Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T19:31:27.881Z Has data issue: false hasContentIssue false

Crescumulate layering in a gabbroic body on Seiland, northern Norway

Published online by Cambridge University Press:  01 May 2009

B. Robins*
Affiliation:
Geologisk Institutt, Avd. A, Universitetet i Bergen, Norway

Summary

The cumulates and crescumulates in the Crescumulate Zone of the Rognsund gabbro are described. The olivine and olivine-clinopyroxene crescumulates contain large dendritic crystals of olivine due to rapid upward growth from cumulus nucleii on the temporary floor of the magma chamber. Crescumulate growth was accompanied by the bottom accumulation of primocrysts, some of which were enlarged by the normal adcumulus process. The crescumulates are thought to have originated when cumulus crystals sank from a labile environment near the roof of the body into a metastable environment on the floor.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, G. M. 1956. The layered ultrabasic rocks of Rhum, Inner Hebrides. Phil. Trans. R. Soc. Ser. B, 240, 153.Google Scholar
Drever, H. I. & Johnston, R. 1957. Crystal growth of forsteritic olivine in magmas and melts. Trans. R. Soc. Edin. 63, 287315.Google Scholar
Drever, H. I. & Johnston, R. 1967. Picritic minor intrustions; pp. 71–82. In Wyllie, P. J. (Ed.): Ultramafic and Related Rocks. J. Wiley, New York.Google Scholar
Harker, A. 1908. The geology of the Small Isles of Inverness-shire (Sheet 60). Mem. geol. Surv.Google Scholar
Horvay, G. & Cahn, J. W. 1961. Dendritic and spheroidal growth. Acta metall. 9, 695705.CrossRefGoogle Scholar
Irvine, T. N. 1963. Origin of the ultramafic complex at Duke Island, Southeastern Alaska. Min. Soc. Am. Spec. Pap. 1, 3645.Google Scholar
Pringle, I. T. & Sturt, B. A. 1969. The age of the peak of the Caledonian Orogeny in west Finnmark, north Norway. Norsk geol. Tidsskr. 49, 435–6.Google Scholar
Saratovkin, D. D. 1959. Dendritic Crystallisation. (Trans. J. E. S. Bradley). Consultant Bureau, New York.Google Scholar
Smith, F. G. 1963. Physical Geochemistry. Addison-Wesley, Mass.Google Scholar
Sturt, B. A., Miller, J. A. & Fitch, F. J. 1967. The ages of alkaline rocks from west Finnmark, northern Norway and their bearing on the dating of the Caledonian Orogeny. Norsk geol. Tidsskr. 47, 255–73.Google Scholar
Taubeneck, W. H. & Poldervaart, A. 1960. Geology of the Elkhorn mountains, North-eastern Oregon: Part 2. Willow Lake intrusion. Bull. geol. Soc. Am. 71, 12951322.CrossRefGoogle Scholar
Wadsworth, W. J. 1961. The ultrabasic rocks of southwest Rhum. Phil. Trans. R. Soc. Ser. B, 244, 2164.Google Scholar
Wager, L. R. 1961. A note on the origin of ophitic texture in the chilled olivine gabbro of the Skaergaard intrusion. Geol. Mag. 98, 353–66.CrossRefGoogle Scholar
Wager, L. R. 1963. The mechanism of adcumulus growth in the layered series of the Skaergaard intrusion. Min. Soc. Am. Spec. Pap. 1, 19.Google Scholar
Wager, L. R. 1968. Rhythmic and cryptic layering in mafic and ultramafic plutons. pp. 573622. In Hess, H. H. & Poldervaart, A. (Eds.):Basalts. J. Wiley, New York.Google Scholar
Wager, L. R. & Brown, G. M. 1951. A note on rhythmic layering in the ultrabasic rocks of Rhum. Geol. Mag. 88, 166–8.CrossRefGoogle Scholar
Wager, L. R. & Brown, G. M. 1968. Layered Igneous Rocks. Oliver & Boyd, Edinburgh.Google Scholar
Weedon, D. S. 1960. The Gars-Bheinn sill, Icsle of Skye. Q. Jl geol. Soc. Lond. 116, 3754.CrossRefGoogle Scholar