that lie above the Pocatello diamictite. Thus, even though available chemostratigraphic data are limited, they corroborate correlations of Pocatello Formation diamictites and overlying units with Sturtian glaciogenic rocks and immediately post-Sturtian successions in western North America and elsewhere.

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalto, K. R. 1971. Glacial marine sedimentation and stratigraphy of the Toby conglomerate (upper Proterozoic), southeastern British Columbia, northwestern Idaho and northeastern Washington. Canadian Journal of Earth Sciences 8, 753–87.CrossRefGoogle Scholar
Aitken, J. D. 1991. Two late Proterozoic glaciations, Mackenzie Mountains, northwestern Canada. Geology 19, 445–8.2.3.CO;2>CrossRefGoogle Scholar
Anderson, A. L. 1928. Portland cement materials near Pocatello, Idaho. Idaho Bureau of Mines and Geology Pamphlet no. 28, 15 pp.Google Scholar
Armin, R. A. & Mayer, L. 1983. Subsidence analysis of the Cordilleran miogeocline: Implications for timing of late Proterozoic rifting and amount of extension. Geology 11, 702–5.2.0.CO;2>CrossRefGoogle Scholar
Baker, A. J. & Fallick, A. E. 1989. Heavy carbon in two-billion-year-old marbles from Lofoten-Vesteralen, Norway: Implications for the Precambrian carbon cycle. Geochimica et Cosmochimica Acta 53, 1111–15.CrossRefGoogle Scholar
Bond, J. G., Christie-Buck, N., Kominz, M. A. & Devlin, W. J. 1985. An early Cambrian rift to post-rift transition in the Cordillera of western North America. Nature 316, 742–5.CrossRefGoogle Scholar
Bond, J. G. & Kominz, M. A. 1984. Construction of tectonic subsidence curves for the early Paleozoic miogeocline, southern Canadian Rocky Mountains: Implications for subsidence mechanisms, age of breakup, and crustal thinning. Geological Society of America Bulletin 95, 155–73.2.0.CO;2>CrossRefGoogle Scholar
Bond, J. G., Kominz, M. A. & Devlin, S. J. 1983. Thermal subsidence and eustasy in the Lower Paleozoic miogeocline of western North America. Nature 306, 775–9.CrossRefGoogle Scholar
Burgel, W. D., Rodgers, D. W. & Link, P. K. 1987. Mesozoic and Cenozoic structures of the Pocatello region, southeastern Idaho. In The Thrust Belt Revisited (ed. Miller, W. R.), pp. 91100. Wyoming Geological Association 38th annual field conference guidebook.Google Scholar
Christie-Blick, N. 1982. Upper Proterozoic and Lower Cambrian rocks of the Sheeprock Mountains, Utah: Regional correlation and significance. Geological Society of America Bulletin 93, 735–50.2.0.CO;2>CrossRefGoogle Scholar
Christie-Blick, N. 1985. Upper Proterozoic glacial-marine and subglacial deposits at Little Mountain, Utah. Brigham Young University Geology Studies 32, 918.Google Scholar
Christie-Blick, N., Grotzinger, J. P. & Von der Borch, C. C. 1988. Sequence stratigraphy in Proterozoic successions. Geology 16, 100–4.2.3.CO;2>CrossRefGoogle Scholar
Christie-Blick, N. & Levy, M. 1985. A new approach to time correlation in Proterozoic rocks: Sequence boundaries in the Brigham Group, Utah. Geological Society of America Abstracts with Programs 17, 546.Google Scholar
Christie-Blick, N. & Levy, M. (eds) 1989 a. Late Proterozoic and Cambrian tectonics, sedimentation and record of Metazoan radiation in the western United States. Field Trip Guidebook T331, 28th International Geological Congress, Washington, D. C., American Geophysical Union, 113 pp.Google Scholar
Christie-Blick, N. & Levy, M. 1989 b. Stratigraphic and tectonic framework of upper Proterozoic and Cambrian rocks in the Western United States. In Late Proterozoic and Cambrian tectonics, sedimentation, and record of Metazoan radiation in the western United States (eds Christie-Blick, N. and Levy, M.), pp. 721. Field Trip Guidebook T331, 28th International Geological Congress, Washington D. C., American Geophysical Union.Google Scholar
Crittenden, M. D. Jr, Christie-Blick, N. & Link, P. K. 1983. Evidence for two pulses of glaciation during the late Proterozoic in northern Utah and southeastern Idaho. Geological Society of America Bulletin 94, 437–50.2.0.CO;2>CrossRefGoogle Scholar
Crittenden, M. D. Jr, Schaeffer, F. E., Trimble, D. E. & Woodward, L. A. 1971. Nomenclature and correlation of some upper Precambrian and basal Cambrian sequences in western Utah and southeastern Idaho. Geological Society of America Bulletin 82, 581602.CrossRefGoogle Scholar
Crittenden, M. D. & Wallace, C. A. 1973. Possible equivalents of the Belt Supergroup in Utah. In Belt Symposium vol. 1, pp. 116–38. Moscow: University of Idaho, Idaho Bureau of Mines and Geology.Google Scholar
Dalziel, I. 1991. Pacific margins of Laurentia and east Antarctica-Australia as a conjugate rift pair: Evidence and implications for an Eocambrian supercontinent. Geology 19, 598601.2.3.CO;2>CrossRefGoogle Scholar
Derry, L., Kaufman, A. J. & Jacobsen, S. J. 1992. Sedimentary cycling and environmental change in the late Proterozoic: Evidence from stable and radiogenic isotopes. Geochimica et Cosmochimica Acta 56, 1317–29.CrossRefGoogle Scholar
Derry, L. A., Keto, L. S., Jacobsen, S. B., Knoll, A. H. & Swett, K. 1989. Sr isotopic variations in upper Proterozoic carbonates from Svalbard and East Greenland. Geochimica et Cosmochimica Acta 53, 2331–9.CrossRefGoogle ScholarPubMed
Devlin, W. J. & Bond, G. C. 1988. The initiation of the early Paleozoic Cordilleran miogeocline: evidence from the uppermost Proterozoic-Lower Cambrian Hamill Group of southeastern British Columbia. Canadian Journal of Earth Sciences 25, 119.CrossRefGoogle Scholar
Dixon, J. S. 1982. Regional structural synthesis, Wyoming salient of Western Overthrust Belt. American Association of Petroleum Geologists Bulletin 66, 1560–80.Google Scholar
Fairchild, I. J., Marshall, J. D. & Bertrand-Sarfati, J. 1990. Stratigraphic shifts in carbon isotopes from Proterozoic stromatolitic carbonates (Mauritania): Influences of primary mineralogy and diagenesis. American Journal of Science 290A, 4679.Google Scholar
Fairchild, I. J. & Spiro, B. 1987. Petrological and isotopic implications of some constraining late Precambrian carbonates, NE Spitsbergen. Sedimentology 34, 973–89.CrossRefGoogle Scholar
Ghent, E. D. & O'Neil, J. R. 1985. Late Precambrian marbles of unusual carbon-isotope composition, south-eastern British Columbia. Canadian Journal of Earth Sciences 22, 324–9.CrossRefGoogle Scholar
Glaessner, M. F. 1984. The Dawn of Animal Life. Cambridge: Cambridge University Press, 244 pp.Google Scholar
Harper, G. D. & Link, P. K. 1986. Geochemistry of upper Proterozoic rift-related volcanics, northern Utah and southeastern Idaho. Geology 14, 864–7.2.0.CO;2>CrossRefGoogle Scholar
Hoffman, P. F. 1991. Did the breakout of Laurentia turn Gondwanaland inside-out? Science 252, 1409–12.CrossRefGoogle ScholarPubMed
Iyer, S. S., Babinski, M., Krouse, H. R. & Chamele, F. 1994. Highly 13C enriched carbonate and organic matter in the Neoproterozoic sediments of the Bambui Group, Brazil. Precambrian Research.Google Scholar
Iyer, S. S., Krouse, H. R. & Babinski, M. 1992. Highly 13C enriched carbonate and organic matter in the Neoproterozoic sediments of the Bambui group, Brazil. 29th International Geological Congress Abstracts 1, 241.Google Scholar
Jenkins, R. F. R. 1992. The problems and potential of using animal fossils and trace fossils in terminal proterozoic biostratigraphy. 29th International Geological Congress Abstracts 1, 240.Google Scholar
Jenkins, R. F. R., McKirdy, D. M., Foster, C. B., O'Leary, T. & Pell, S. D. 1992. The record and stratigraphic implications of organic-walled microfossils from the Ediacaran (terminal Proterozoic) of South Australia. Geological Magazine 129, 401410.CrossRefGoogle Scholar
Kaufman, A. J., Hayes, J. M., Knoll, A. H. & Germs, G. J. B. 1991. Isotopic composition of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism. Precambrian Research 49, 301–27.CrossRefGoogle ScholarPubMed
Kaufman, A. J., Jacobsen, S. B. & Knoll, A. H. 1994. The Vendian record of Sr- and C-isotopic variations in seawater: Implications for tectonics and paleoclimate. Earth and Planetary Science Letters.Google Scholar
Kaufman, A. J. & Knoll, A. H. 1994. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research.Google Scholar
Kellogg, K. S. 1990. Geologic map of the South Putnam Mountain Quadrangle, Bannock and Caribou Counties, Idaho. U.S. Geological Survey Geologic Quadrangle Map GQ-1665, scale 1:24000.Google Scholar
Kellogg, K. S. 1992. Cretaceous thrusting and Neogene block rotation in the northern Portneuf Range region, southeastern Idaho. In Regional Geology of Eastern Idaho and Western Wyoming (eds Link, P. K., Kuntz, M. A. and Platt, L. B.), pp. 95124, Geological Society of America Memoir no. 179.CrossRefGoogle Scholar
Klein, C. & Beukes, N. J. 1993. Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan iron-formation in Canada. Economic Geology 88, 542–65.CrossRefGoogle Scholar
Knoll, A. H., Blick, N. & Awramik, S. M. 1981. Stratigraphic and ecologic implications of late Precambrian microfossils from Utah. American Journal of Science 281, 247–63.CrossRefGoogle Scholar
Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K. & Lambert, I. B. 1986. Secular variation in carbon isotope ratios from upper Proterozoic successions of Svalbard and East Greenland. Nature 321, 832–8.CrossRefGoogle ScholarPubMed
Knoll, A. H. & Walter, M. R. 1992. Latest Proterozoic stratigraphy and Earth history. Nature 356, 673–8.CrossRefGoogle ScholarPubMed
Lambert, I. B., Walter, M. R., Zang, Wenglong, Lu, Songnian & Ma, Gougan, 1987. Paleoenvironment and carbon isotope stratigraphy of upper Proterozoic carbonates of the Yangtze Platform. Nature 325, 140–42.CrossRefGoogle Scholar
Levy, M. & Christie-Blick, N. 1991 a. Late Proterozoic paleogeography of the eastern Great Basin. In Paleozoic paleogeography of the western United States (eds Cooper, J. D. and Stevens, C. H.), pp. 371–86. Pacific Section, Society of Economic Paleontologists and Mineralogists, Publication 67, vol. 1.Google Scholar
Lévy, M. & Christie-Blick, N. 1991 b. Tectonic subsidence of the early Paleozoic passive continental margin in eastern California and southern Nevada. Geological Society of America Bulletin 103, 15901606.2.3.CO;2>CrossRefGoogle Scholar
Levy, M., Christie-Blick, N. & Link, P. K. (in press). Neoproterozoic incised valleys of the Eastern Great Basin, Utah and Idaho: Fluvial response to changes in depositional base level. In Incised Valley Systems: Origin and Sedimentary Sequences (eds Dalrymple, R., Boyd, R. and Zaitlin, B.). Society of Economic Paleontologists and Mineralogists, Special Publication no. 51.Google Scholar
Link, P. K. 1981. Upper Proterozoic diamictites in south-eastern Idaho, U.S.A. In Earth's pre-Pleistocene glacial record (eds Hambrey, M. J. and Harland, W. B.), pp. 736–9. Cambridge: Cambridge University Press.Google Scholar
Link, P. K. 1983. Glacial and tectonically influenced sedimentation in the upper Proterozoic Pocatello Formation, southeastern Idaho. In Stratigraphic and tectonic studies in the eastern Great Basin (eds Miller, D. M., Todd, V. R. and Howard, K. A.), pp. 165–81. Geological Society of America Memoir no. 157.CrossRefGoogle Scholar
Link, P. K. 1984. Comment on “Subsidence analysis of the Cordilleran miogeocline: Implications for timing of late Proterozoic rifting and amount of extension”. Geology 12, 699701.2.0.CO;2>CrossRefGoogle Scholar
Link, P. K. 1986. Tectonic model for deposition of the late Proterozoic Pocatello Formation, southeastern Idaho. Northwest Geology 15, 17.Google Scholar
Link, P. K. 1987. The late Proterozoic Pocatello Formation: A record of continental rifting and glacial marine sedimentation, Portneuf Narrows, southeastern Idaho. In Rocky Mountain Section of the Geological Society of America Centennial Field Guide, vol. 2 (ed. Beus, S. S.), pp. 139142. Geological Society of America.CrossRefGoogle Scholar
Link, P. K., Christie-Blick, N., Devlin, W. J., Elston, D. P., Horodyski, R. J., Levy, M., Miller, J. M. G., Pearson, R. C., Prave, A., Stewart, J. H., Winston, D., Wright, L. A. & Wrucke, C. T. 1993. Middle and late Proterozoic stratified rocks of the western U.S. Cordillera, Colorado Plateau, and Basin and Range Province. In The Geology of North America, vol. C-2 (eds Reed, J. C., Bickford, M. E., Houston, R. S., Link, P. K., Rankin, D. W., Sims, P. K. and Van Schmus, W. R.), pp. 463595. Boulder, Colorado: Geological Society of America.Google Scholar
Link, P. K., Jansen, S. T., Halimdihardja, P., Lande, A. & Zahn, P. 1987. Stratigraphy of the Brigham Group (late Proterozoic-Cambrian), Bannock, Portneuf, and Bear River Ranges, southeastern Idaho. In The Thrust Belt Revisited (ed. Miller, W. R.), pp. 133–48. Wyoming Geological Association 38th annual field conference guidebook.Google Scholar
Link, P. K. & Lefebre, G. B. 1983. Upper Proterozoic diamictites and volcanic rocks of the Pocatello Formation and correlative units, southeastern Idaho and northern Utah. In Geologic excursions in stratigraphy and tectonics: from southeastern Idaho to the southern Inyo Mountains, California, via Canyonlands and Arches National Parks, Utah, guidebook part 2 (ed. Gurgel, K. D.), pp. 132. Utah Geological and Mineral Survey Special Studies no. 60.Google Scholar
Link, P. K., Lefebre, G. B., Pogue, K. R. & Burgel, W. D. 1985. Structural geology between the Putnam thrust and the Snake River Plain, southeastern Idaho. In Orogenic patterns and stratigraphy of north-central Utah and southeastern Idaho (eds Kerns, G. L. and Kerns, R. L.), pp. 97117. Utah Geological Association Publication no. 14.Google Scholar
Link, P. K. & Smith, L. H. 1992. Late Proterozoic and Early Cambrian stratigraphy, paleobiology, and tectonics: northern Utah and southeastern Idaho. Utah Geological Survey Miscellaneous Publication 92-3, 461–81.Google Scholar
Ludlum, J. C. 1942. Pre-Cambrian formations of Pocatello Idaho. Journal of Geology 50, 8595.CrossRefGoogle Scholar
Millard, A. W. 1983. Geology of the Southwestern Quarter of the Scipio North (15-Minute) Quadrangle, Millard and Juab Counties, Utah. Brigham Young University Geology Studies 30, 5982.Google Scholar
Moores, E. M. 1991. Southwest U.S.-East Antarctic (SWEAT) connection: A hypothesis. Geology 19, 425–8.2.3.CO;2>CrossRefGoogle Scholar
Naeser, C. W., Bryant, B., Crittenden, M. D. Jr & Sorenson, M. L. 1983. Fission track ages of apatite in the Wasatch Mountains, Utah – an uplift study. In Tectonic and stratigraphic studies in the eastern Great Basin (eds Miller, D. M., Todd, V. R. and Howard, D. A.), pp. 2936. Geological Society of America Memoir no. 157.CrossRefGoogle Scholar
Narbonne, G., Kaufman, A. J. & Knoll, A. H. 1994. Integrated Carbon isotope and biostratigraphy of the upper Windermere Group, Mackenzie Mountains, N. W. Canada. Geological Society of America Bulletin.Google Scholar
Oriel, S. S. & Armstrong, F. C. 1971. Uppermost Precambrian and lowest Cambrian rocks in southeastern Idaho. U.S. Geological Survey Professional Paper no. 394, 52 pp.Google Scholar
Peters, M. T., Wickham, S. M. & Miller, D. M. 1992. High δ13C late Proterozoic carbonates of the North American Cordillera. Geological Society of America Abstracts with Programs, A114.Google Scholar
Pierce, K. L. & Morgan, L. A. 1992. The track of the Yellowstone hot spot: Volcanism, faulting, and uplift. In Regional Geology of Eastern Idaho and Western Wyoming (eds Link, P. K., Kuntz, M. S. and Platt, L. B.), pp. 153. Geological Society of America Memoir no. 179.Google Scholar
Platt, L. B. 1985. Geologic map of the Hawkins Quadrangle, Bannock County, Idaho. U.S. Geological Survey Miscellaneous Field Studies Map MF-1812, scale 1: 24000.Google Scholar
Poulton, T. P. & Simony, P. S. 1980. Stratigraphy, sedimentology, and regional correlation of the Horsethief Creek (Hadrynian, Late Precambrian) in the northern Purcell and Selkirk Mountains, British Columbia. Canadian Journal of Earth Sciences 17, 1708–24.CrossRefGoogle Scholar
Ross, G. M., Bloch, J. D. & Krouse, H. R. 1991. Sulfur isotope geochemistry of authigenic pyrite, late Proterozoic Windermere Supergroup, Cariboo Mountains, British Columbia. Abstracts of the Geological Association of Canada/Mineralogical Association of Canada Annual Meeting 16, 108.Google Scholar
Schidlowski, M. & Aharon, P. 1992. Carbon cycle and carbon isotope record: geochemical impact of life over 3.8 Ga of Earth history. In Early Organic Evolution (eds Schidlowski, M., Golubic, S., Kimberley, M. M., McKirdy, D. M. and Trudinger, P. A.), pp. 147–75. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Sloss, L. L. 1988. Tectonic evolution of the craton in Phanerozoic time. In The Geology of North America, vol. D-2 (ed. Sloss, L. L.), pp. 2551. Boulder, Colorado: Geological Society of America.Google Scholar
Snoke, A. W. & Miller, D. M. 1988. Metamorphic and tectonic history of the northeastern Great Basin. In Metamorphism and Crustal evolution of the Western United States, Rubey Volume VII, (ed. Ernst, W. G.), pp. 606–48. Englewood Cliffs, N. J.: Prentice Hall.Google Scholar
Stewart, J. H. 1972. Late Precambrian evolution of North America: plate tectonics implication. Geology 4, 1115.2.0.CO;2>CrossRefGoogle Scholar
Stewart, J. H. & Suczek, C. A. 1977. Cambrian and latest Precambrian paleogeography and tectonics in the western United States. In Paleozoic paleogeography of the western United States (eds Stewart, J. H., Stevens, C. H. and Fritsche, A. E.), pp. 117. Society of Economic Paleontologists and Mineralogists, Pacific section, Pacific Coast Paleogeography Symposium 1.Google Scholar
Strauss, H. & Moore, T. B. 1992. Abundances and isotopic compositions of carbon and sulfur species in whole rock and kerogen samples. In The Proterozoic Biosphere (eds Schopf, J. W. and Klein, C.), pp. 709–98. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Trimble, D. E. 1976. Geology of the Michaud and Pocatello quadrangles, Bannock and Power Counties, Idaho. U.S. Geological Survey Bulletin no. 1400, 88 pp.Google Scholar
Veizer, J., Compston, W., Clauer, N. & Schidlowski, M. 1983. 87Sr/86Sr in late Proterozoic carbonates: evidence for a “mantle” event at ~ 900 Ma ago. Geochimica et Cosmochimica Acta 47, 295302.CrossRefGoogle Scholar
Veizer, J. & Hoefs, J. 1976. The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks. Geochimica et Cosmochimica Acta 40, 1387–95.CrossRefGoogle Scholar
Walter, M. R., Veveers, J. J., Calver, C., Grey, K., Hilyard, D. & Jenkins, R. J. F. 1992. The Neoproterozoic history of Australia. 29th International Geological Congress Abstracts 1, 240.Google Scholar
Wickham, S. M. & Peters, M. T. 1993. High δ13C Neoproterozoic carbonate rocks in western North America. Geology 21, 165–8.2.3.CO;2>CrossRefGoogle Scholar
Williams, G. E. 1979. Sedimentology, stable-isotope geochemistry and palaeoenvironment of dolostones capping late Precambrian glacial sequences in Australia. Journal of the Geological Society of Australia 26, 377–86.CrossRefGoogle Scholar
Young, G. M. 1992. Late Proterozoic stratigraphy and the Canada-Australia connection. Geology 20, 215–18.2.3.CO;2>CrossRefGoogle Scholar